1
|
Garrido-Romero M, Díez-Municio M, Moreno FJ. Global Status, Recent Trends, and Knowledge Mapping of Olive Bioactivity Research Through Bibliometric Analysis (2000-2024). Foods 2025; 14:1349. [PMID: 40282751 PMCID: PMC12026489 DOI: 10.3390/foods14081349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Over the past two decades, both academic and industrial interest in olive bioactive compounds has grown significantly due to their remarkable health benefits, such as antioxidant, anti-inflammatory, and cardioprotective properties. These compounds, found in both olive fruit and leaves, have become a central focus in the research on functional foods and nutraceuticals. A comprehensive bibliometric analysis of scientific publications from 2000 to 2024 highlights a notable increase in this field, with 2228 documents published in high-impact journals with an estimated annual growth rate of 0.2694 year-1, particularly in the last decade. This surge reflects the growing recognition of olive bioactive compounds' potential in promoting human health through nutritional and therapeutic interventions, and their role in the expanding nutraceutical industry. This growth is further reaffirmed by patent analysis, which shows a significant rise in industrial interest and patent filings related to olive bioactive compounds. The analysis also examined nearly 6000 keywords to identify the most influential research domains, pinpoint knowledge gaps, and reveal the most important bioactive compounds in olives and their potential in preventing various human diseases.
Collapse
Affiliation(s)
- Manuel Garrido-Romero
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
- Pharmactive Biotech Products SLU, Faraday 7, 28049 Madrid, Spain;
| | | | - F. Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
2
|
Kumari S, Saini R, Mishra A. Phytochemical profiling and evaluation of the antidiabetic potential of Ichnocarpus frutescens (Krishna Sariva): kinetic study, molecular modelling, and free energy approach. J Biomol Struct Dyn 2024; 42:8712-8731. [PMID: 37615387 DOI: 10.1080/07391102.2023.2248265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
This research explored novel antidiabetic drugs from natural sources using the Ayurvedic Rasayana herb Ichnocarpus frutescens through invitro enzyme assay, kinetics study, and computational approaches. Invitro enzyme inhibition assay demonstrated the promising inhibitory activity of root extract against alpha-amylase (α-A) and alpha-glucosidase (α-G) enzyme with IC50 value 7.34 ± 0.22 mg/ml and 4.40 ± 0.25 mg/ml respectively. Enzyme kinetic study revealed the competitive inhibition of both proteins by Ichnocarpus frutescens extract. High-Resolution Liquid Chromatography Mass Spectrometer and Docking study revealed the better binding energy of phytoconstituents 23-Acetoxysoladulcidine, Atrovirinone, Bismurrayaquinone A, Lamprolobine, Zygadenine, and Gambiriin A3 than standard drug acarbose. Molecular modelling showed stable protein-ligands binding interaction during the 100 ns simulation. It revealed comparable Root Mean Square Deviation, Radius of Gyration, and Solvent Accessible Surface Area of these compounds with acarbose. The active site residues of both proteins remained stable and showed significantly less Root Mean Square Fluctuation. Molecular Mechanics with Generalised Bonn Surface Area analysis has illustrated the similar inhibitory activity of Zygadenine for α-A, 23-Acetoxysoladulcidine, and Gambiriin A3 for α-G protein, compared to the FDA-approved drug acarbose. Thus, the study suggested that the root of Ichnocarpus frutescens can be used as α-A and α-G inhibitors and be considered a compelling lead for the medication of type 2 diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonali Kumari
- aSchool of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Ravi Saini
- aSchool of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Abha Mishra
- aSchool of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Elhrech H, Aguerd O, El Kourchi C, Gallo M, Naviglio D, Chamkhi I, Bouyahya A. Comprehensive Review of Olea europaea: A Holistic Exploration into Its Botanical Marvels, Phytochemical Riches, Therapeutic Potentials, and Safety Profile. Biomolecules 2024; 14:722. [PMID: 38927125 PMCID: PMC11201932 DOI: 10.3390/biom14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human health is now inextricably linked to lifestyle choices, which can either protect or predispose people to serious illnesses. The Mediterranean diet, characterized by the consumption of various medicinal plants and their byproducts, plays a significant role in protecting against ailments such as oxidative stress, cancer, and diabetes. To uncover the secrets of this natural treasure, this review seeks to consolidate diverse data concerning the pharmacology, toxicology, phytochemistry, and botany of Olea europaea L. (O. europaea). Its aim is to explore the potential therapeutic applications and propose avenues for future research. Through web literature searches (using Google Scholar, PubMed, Web of Science, and Scopus), all information currently available on O. europaea was acquired. Worldwide, ethnomedical usage of O. europaea has been reported, indicating its effectiveness in treating a range of illnesses. Phytochemical studies have identified a range of compounds, including flavanones, iridoids, secoiridoids, flavonoids, triterpenes, biophenols, benzoic acid derivatives, among others. These components exhibit diverse pharmacological activities both in vitro and in vivo, such as antidiabetic, antibacterial, antifungal, antioxidant, anticancer, and wound-healing properties. O. europaea serves as a valuable source of conventional medicine for treating various conditions. The findings from pharmacological and phytochemical investigations presented in this review enhance our understanding of its therapeutic potential and support its potential future use in modern medicine.
Collapse
Affiliation(s)
- Hamza Elhrech
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Oumayma Aguerd
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy;
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony, Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| |
Collapse
|
4
|
Bouakline H, Bouknana S, Merzouki M, Ziani I, Challioui A, Bnouham M, Tahani A, EL Bachiri A. The Phenolic Content of Pistacia lentiscus Leaf Extract and Its Antioxidant and Antidiabetic Properties. ScientificWorldJournal 2024; 2024:1998870. [PMID: 38356989 PMCID: PMC10866636 DOI: 10.1155/2024/1998870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 02/16/2024] Open
Abstract
The aims of this study were to determine the polyphenolic profile, to estimate the total phenolic and flavonoid contents, and to evaluate the antioxidant and antidiabetic activities of the extract of Pistacia lentiscus leaves, and the hydroacetonic mixture was employed as an alternative for common solvents in the extraction process. In order to explain the antidiabetic activity, molecular docking has been performed on the main constituents of the leaf extract. The characterization of the extract has been performed by high-performance liquid chromatography (HPLC) leading to the detection of 20 compounds of which gallic acid, ellagic acid, catechin, kaempferol, and quercetin 3-glucoside were identified using authentic standards. The total phenolic and flavonoid contents, assessed using the Folin-Ciocalteu and quercetin methods, were 394.5 ± 0.08 mg gallic acid equivalent/g dry extract (mg GAE/g DE) and 101.2 ± 0.095 mg quercetin equivalent/g dry extract (mg QE/g DE), respectively. On the other hand, the antioxidant activity of leaf extract, quantified by determining the ability to neutralize the free radical DPPH and β-carotene/linoleate model system, reached the values of 0.0027 ± 0.002 mg/mL and 0.128 ± 0.04 mg/mL, respectively. Regarding the antidiabetic activity, based on the inhibition of pancreatic α-amylase activity, a significant inhibition of about 68.20% with an IC50 value of 0.266 mg/mL had been observed. This finding is consistent with the molecular docking study of the main phenolic compounds of the extracts, where a remarkable binding affinity against α-amylase was observed, with values of -7.631 (kcal/mol), -6.818 (kcal/mol), and -5.517 (kcal/mol) for the major compounds catechin, quercetin-3-glucoside, and gallic acid, respectively.
Collapse
Affiliation(s)
- Hamza Bouakline
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Saliha Bouknana
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Mohammed Merzouki
- Laboratory of Applied Chemistry and Environment (LCAE-ECOMP), Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Imane Ziani
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Allal Challioui
- Laboratory of Applied Chemistry and Environment (LCAE-ECOMP), Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Abdesselam Tahani
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Ali EL Bachiri
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| |
Collapse
|
5
|
Kumari S, Saini R, Bhatnagar A, Mishra A. HR-LCMS and evaluation of anti-diabetic activity of Hemidesmus indicus (anantmool): Kinetic study, and molecular modelling approach. Comput Biol Chem 2023; 105:107896. [PMID: 37263051 DOI: 10.1016/j.compbiolchem.2023.107896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
This study delved into the exploration of novel antidiabetic medications acquired from natural resources, utilizing the Ayurvedic Rasayana herb Hemidesmus indicus through cutting-edge chemoprofiling and molecular modelling techniques. The methanolic extract of Hemidesmus indicus root exhibited the highest extractive yield (24.70 ± 0.08 %) and contained substantial levels of total phenolic and flavonoid content as 154.15 ± 1.24 mg Gallic Acid Equivalent/g extract and 70.61 ± 0.35 Quercetin Equivalent/g extract respectively. Invitro study revealed the potent inhibitory potential of methanolic extract of the herb against essential carbohydrate hydrolytic enzymes α-amylase (IC50 = 4.19 ± 0.04 mg/ml) and α-glucosidase (IC50 = 5.78 ± 0.10 mg/ml). Further, the enzyme kinetic study demonstrated the competitive mode of inhibition of both enzymes. HR-LCMS analysis identified the major phytoconstituents present in the extracts, including Solanocapsine, Cyclovirobuxine C, Lucidine B, Zygadenine, Aspidospermidine, silychristin, 3beta-3-Hydroxy-18-lupen-21-one, Manglupenone, and 19-Noretiocholanolone. Molecular docking, molecular dynamic simulation, and MM/GBSA analysis have proved stable, rigid, compact, and folded form of complexes during the entire 100 ns simulation, illustrating Zygadenine, Solanocapsine, and Cyclovirobuxine C as the superior inhibitors of α-A protein, while Zygadenine, Plumieride, and Phlegmarine exhibited greater inhibitory behaviour towards α-G protein than the FDA-approved drug acarbose. Collectively, our findings indicate that the Hemidesmus indicus could be a promising source of α-A and α-G inhibitors, potentially serving as a lead in order to develop medications for type-2 diabetes.
Collapse
Affiliation(s)
- Sonali Kumari
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Aditi Bhatnagar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Liu L, Dong Q, Kong Y, Kong Y, Yu Z, Li B, Yan H, Chen X, Shen Y. The Effect of B-type Procyanidin on Free Radical and Metal Ion Induced β-Lactoglobulin Glyco-oxidation via Mass Spectrometry and Interaction Analysis. Food Res Int 2023; 168:112744. [PMID: 37120199 DOI: 10.1016/j.foodres.2023.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/28/2023]
Abstract
Procyanidin is a group of dietary flavonoids abundant in berry fruits. In this study, the effects and underlying mechanisms of B type procyanidin (PC) on free radical and metal ion (H2O2, AAPH and Fe3+) induced milk protein β-lactoglobulin (BLG) glyco-oxidation were investigated. The results indicated that PC protected BLG structure changes from cross-link and aggregation induced by free radicals and metal ion. Additionally, it effectively inhibited BLG oxidation by reducing approximately 21%-30% carbonyls and 15%-61% schiff base crosslink formation. Also, PC suppressed BLG glycation by inhibiting 48-70% advanced glycation end-products (AGEs) and reduced the accumulation of intermediate product methylglyoxal (MGO). The corresponding mechanisms were elucidated that PC exhibited great free radical scavenging and metal chelating properties; PC had non-covalent bind with the amino acid residues (preferably lysine and arginine) of BLG and blocked them from glycation; PC interrupted BLG glycation by forming procyanidin-MGO conjugates. Therefore, B type procyanidin was an effective glyco-oxidation inhibitor in milk products.
Collapse
|
7
|
Asuquo IG, Solangi M, Khan KM, Chigurupati S, Otuokere IE, Ekuma FK, Salar U, Felemban SG, Rehman AU, Wadood A, Taha M. Design, synthesis and bio-evaluation of indolin-2-ones as potential antidiabetic agents. Future Med Chem 2023; 15:25-42. [PMID: 36644975 DOI: 10.4155/fmc-2022-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/05/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Diabetes mellitus is a serious global health concern, and this is expected to impact more than 300 million people by 2025. The current study focuses on identifying substituted indolin-2-one-based inhibitors for two indispensable drug targets, α-amylase and α-glucosidase. Methods: The structures of synthetic compounds were confirmed by spectroscopic techniques and evaluated for enzyme inhibition activities. Kinetic and in silico studies were also performed. Results: All compounds exhibited good-to-moderate inhibitory potential. Most importantly, compounds 1, 2, 6, 16 and 17 were identified as potent α-glucosidase inhibitors (IC50 = 9.15 ± 0.12-13.74 ± 0.12 μM). Conclusion: This study identified that these synthetic compounds might serve as potential lead molecules for antidiabetic agents.
Collapse
Affiliation(s)
- Itohowo Gabriel Asuquo
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, 440101, Abia State, Nigeria
| | - Mehwish Solangi
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, PO Box 31441, Dammam, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Ifeanyi Edozie Otuokere
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, 440101, Abia State, Nigeria
| | - Francis Kalu Ekuma
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, 440101, Abia State, Nigeria
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, PO Box 31441, Dammam, Saudi Arabia
| |
Collapse
|
8
|
Akhtar MF, Ashraf KM, Saleem A, Sharif A, Zubair HM, Anwar F. Antidiabetic Potential and Antioxidant Activity of Olea europaea subsp. Cuspidata (Indian Olive) Seed Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5164985. [PMID: 36217432 PMCID: PMC9547684 DOI: 10.1155/2022/5164985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/24/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to evaluate the antioxidant and antidiabetic potential of Indian olive seed extracts. Plant seeds were sequentially extracted with n-hexane, chloroform, methanol, and water. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging and alpha-amylase inhibitory activities of extracts were carried out. Olea europaea methanolic extract (MEOE) and aqueous extract (AEOE) were orally administered to normoglycemic and alloxan-treated diabetic rats so as to determine their hypoglycemic effect. High-performance liquid chromatography (HPLC) analysis showed gallic acid, ferulic acid, quercetin, and vanillic acid in MEOE. It was found that the methanolic and aqueous extracts exhibited the maximum DPPH and alpha-amylase inhibition activities, respectively. MEOE and AEOE exerted a significant decline in the fasting blood sugar in diabetic animals (p < 0.05); however, they did not cause hypoglycemia in nondiabetic animals. Treatment with MEOE and AEOE reduced the aggravated liver and kidney function biomarkers. Aggravated levels of oxidative stress biomarkers including superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and malondialdehyde (MDA) were restored by treatment with MEOE. Moreover, MEOE improved the count of islets of Langerhans in the pancreas, fatty changes, and enlarged sinusoidal spaces in the liver and necrosis of the glomerulus and tubular cells of the kidney in diabetic rats. This study showed that the African olive seed extract effectively managed experimental diabetes and restored the normal functions and histology of the liver and kidney in diabetic rats through the reduction of oxidative stress.
Collapse
Affiliation(s)
- Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Islamabad, Pakistan
| | | | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | | | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Islamabad, Pakistan
| |
Collapse
|
9
|
Solangi M, Kanwal, Khan KM, Chigurupati S, Saleem F, Qureshi U, Ul-Haq Z, Jabeen A, Felemban SG, Zafar F, Perveen S, Taha M, Bhatia S. Isatin thiazoles as antidiabetic: Synthesis, in vitro enzyme inhibitory activities, kinetics, and in silico studies. Arch Pharm (Weinheim) 2022; 355:e2100481. [PMID: 35355329 DOI: 10.1002/ardp.202100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Diabetes mellitus is one of the most prevalent diseases nowadays. Several marketed drugs are available for the cure and treatment of diabetes, but there is still a dire need of introducing compatible drug molecules with lesser side effects. The current study is based on the synthesis of isatin thiazole derivatives 4-30 via the Hantzsch reaction. The synthetic compounds were characterized using different spectroscopic techniques and evaluated for their α-amylase and α-glucosidase inhibition potential. Of 27 isatin thiazoles, five (4, 5, 10, 12, and 16) displayed good activities against the α-amylase enzyme with IC50 values in the range of 22.22 ± 0.02-27.01 ± 0.06 µM, and for α-glucosidase, the IC50 values of these compounds were in the range of 20.76 ± 0.17-27.76 ± 0.17 µM, respectively. The binding interactions of the active molecules within the active site of enzymes were studied with the help of molecular docking studies. In addition, kinetic studies were carried out to examine the mechanism of action of the synthetic molecules as well. Compounds 3a, 4, 5, 10, 12, and 16 were also examined for their cytotoxic effect and were found to be noncytotoxic. Thus, several molecules were identified as good antihyperglycemic agents, which can be further modified to enhance inhibition ability and to find the lead molecule that can act as a potential antidiabetic agent.
Collapse
Affiliation(s)
- Mehwish Solangi
- International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Kanwal
- International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
- Institute of Marine Biotechnology, Universiti Malaysia Terengannu, Kuala Terengganu, Terengganu, Malaysia
| | - Khalid M Khan
- International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
- Department of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, Qassim University, Buraydah, Saudi Arabia
| | - Faiza Saleem
- International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Urooj Qureshi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shatha G Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah, Kingdom of Saudi Arabia
| | - Fatima Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|