1
|
Li Y, Li P, Zhang W, Zheng X, Gu Q. New Wine in Old Bottle: Caenorhabditis Elegans in Food Science. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2172429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Weixi Zhang
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Yang SH, Tao G, Yang L, Wu X, Liu JW, Dagher F, Ou SY, Song Y, Huang JQ. Dietary phytochemical and metabolic disease prevention: Focus on plant proteins. Front Nutr 2023; 10:1089487. [PMID: 36761228 PMCID: PMC9905127 DOI: 10.3389/fnut.2023.1089487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Plant-based functional foods have attracted increasing research interest to validate their use in preventing metabolic disease. Since it is increasingly recognized that inflammation, oxidative stress, and circadian rhythm play vital roles in various metabolic diseases, including diabetes, obesity and non-alcoholic liver disease, plant proteins, protein hydrolysates, and food extracts that intervene in these biological processes are promising dietary supplements to prevent metabolic diseases. Here, we reviewed the recent research on plant-based foods used for metabolic disease prevention and provided new perspectives regarding the current study gaps and future directions in this field.
Collapse
Affiliation(s)
- Song-hong Yang
- School of Pharmaceutical Sciences, Taizhou University, Taizhou, China
| | - Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Liu Yang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xiaohui Wu
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jing-wen Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Shi-yi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yuan Song
- The First Affiliated Hospital, Jinan University, Guangzhou, China,Yuan Song,
| | - Jun-qing Huang
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China,*Correspondence: Jun-qing Huang,
| |
Collapse
|
3
|
Dihydroquercetin composite nanofibrous membrane prevents UVA radiation-mediated inflammation, apoptosis and oxidative stress by modulating MAPKs/Nrf2 signaling in human epidermal keratinocytes. Biomed Pharmacother 2022; 155:113727. [PMID: 36156260 DOI: 10.1016/j.biopha.2022.113727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Exposure to ultraviolet (UV) radiation is a key cause of skin inflammation and photodamage in the environment. Dihydroquercetin composite nanofiber membrane (CPD) is a nano-scale membrane cloth prepared by electrospinning technology. The results in this study showed that CPD could enhance the activities of endogenous antioxidant enzymes such as SOD and GSH-Px induced by UVA radiation, and reduce the overexpression of ROS. MAPKs/Nrf2 signaling is associated with inflammation, apoptosis and oxidative stress. Compared with control HaCaT cells, we found that CPD pretreatment prevents MAPK (p-ERK, p-JNK, and p-P38)/Nrf2-induced inflammation, apoptosis, and oxidative stress signaling during UVA exposure pathway overexpression. Immunofluorescence experiments also showed that CPD could reduce the fluorescence intensity of Caspase-3 and TNF-α. These results suggest that CPD may be a successful healing agent that provides reinforcement against UVA-induced oxidative and irritating skin compensation.
Collapse
|
4
|
Mudd N, Liceaga AM. Caenorhabditis elegans as an in vivo model for food bioactives: A review. Curr Res Food Sci 2022; 5:845-856. [PMID: 35619588 PMCID: PMC9126841 DOI: 10.1016/j.crfs.2022.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 12/01/2022] Open
Abstract
Caenorhabditis elegans (C. elegans) is being widely explored as an in vivo model to study the effects of food bioactives. These nematodes are largely advantageous over other in vivo models as they are relatively inexpensive, have a short generation time, and have a completely sequenced genome, among other advantages. C. elegans is a commonly used model to study diseases such as Alzheimer's and Parkinson's disease; however, researchers are finding they can also give insight into the health promoting effect of food-derived bioactive compounds. As consumers become more aware of the health benefits of the foods that they consume, the study of bioactive properties of foods and food constituents is becoming an important source of information. This review focuses on the advantages of using C. elegans as a model such as their short lifespans, high level of gene conservation relative to humans, and large number of progenies per reproductive cycle. They are also easily manipulated in order to perform controlled experiments on synchronous populations. Through review of recent literature, it is clear that C. elegans can be used to study a range of food derived compounds such as bioactive peptides, phenolic compounds, carbohydrates, and lipids. This review also provides information on potential challenges associated with working with this nematode. These challenges include the need for a sterile environment, potential inaccuracy when determining if the nematodes are dead, and the simplicity of the organism making it not suitable for all studies.
Collapse
Affiliation(s)
- Natalie Mudd
- Protein Chemistry and Bioactive Peptide Laboratory, Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptide Laboratory, Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
5
|
The Chemical Compositions of Essential Oils Derived from Cryptocarya alba and Laurelia sempervirens Possess Antioxidant, Antibacterial and Antitumoral Activity Potential. Molecules 2020; 25:molecules25235600. [PMID: 33260521 PMCID: PMC7729746 DOI: 10.3390/molecules25235600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Cryptocarya alba (Peumo; CA) and Laurelia sempervirens (Laurel; LS) are herbs native to the Chilean highlands and have historically been used for medicinal purposes by the Huilliches people. In this work, the essential oils were extracted using hydrodistillation in Clevenger apparatus and analyzed by GC-MS to determine their composition. The antioxidant capacity (AC) was evaluated in vitro. The cytotoxicity was determined using cell line cultures both non tumoral and tumoral. The toxicity was determined using the nematode Caenorhabditis elegans. The antimicrobial activity was evaluated against 52 bacteria using the agar disc diffusion method and the minimum inhibitory concentrations (MICs) were determined. The principal compounds found in C. alba essential oil (CA_EO) were α-terpineol (24.96%) and eucalyptol (21.63%) and were isazafrol (91.9%) in L. sempervirens essential oil (LS_EO). Both EOs showed antioxidant capacity in vitro. Both EO showed antibacterial activity against bacteria using. LS_EO showed more inhibitory effect on these cell lines respect to CA_EO. Both EOs showed toxicity against the nematode C.elegans at 3.12–50 mg/mL. The essential oils of CA and LS have an important bioactive potential in their antioxidant, antibacterial and cytotoxicity activity. Both essential oils could possibly be used in the field of natural medicine, natural food preservation, cosmetics, sanitation and plaguicides among others.
Collapse
|
6
|
Functional foods - dietary or herbal products on obesity: application of selected bioactive compounds to target lipid metabolism. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Rodrigues CF, Salgueiro W, Bianchini M, Veit JC, Puntel RL, Emanuelli T, Dernadin CC, Ávila DS. Salvia hispanica L. (chia) seeds oil extracts reduce lipid accumulation and produce stress resistance in Caenorhabditis elegans. Nutr Metab (Lond) 2018; 15:83. [PMID: 30505336 PMCID: PMC6260566 DOI: 10.1186/s12986-018-0317-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/01/2018] [Indexed: 11/12/2022] Open
Abstract
Background Salvia hispanica seeds have been commonly used by people that seek healthy habits through natural foods to reduce cholesterol and triacylglycerides levels, however, the evidences that support this assumption are still scarce in literature. Here, we aimed to evaluate the lipid lowering effects of chia by using Caenorhabditis elegans as animal model, a nematode that has proven its usefulness for lipid metabolism studies. Methods We prepared hexane (HE) and Bligh-Dyer (BDE) extracts, evaluated and compared their safety, antioxidant potential and their lipid-lowering activity in the worms. Results The characterization of both extracts demonstrated that there were no differences in their lipid composition; however, BDE depicted better antioxidant potential. Both extracts reduced worm’s survival from 2%, and reproduction was reduced following treatment with both extracts, though a more notable effect was observed in HE-treated worms. In addition, the non-toxic concentration of both extracts (1%) increased stress resistance against paraquat toxicity in an antidote paradigm. Notably, this same concentration of both extracts reduced lipid accumulation in obese worms, which was not caused by food deprivation. Conclusions Taken together, our data demonstrate that both extraction methods from chia seeds result in oils that are rich in mono and polyunsaturated fatty acids, which may modulate lipid accumulation and provide antioxidant resistance in C. elegans.
Collapse
Affiliation(s)
- Cristiane Freitas Rodrigues
- 1UNIPAMPA-Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, BR 472 - Km 592, Caixa Postal 118, Uruguaiana, RS CEP 97500-970 Brazil
| | - Willian Salgueiro
- 1UNIPAMPA-Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, BR 472 - Km 592, Caixa Postal 118, Uruguaiana, RS CEP 97500-970 Brazil
| | - Matheus Bianchini
- 1UNIPAMPA-Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, BR 472 - Km 592, Caixa Postal 118, Uruguaiana, RS CEP 97500-970 Brazil
| | - Juliana Cristina Veit
- 2Departamento de Tecnologia e Ciência de Alimentos, Universidade Federal de Santa Maria, Centro de Ciências Rurais, Santa Maria, Rio Grande do Sul Brazil
| | - Robson Luiz Puntel
- 1UNIPAMPA-Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, BR 472 - Km 592, Caixa Postal 118, Uruguaiana, RS CEP 97500-970 Brazil
| | - Tatiana Emanuelli
- 2Departamento de Tecnologia e Ciência de Alimentos, Universidade Federal de Santa Maria, Centro de Ciências Rurais, Santa Maria, Rio Grande do Sul Brazil
| | - Cristiane Casagrande Dernadin
- 1UNIPAMPA-Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, BR 472 - Km 592, Caixa Postal 118, Uruguaiana, RS CEP 97500-970 Brazil
| | - Daiana Silva Ávila
- 1UNIPAMPA-Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, BR 472 - Km 592, Caixa Postal 118, Uruguaiana, RS CEP 97500-970 Brazil
| |
Collapse
|