1
|
El-Kattan N, Ibrahim MA, Emam AN, Metwally K, Youssef FS, Nassar NA, Mansour AS. Evaluation of the antimicrobial activity of chitosan- and curcumin-capped copper oxide nanostructures against multi-drug-resistant microorganisms. NANOSCALE ADVANCES 2025; 7:2988-3007. [PMID: 40182310 PMCID: PMC11962744 DOI: 10.1039/d4na00955j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
The emergence of multi-drug-resistant microorganisms presents a serious threat to infection control, for which new antimicrobial strategies are urgently needed. Herein, the antimicrobial activities of copper oxide nanoparticles capped with curcumin (Cur-CuO NPs) and copper oxide nanoparticles capped with chitosan (CS-CuO NPs) were investigated. They were prepared via the co-precipitation method. A total of 180 clinical ICU patients were found to have 70% Gram-negative and 30% Gram-positive isolates. Antimicrobial susceptibility testing indicated resistance of these isolates to 14 among the 21 tested antibiotics. Physicochemical properties of the curcumin-capped (Cur-CuO NPs) and chitosan-capped (CS-CuO NPs) copper oxide nanoparticles were identified using UV-vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta-potential (ζ), and Fourier transform infrared (FT-IR) spectroscopy. Cur-CuO- and CS-CuO-NPs exhibited potent antimicrobial efficacy, wherein CS-CuO NPs were found to possess a lower minimum inhibitory concentration (MIC) (3.9-15.6 μg mL-1) than Cur-CuO NPs (14.5-31.2 μg mL-1). Biocompatibility assay showed that Cur-CuO NPs were safer with an IC50 dose of 74.17 μg mL-1 than CS-CuO NPs with an IC50 dose of 41.01 μg mL-1. Results revealed that the Cur-CuO- and CS-CuO-NPs have the potential to be safely used as effective antimicrobial agents in clinical applications at low concentrations (6.25-12.5 μg mL-1).
Collapse
Affiliation(s)
- Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes Giza Egypt
| | - Mostafa A Ibrahim
- Production and R&D Unit, NanoFab Technology Company 6th October City Giza Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
| | - Khaled Metwally
- Genetics Department, Faculty of Agriculture, Ain Shams University P.O. Box 68, Hadayek Shoubra 11241 Cairo Egypt
| | - Fady Sayed Youssef
- Department of Pharmacology Faculty of Veterinary Medicine, Cairo University 12211 Giza Egypt
| | | | - Ahmed S Mansour
- Department of Laser Applications in Meteorology, Chemistry and Agriculture, National Institute of Laser Enhanced Sciences (NILES), Cairo University Cairo Egypt
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University Zayed City Giza Egypt
| |
Collapse
|
2
|
Putluru S, Snega R, Geetha Sravanthy P, Saravanan M. One-Pot Synthesis of Silver/Zirconium Nanoparticles Using Sargassum tenerrimum for the Evaluation of Their Antibacterial and Antioxidant Activities. Cureus 2024; 16:e61779. [PMID: 38975438 PMCID: PMC11227426 DOI: 10.7759/cureus.61779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
INTRODUCTION The global health threat posed by worldwide antimicrobial resistance necessitated immediate multisectoral action by the scientific community to achieve sustainable development goals. Silver and zirconium nanoparticles (Ag/ZrO-NPs), known for their antimicrobial properties, have the potential to combat pathogens effectively, making them versatile for various applications across different fields. OBJECTIVE This study aims to synthesize and characterize Sargassum tenerimum-mediated Ag/ZrO-NPs and evaluate their antioxidant and antibacterial efficacy against multidrug resistant (MDR) pathogens. METHODOLOGY The synthesis of Ag/ZrO-NPs using the one-pot green synthesis method was conducted and followed by using characterization techniques, namely, UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), and energy-dispersive X-ray analysis (EDX). The antibacterial activity was assessed using the agar well diffusion method, and antioxidant activity was determined using the DPPH(2,2-diphenyl-1-picrylhydrazyl) method. Statistical analysis was analyzed using the IBM SPSS Statistics for Windows, version 21.0 (released 2012, IBM Corp., Armonk, NY). RESULTS The green-synthesized Ag/ZrO-NPs exhibited a color change from dark brown to creamy white, indicating the successful reduction of the nanoparticles. UV-analysis peaks were observed at 310-330 nm, while the FT-IR analysis showed the peaks at various wavelengths, such as 648.9 cm-1 (alkyne C-H bond), 1041.14 cm-1 (aliphatic fluoro compounds, C-F stretch), 1382.54 cm-1 (dimethyl -CH3), 1589.6 cm-1 (primary amine, N-H bond), and 3353.8 cm-1 (aliphatic secondary amine, N-H stretch). The crystallinity of the nanoparticles was determined to be 59.5%, while the remaining 40.5% exhibited an amorphous structure. The SEM image revealed the spherically agglomerated structure of the nano-ranged size Ag/ZrO-NPs. The EDX analysis indicated the presence of elemental compositions Zr (16.2%), Ag (18.8%), and C (28.7%) in the green-synthesized Ag/ZrO-NPs. These nanoparticles demonstrated significant antibacterial activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Methicillin-resistant Staphylococcus aureus (MRSA). The moderate antibacterial activity against E. coli showed thesignificant antioxidant activity in a dose-dependent manner. CONCLUSION The green-synthesized Ag/ZrO-NPs showed notable antibacterial and antioxidant activity. In future aspects, it may be used as a potential drug after completion of in-vivo and in-vitro studies.
Collapse
Affiliation(s)
- Sahith Putluru
- Department of Pharmacology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Ramanathan Snega
- AMR and Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - P Geetha Sravanthy
- AMR and Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
3
|
Figueroa Ramírez SJ, Escobar Morales B, Pantoja Velueta DA, Sierra Grajeda JMT, Alonso Lemus IL, Aguilar Ucán CA. Green Synthesis of Copper Nanoparticles Using Sargassum spp. for Electrochemical Reduction of CO 2. ChemistryOpen 2024; 13:e202300190. [PMID: 38195820 PMCID: PMC11095163 DOI: 10.1002/open.202300190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
This study presents a green method of producing copper nanoparticles (CuNPs) using aqueous extracts from Sargassum spp. as reducing, stabilizing, and capping agents. The CuNPs created using this algae-based method are not hazardous, they are eco-friendly, and less toxic than their chemically synthesized counterparts. The XRD characterization of the CuNPs revealed the presence of Cu and CuO, with a crystallite size ranging from 13 to 17 nm. Following this, the CuNPs were supported onto a carbon substrate, also derived from Sargassum spp. (biochar CSKPH). The CuNPs in biochar (CuNPs-CSKPH) did not appear in the XRD diffractograms, but the SEM-EDS results showed that they accounted for 36 % of the copper weight. The voltamperometric study of CuNps-CSKPH in acid media validated the presence of Cu and the amount was determined to be 2.58 μg. The catalytic activity of CuNPs-CSKPH was analyzed for the electrochemical reduction of CO2. The use of Sargassum spp. has great potential to tackle two environmental problems simultaneously, by using it as raw material for the synthesis of activated biochar as support, as well as the synthesis of CuNPs, and secondly, by using it as a sustainable material for the electrochemical conversion of CO2.
Collapse
Affiliation(s)
- Sandra Jazmín Figueroa Ramírez
- Facultad de IngenieríaUniversidad Autónoma del CarmenAv. Central S/N, Esq. con Fracc. Mundo MayaCiudad del Carmen24115Campeche, México
| | - Beatriz Escobar Morales
- CONAHCYT – Centro de Investigación Científica de Yucatán5.5 Carretera Sierra Papacal-Chuburná PuertoSierra PapacalYucatán97302, México
| | - Diego Alonso Pantoja Velueta
- Facultad de IngenieríaUniversidad Autónoma del CarmenAv. Central S/N, Esq. con Fracc. Mundo MayaCiudad del Carmen24115Campeche, México
| | - Juan Manuel T. Sierra Grajeda
- Facultad de IngenieríaUniversidad Autónoma del CarmenAv. Central S/N, Esq. con Fracc. Mundo MayaCiudad del Carmen24115Campeche, México
| | - Ivonne Liliana Alonso Lemus
- CONAHCYT – Cinvestav Unidad SaltilloSustentabilidad de los Recursos Naturales y EnergíaAv. Industria Metalúrgica, Parque Industrial Saltillo-Ramos Arizpe CoahRamos Arizpe25900México
| | | |
Collapse
|
4
|
Bhatia N, Kumari A, Singh RR, Kumar G, Kandwal A, Sharma R. Green synthesis of chitosan-encapsulated CuO nanocomposites for efficient degradation of cephalosporin antibiotics in contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33638-33650. [PMID: 38687453 DOI: 10.1007/s11356-024-33476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The synthesis and characterization of chitosan encapsulated copper oxide nanocomposites (CuNPs) using plant extracts for the photocatalytic degradation of second-generation antibiotics, cefixime and cefuroxime, were investigated. The study revealed that the presence of diverse chemical components in the plant extract significantly influenced the size of the CuNPs, with transmission electron microscopy (TEM) showing spherical shapes and sizes ranging from 11-35 nm. The encapsulation process was confirmed by an increase in size for certain samples, indicating successful encapsulation. X-ray photoelectron spectroscopy (XPS) analysis further elucidated the chemical makeup, confirming the valency state of Cu2+ and the presence of Cu-O bonding, with no contaminants detected. Photocatalytic activity assessments demonstrated that the copper oxide nanocomposites exhibited significant degradation capabilities against both antibiotics under UV light irradiation, with encapsulated nanocomposites (EnCu30) showing up to 96.18% degradation of cefuroxime within 60 min. The study highlighted the influence of chitosan encapsulation on enhancing photocatalytic performance, attributed to its high adsorption capability. Recycling studies confirmed the sustainability of the Cu nanocomposites, maintaining over 89% degradation rate after five consecutive cycles. This research underscores the potential of green-synthesized CuNPs as efficient, stable photocatalysts for the degradation of harmful antibiotics, contributing to environmental sustainability and public health protection.
Collapse
Affiliation(s)
- Nishat Bhatia
- Department of Chemistry, Career Point University, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India
- Centre for Nano-Science & Technology, CPU, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India
| | - Asha Kumari
- Department of Chemistry, Career Point University, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India
- Centre for Nano-Science & Technology, CPU, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India
| | - Ragini Raj Singh
- Nanotechnology Laboratory, Department of Physics and Material Sciences, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Gulshan Kumar
- Centre for Nano-Science & Technology, CPU, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India
- Division Botany, Department of Bio-Sciences, Career Point University, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India
| | - Abhishek Kandwal
- School of Physics and Materials Science, Shoolini University, Bajhol, Solan, 173229, H.P, India
| | - Rahul Sharma
- Department of Chemistry, Career Point University, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India.
- Centre for Nano-Science & Technology, CPU, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India.
| |
Collapse
|
5
|
Luque-Jacobo CM, Cespedes-Loayza AL, Echegaray-Ugarte TS, Cruz-Loayza JL, Cruz I, de Carvalho JC, Goyzueta-Mamani LD. Biogenic Synthesis of Copper Nanoparticles: A Systematic Review of Their Features and Main Applications. Molecules 2023; 28:4838. [PMID: 37375393 DOI: 10.3390/molecules28124838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Nanotechnology is an innovative field of study that has made significant progress due to its potential versatility and wide range of applications, precisely because of the development of metal nanoparticles such as copper. Nanoparticles are bodies composed of a nanometric cluster of atoms (1-100 nm). Biogenic alternatives have replaced their chemical synthesis due to their environmental friendliness, dependability, sustainability, and low energy demand. This ecofriendly option has medical, pharmaceutical, food, and agricultural applications. When compared to their chemical counterparts, using biological agents, such as micro-organisms and plant extracts, as reducing and stabilizing agents has shown viability and acceptance. Therefore, it is a feasible alternative for rapid synthesis and scaling-up processes. Several research articles on the biogenic synthesis of copper nanoparticles have been published over the past decade. Still, none provided an organized, comprehensive overview of their properties and potential applications. Thus, this systematic review aims to assess research articles published over the past decade regarding the antioxidant, antitumor, antimicrobial, dye removal, and catalytic activities of biogenically synthesized copper nanoparticles using the scientific methodology of big data analytics. Plant extract and micro-organisms (bacteria and fungi) are addressed as biological agents. We intend to assist the scientific community in comprehending and locating helpful information for future research or application development.
Collapse
Affiliation(s)
- Cristina M Luque-Jacobo
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
| | | | | | | | - Isemar Cruz
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
| | - Júlio Cesar de Carvalho
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná-Polytechnic Center, Curitiba 81531-980, Brazil
| | - Luis Daniel Goyzueta-Mamani
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n-Umacollo, Arequipa 04000, Peru
| |
Collapse
|
6
|
Sarfraz MH, Zubair M, Aslam B, Ashraf A, Siddique MH, Hayat S, Cruz JN, Muzammil S, Khurshid M, Sarfraz MF, Hashem A, Dawoud TM, Avila-Quezada GD, Abd_Allah EF. Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines. Front Microbiol 2023; 14:1188743. [PMID: 37323910 PMCID: PMC10264586 DOI: 10.3389/fmicb.2023.1188743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
The aim of this study was to provide a comparative analysis of chitosan (CH), copper oxide (CuO), and chitosan-based copper oxide (CH-CuO) nanoparticles for their application in the healthcare sector. The nanoparticles were synthesized by a green approach using the extract of Trianthema portulacastrum. The synthesized nanoparticles were characterized using different techniques, such as the synthesis of the particles, which was confirmed by UV-visible spectrometry that showed absorbance at 300 nm, 255 nm, and 275 nm for the CH, CuO, and CH-CuO nanoparticles, respectively. The spherical morphology of the nanoparticles and the presence of active functional groups was validated by SEM, TEM, and FTIR analysis. The crystalline nature of the particles was verified by XRD spectrum, and the average crystallite sizes of 33.54 nm, 20.13 nm, and 24.14 nm were obtained, respectively. The characterized nanoparticles were evaluated for their in vitro antibacterial and antibiofilm potential against Acinetobacter baumannii isolates, where potent activities were exhibited by the nanoparticles. The bioassay for antioxidant activity also confirmed DPPH scavenging activity for all the nanoparticles. This study also evaluated anticancer activities of the CH, CuO, and CH-CuO nanoparticles against HepG2 cell lines, where maximum inhibitions of 54, 75, and 84% were recorded, respectively. The anticancer activity was also confirmed by phase contrast microscopy, where the treated cells exhibited deformed morphologies. This study demonstrates the potential of the CH-CuO nanoparticle as an effective antibacterial agent, having with its antibiofilm activity, and in cancer treatment.
Collapse
Affiliation(s)
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | | | - Sumreen Hayat
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Jorrdy Neves Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Turki M. Dawoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Yang Y, Yang Y, Jiang G, Yang L, Chen J, Xu Z, Zheng B, Tian Y. Biosynthesis, characterization, and determination of trace hydrogen peroxide of Organo-Cr(III) nanoparticles by Lysinibacillus sp. 4H. AIP ADVANCES 2023; 13. [DOI: 10.1063/5.0151141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The mechanism of microbial reduction of Cr(VI) has been widely reported; however, only a few studies have focused on Cr(VI) reduction products. In this study, a green synthetic pathway for the biosynthesis of Organo-Cr(III) nanoparticles using Lysinibacillus sp. 4H was investigated, and some properties of these nanoparticles were characterized, based on analysis using X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy, among other techniques. The analyses revealed that the reduction product induced by Lysinibacillus sp. 4H may be amorphous Organo-Cr(III) nanoparticles with an irregular spherical structure (20–90 nm). Thermal characterization of the nanoparticles showed that they maintain a high residual mass (50.45%) at 700 °C, indicating high stability. In addition, the nanoparticles were capable of detecting trace amounts of hydrogen peroxide (H2O2), owing to their redox properties, such that the corresponding H2O2 concentrations could be accurately determined in a range of concentrations. This study provided novel insights and strategies regarding the use of nanoparticles to detect trace hydrogen peroxide concentrations in multiple fields.
Collapse
Affiliation(s)
- Yichen Yang
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Yi Yang
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Jia Chen
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Zhe Xu
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Bijun Zheng
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| |
Collapse
|
8
|
Kocabas BB, Attar A, Yuka SA, Yapaoz MA. Biogenic synthesis, molecular docking, biomedical and environmental applications of multifunctional CuO nanoparticles mediated Phragmites australis. Bioorg Chem 2023; 133:106414. [PMID: 36774691 DOI: 10.1016/j.bioorg.2023.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The demand for metal nanoparticles is increasing with the widening application areas while causing environmental impact including pollution, toxic byproduct generation and depletion of natural resources. Incorporating natural materials in nanoparticle synthesis can contribute toward environmental sustainability. This paper is concerned with the biogenic synthesis of copper oxide nanoparticles (CuONPs) mediated by the plant species Phragmites australis. UV-vis, FT-IR, TEM and SEM studies were used to characterize the obtained CuONPs. The synthesized nanoparticles' antibacterial efficacy against Escherichia coli and Staphylococcus aureus was assessed. The CuONPs' reducing power, total phenolic component content, and flavonoid content were all calculated. Additionally, the dye removal abilities of copper oxide nanoparticles using Brilliant Blue R-250 were studied. The CuONP synthesis was assessed morphological by change of color and in the UV-vis analysis by the SPR band around 320 and 360 nm. FT-IR was used to monitor the functional groups present in the synthesized CuONPs. The obtained CuONPs were spherical and between 70 and 142 nm in size, according to the SEM data and TEM analyses were in accordance with SEM results. Using disk diffusion, the CuONPs demonstrated substantial antibacterial efficacy against S. aureus and E. coli, with inhibition zones of 18.5 ± 0.8 and 12.7 ± 0.6 mm, respectively. The MBC and MIC values were 62.5 μg/mL against S. aureus and 125 μg/mL against E. coli. The antioxidant abilities of P. australis and CuONPs were also confirmed. The CuONP solution's total phenolic substance content was 9.44 μg of pyrocathecol equivalent per milligram of nanoparticle, and its total flavonoid content was 16.24 μg of catechin equivalent per milligram of nanoparticle. Additionally, the synthesized CuONPs were found to be well effective on industrial dye removal by demonstrating high decolorization of 98 %. Also, the antibacterial activity of CuONPs was investigated through the interactions with S. aureus FtsZ, dihydropteroate synthase and thymidylate kinase. In silico molecular docking analysis was applied in the confirmation of the binding sites and interactions of active sites. CuONP showed -9.067, -8,048, and -7.349 kcal/mol of binding energies in molecular docking analysis of FtsZ, dihydropteroate synthase and thymidylate kinase proteins respectively. The results of this study suggested the antimicrobial, antioxidant and decolorative effect of synthesized CuONPs that can be apply in multiple areas of R&D and industry.
Collapse
Affiliation(s)
- Buket Bulut Kocabas
- Yildiz Technical University, Faculty of Science and Letters, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| | - Azade Attar
- Yildiz Technical University, Faculty of Chemical & Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34220 Istanbul, Turkey.
| | - Selcen Ari Yuka
- Yildiz Technical University, Faculty of Chemical & Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34220 Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Melda Altikatoglu Yapaoz
- Yildiz Technical University, Faculty of Science and Letters, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| |
Collapse
|
9
|
Maheo A, Vithiya B SM, Arul Prasad T A, Mangesh VL, Perumal T, Al-Qahtani WH, Govindasamy M. Cytotoxic, Antidiabetic, and Antioxidant Study of Biogenically Improvised Elsholtzia blanda and Chitosan-Assisted Zinc Oxide Nanoparticles. ACS OMEGA 2023; 8:10954-10967. [PMID: 37008090 PMCID: PMC10061636 DOI: 10.1021/acsomega.2c07530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In the present study, we have improvised a biogenic method to fabricate zinc oxide nanoparticles (ZnO NPs) using chitosan and an aqueous extract of the leaves of Elsholtzia blanda. Characterization of the fabricated products was carried out with the help of ultraviolet-visible, Fourier transform infrared, X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray analyses. The size of the improvised ZnO NP measured between 20 and 70 nm and had a spherical and hexagonal shape. The ZnO NPs proved to be highly effective in the antidiabetic test as the sample showed the highest percentage of enzyme inhibition at 74% ± 3.7, while in the antioxidant test, 78% was the maximum percentage of 2,2-diphenyl-1-picrylhydrazyl hydrate scavenging activity. The cytotoxic effect was investigated against the human osteosarcoma (MG-63) cell line, and the IC50 value was 62.61 μg/mL. Photocatalytic efficiency was studied by the degradation of Congo red where 91% of dye degradation was observed. From the various analyses, it can be concluded that the as-synthesized NPs may be suitable for various biomedical applications as well as for environmental remediation.
Collapse
Affiliation(s)
- Athisa
Roselyn Maheo
- PG
and Research Department of Chemistry, Auxilium
College (Autonomous) (Affiliated to Thiruvalluvar University, Serkadu), Vellore 632006, India
| | - Scholastica Mary Vithiya B
- PG
and Research Department of Chemistry, Auxilium
College (Autonomous) (Affiliated to Thiruvalluvar University, Serkadu), Vellore 632006, India
| | - Augustine Arul Prasad T
- PG
and Research Department of Chemistry, Dwarakadoss
Goverdhandoss Vaishnav College (Autonomous) (Affiliated to University
of Madras), Chennai 600106, India
| | - V. L. Mangesh
- Department
of Mechanical Engineering, Koneru Lakshmaiah
Education Foundation, Vaddeswaram, Guntur 522502, Andhra
Pradesh, India
| | - Tamizhdurai Perumal
- PG
and Research Department of Chemistry, Dwarakadoss
Goverdhandoss Vaishnav College (Autonomous) (Affiliated to University
of Madras), Chennai 600106, India
| | - Wahidah H. Al-Qahtani
- Department
of Food Sciences & Nutrition, College of Food & Agriculture
Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mani Govindasamy
- Faculty,
International Ph.D. Program in Innovative Technology of Biomedical
Engineering and Medical Devices, Ming Chi
University of Technology, New Taipei
City 243303, Taiwan
- Adjunct
Faculty,
Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Thandalam, Chennai 602105, India
- Korea
University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
10
|
Naznin A, Dhar PK, Dutta SK, Chakrabarty S, Karmakar UK, Kundu P, Hossain MS, Barai HR, Haque MR. Synthesis of Magnetic Iron Oxide-Incorporated Cellulose Composite Particles: An Investigation on Antioxidant Properties and Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15030732. [PMID: 36986593 PMCID: PMC10055761 DOI: 10.3390/pharmaceutics15030732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
In recent years, polymer-supported magnetic iron oxide nanoparticles (MIO-NPs) have gained a lot of attention in biomedical and healthcare applications due to their unique magnetic properties, low toxicity, cost-effectiveness, biocompatibility, and biodegradability. In this study, waste tissue papers (WTP) and sugarcane bagasse (SCB) were utilized to prepare magnetic iron oxide (MIO)-incorporated WTP/MIO and SCB/MIO nanocomposite particles (NCPs) based on in situ co-precipitation methods, and they were characterized using advanced spectroscopic techniques. In addition, their anti-oxidant and drug-delivery properties were investigated. Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analyses revealed that the shapes of the MIO-NPs, SCB/MIO-NCPs, and WTP/MIO-NCPs were agglomerated and irregularly spherical with a crystallite size of 12.38 nm, 10.85 nm, and 11.47 nm, respectively. Vibrational sample magnetometry (VSM) analysis showed that both the NPs and the NCPs were paramagnetic. The free radical scavenging assay ascertained that the WTP/MIO-NCPs, SCB/MIO-NCPs, and MIO-NPs exhibited almost negligible antioxidant activity in comparison to ascorbic acid. The swelling capacities of the SCB/MIO-NCPs and WTP/MIO-NCPs were 155.0% and 159.5%, respectively, which were much higher than the swelling efficiencies of cellulose-SCB (58.3%) and cellulose-WTP (61.6%). The order of metronidazole drug loading after 3 days was: cellulose-SCB < cellulose-WTP < MIO-NPs < SCB/MIO-NCPs < WTP/MIO-NCPs, whereas the sequence of the drug-releasing rate after 240 min was: WTP/MIO-NCPs < SCB/MIO-NCPs < MIO-NPs < cellulose-WTP < cellulose-SCB. Overall, the results of this study showed that the incorporation of MIO-NPs in the cellulose matrix increased the swelling capacity, drug-loading capacity, and drug-releasing time. Therefore, cellulose/MIO-NCPs obtained from waste materials such as SCB and WTP can be used as a potential vehicle for medical applications, especially in a metronidazole drug delivery system.
Collapse
Affiliation(s)
- Arifa Naznin
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Palash Kumar Dhar
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
- Correspondence: (P.K.D.); (H.R.B.)
| | | | | | | | - Pritam Kundu
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Muhammad Sarwar Hossain
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (P.K.D.); (H.R.B.)
| | - Md. Rezaul Haque
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
11
|
Abdellatif F, Begaa S, Messaoudi M, Benarfa A, Ouakouak H, Hassani A, Sawicka B, Simal Gandara J. HPLC-DAD Analysis, Antimicrobial and Antioxidant Properties of Aromatic Herb Melissa officinalis L., Aerial Parts Extracts. FOOD ANAL METHOD 2023; 16:45-54. [PMID: 36035454 PMCID: PMC9397176 DOI: 10.1007/s12161-022-02385-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 07/29/2022] [Indexed: 01/19/2023]
Abstract
In order to enhance natural products value, Melissa officinalis (lemon balm) aerial part (leaves) has been studied in this work. Hence, the objective of this study is to determine the chemical composition of the studied plant polyphenols extracts using HPLC/DAD, as well as evaluate their flavonoid extracts' antioxidant and antimicrobial activities using DPPH• and disk diffusion methods, respectively. The results of phenols chemical composition showed the existence of two phenolic acids, five flavonic aglycones and six heterosides, while the biologic results of the plant flavonoid extracts exhibited the existence of a good antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Fahima Abdellatif
- grid.442467.70000 0004 0482 3207Laboratoire de Recherche Sur Les Produits Bioactifs Et La Valorisation de La Biomasse, Ecole Normale Supérieure Kouba, Algérie, B.P. 92, AlgerKouba Alger, Algeria
| | - Samir Begaa
- Nuclear Research Centre of Birine, Djelfa, P.O. Box 180, 17200 Ain Oussera, Algeria
| | - Mohammed Messaoudi
- Nuclear Research Centre of Birine, Djelfa, P.O. Box 180, 17200 Ain Oussera, Algeria ,University of Hamma Lakhdar El-Oued, P.O. Box, 789, 39000 El-oued, Algeria
| | - Adel Benarfa
- Center de Recherche Scientifique Et Technique en Analyses Physico-Chimiques (CRAPC)-PTAPC Laghouat, Laghouat, Algeria
| | - Hamza Ouakouak
- University of Hamma Lakhdar El-Oued, P.O. Box, 789, 39000 El-oued, Algeria
| | - Aicha Hassani
- grid.442467.70000 0004 0482 3207Laboratoire de Recherche Sur Les Produits Bioactifs Et La Valorisation de La Biomasse, Ecole Normale Supérieure Kouba, Algérie, B.P. 92, AlgerKouba Alger, Algeria
| | - Barbara Sawicka
- grid.411201.70000 0000 8816 7059Department of Plant Production Technology and Commodities Science, University of Life Science in Lublin, Akademicka 15 str, 20-950 Lublin, Poland
| | - Jesus Simal Gandara
- grid.6312.60000 0001 2097 6738Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo‐Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
12
|
Green synthesis and characterization of CuO nanoparticles using Panicum sumatrense grains extract for biological applications. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02441-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Lizundia E, Luzi F, Puglia D. Organic waste valorisation towards circular and sustainable biocomposites. GREEN CHEMISTRY 2022; 24:5429-5459. [DOI: 10.1039/d2gc01668k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Organic waste valorisation into biopolymers and nanofillers potentially lowers the pressure on non-renewable resources, avoids the generation of waste-streams and opens new opportunities to develop multifunctional bio-based products.
Collapse
Affiliation(s)
- Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Francesca Luzi
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100, Terni, Italy
| |
Collapse
|