1
|
Wang D, Lin D, Yang X, Wu D, Li P, Zhang Z, Zhang W, Guo Y, Fu S, Zhang N. Alterations in leukocyte telomere length and mitochondrial DNA copy number in benzene poisoning patients. Mol Biol Rep 2024; 51:309. [PMID: 38372835 DOI: 10.1007/s11033-024-09238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE The aim of this study is to examine and evaluate the impact of benzene poisoning on the relative content of the mitochondrial MT-ND1 gene and telomere length in individuals with occupational chronic benzene poisoning (CBP) compared to a control group. The study will analyze and gather data on the mitochondrial gene content and telomere length in cases of benzene poisoning, and investigate the relationship with blood routine parameters in order to contribute scientific experimental data for the prevention and treatment of CBP. METHOD The case group comprised 30 individuals diagnosed with occupational chronic benzene poisoning, whereas the control group consisted of 60 healthy individuals who underwent physical examinations at our hospital concurrently. Blood routine indicators were detected and analyzed, and the PCR method was employed to measure changes in mitochondrial MT-ND1 content and telomere length. Subsequently, a comparison and analysis of the aforementioned indicators was conducted. RESULT The case group exhibited a higher mitochondrial gene content (median 366.2, IQR 90.0 rate) compared to the control group (median 101.5, IQR 12.0 rate), with a statistically significant difference between the two groups (P < 0.05). Additionally, the case group demonstrated lower white blood cell levels (3.78 ± 1.387 × 109/L) compared to the control group (5.74 ± 1.41 × 109/L), with a significant difference between the two groups (P < 0.05). Furthermore, the case group displayed lower red blood cell levels (3.86 ± 0.65 × 1012/L) compared to the control group (4.89 ± 0.65 × 1012/L), with a significant difference between the two groups (P < 0.05). The hemoglobin level in the case group (113.33 ± 16.34 g/L) was lower than that in the control group (138.22 ± 13.22 g/L). There was a significant difference between the two groups (P < 0.05). Platelet levels in the case group (153.80 ± 58.31 × 109/L) is smaller than the control group (244.92 ± 51.99 × 109/L), there was a significant difference between the two groups (P < 0.05). The average telomere length of the normal control group was 1.451 ± 0.475 (rate); The mean telomere length of individuals in the case group diagnosed with benzene poisoning was determined to be 1.237 ± 0.457 (rate). No significant correlation was observed between telomere length and three blood routine parameters, namely white blood cells (WBC), hemoglobin (HB), and platelets (PLT). However, a significant correlation was found between telomere length and red blood cell count (RBC). Additionally, a negative correlation was observed between mitochondrial gene content and white blood cell count (r = - 0.314, P = 0.026), as well as between mitochondrial gene content and red blood cell count (r = - 0.226, P = 0.032). Furthermore, a negative correlation was identified between mitochondrial gene content and hemoglobin (r = - 0.314, P = 0.028), and platelets (r = - 0.445, P = 0.001). CONCLUSION Individuals diagnosed with occupational chronic benzene poisoning exhibit a reduction in telomere length and an elevation in the relative content of the mitochondrial MT-ND1 gene. Moreover, a negative correlation is observed between the content of the mitochondrial MT-ND1 gene and four blood routine parameters, namely white blood cells (WBC), red blood cells (RBC), hemoglobin (HB), and platelets (PLT). Consequently, benzene exposure may potentially contribute to the onset of premature aging.
Collapse
Affiliation(s)
- Dianpeng Wang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China.
- School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Dafeng Lin
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Xiangli Yang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Dongpeng Wu
- Medical Laboratory College Hebei North University in China, Zhangjiakou, 075000, Hebei, China
| | - Peimao Li
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Zhimin Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Wen Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Yan Guo
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Song Fu
- Medical Laboratory College Hebei North University in China, Zhangjiakou, 075000, Hebei, China
| | - Naixing Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China.
| |
Collapse
|
2
|
Sellami M, Bragazzi N, Prince MS, Denham J, Elrayess M. Regular, Intense Exercise Training as a Healthy Aging Lifestyle Strategy: Preventing DNA Damage, Telomere Shortening and Adverse DNA Methylation Changes Over a Lifetime. Front Genet 2021; 12:652497. [PMID: 34421981 PMCID: PMC8379006 DOI: 10.3389/fgene.2021.652497] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Exercise training is one of the few therapeutic interventions that improves health span by delaying the onset of age-related diseases and preventing early death. The length of telomeres, the 5'-TTAGGG n -3' tandem repeats at the ends of mammalian chromosomes, is one of the main indicators of biological age. Telomeres undergo shortening with each cellular division. This subsequently leads to alterations in the expression of several genes that encode vital proteins with critical functions in many tissues throughout the body, and ultimately impacts cardiovascular, immune and muscle physiology. The sub-telomeric DNA is comprised of heavily methylated, heterochromatin. Methylation and histone acetylation are two of the most well-studied examples of the epigenetic modifications that occur on histone proteins. DNA methylation is the type of epigenetic modification that alters gene expression without modifying gene sequence. Although diet, genetic predisposition and a healthy lifestyle seem to alter DNA methylation and telomere length (TL), recent evidence suggests that training status or physical fitness are some of the major factors that control DNA structural modifications. In fact, TL is positively associated with cardiorespiratory fitness, physical activity level (sedentary, active, moderately trained, or elite) and training intensity, but is shorter in over-trained athletes. Similarly, somatic cells are vulnerable to exercise-induced epigenetic modification, including DNA methylation. Exercise-training load, however, depends on intensity and volume (duration and frequency). Training load-dependent responses in genomic profiles could underpin the discordant physiological and physical responses to exercise. In the current review, we will discuss the role of various forms of exercise training in the regulation of DNA damage, TL and DNA methylation status in humans, to provide an update on the influence exercise training has on biological aging.
Collapse
Affiliation(s)
- Maha Sellami
- Physical Education Department (PE), College of Education (CEdu), Qatar University, Doha, Qatar
| | - Nicola Bragazzi
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, Genoa, Italy
| | - Mohammad Shoaib Prince
- Physical Education Department (PE), College of Education (CEdu), Qatar University, Doha, Qatar
- Division of Sports and Wellness, Department of Students Affairs, College of North Atlantic Qatar (CNAQ), Doha, Qatar
| | - Joshua Denham
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | | |
Collapse
|
3
|
Trajano LADSN, Trajano ETL, Silva MADS, Stumbo AC, Mencalha AL, Fonseca ADSD. Genomic stability and telomere regulation in skeletal muscle tissue. Biomed Pharmacother 2018; 98:907-915. [DOI: 10.1016/j.biopha.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
|
4
|
Barrera G, Cases T, Bunout D, de la Maza MP, Leiva L, Rodriguez JM, Hirsch S. Associations between socioeconomic status, aging and functionality among older women. Geriatr Nurs 2017; 38:347-351. [DOI: 10.1016/j.gerinurse.2014.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/17/2014] [Accepted: 08/25/2014] [Indexed: 11/28/2022]
|
5
|
de la Maza MP, Rodriguez JM, Hirsch S, Leiva L, Barrera G, Bunout D. Skeletal muscle ceramide species in men with abdominal obesity. J Nutr Health Aging 2015; 19:389-96. [PMID: 25809802 DOI: 10.1007/s12603-014-0548-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity is a risk factor for diabetes and its consequences, including accelerated ageing and mortality. The underlying factor could be accumulation of certain lipid moieties, such as ceramides (CER) and diacylgycerol (DAG) within muscle tissue, which are known to promote insulin resistance (IR), induce inflammation and oxidative injury, ultimately altering muscle function. AIM First, to study the relationship between body composition and age (independent variables) with skeletal muscle accumulation of lipid species, oxidative injury and strength. Second, to analyze the relationship between muscle tissue metabolites and insulin resistance, inflammation and lymphocyte telomere length, the latter as an indicator of ageing. METHODOLOGY The sample included 56 healthy sedentary males, scheduled for inguinal hernia surgery, aged 27 to 80 y. Each individual was subject to anthropometric measurements, body composition assessment through radiologic densitometry (DEXA), measurement of handgrip and quadriceps strength, serum biochemical parameters (lipoproteins, creatinine, high sensitivity C reactive protein [hsCRP], fasting and post glucose insulin and glucose concentrations for calculation of IR through the Matsuda and HOMA-IR indexes), and extraction of peripheral leukocytes for measurement of telomere length. During the surgical procedure, a sample of muscle tissue was obtained (anterior abdominal oblique) in order to measure CER and DAG (and sub species according to chain length and saturation) by mass spectrometry, 4 hydroxy-2-nonenal adducts (4-HNE) using electron microscopy immunohistochemistry, and carboxymethyl-lisine (CML) by immunohistochemistry, the latter as indicators of oxidative stress (OS). RESULTS Body mass index (BMI) of twenty six individuals was > 25 k/m2, while BMI of 7 was > 30 k/m2. Overweight/obese individuals, did not exhibit differences in skeletal muscle lipid metabolites, however total CER and specific long chain CER sub-species (20 and 22 carbon) increased significantly among individuals with a central fat distribution (n = 14) as well as in glucose intolerant subjects (n =23). A negative association was found between mononuclear leukocyte telomere length and 20 and 22 carbon CER (rho = - 0.4 and -0.5 0 p < 0.05). Muscle strength was not associated with any of the measured muscle metabolites or markers of OS. A multiple regression analysis accepted central abdominal fat and telomere length as significant predictors of CER (R2 = 0.28). CONCLUSIONS An association was found between accumulation of specific ceramide species in muscle tissue and abdominal obesity, glucose intolerance and shortening of leukocyte telomeres, although not with muscle oxidative injury or dysfunction.
Collapse
Affiliation(s)
- M P de la Maza
- Maria Pia de la Maza, Institute of Nutrition and Food Technology, Human Nutrition, El Libano 5524, Santiago, 7830490, Chile, Tel: 56229781502, mobile: 56988894245, Fax: 56222214030,
| | | | | | | | | | | |
Collapse
|
6
|
Bunout D, Barrera G, de la Maza MP, Leiva L, Hirsch S. Effect of weight maintenance or gain in a 10 years period over telomere length, sirtuin 1 and 6 expression and carotid intima media thickness. J Hum Nutr Diet 2014; 28:155-64. [DOI: 10.1111/jhn.12231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- D. Bunout
- Institute of Nutrition and Food Technology; University of Chile; Santiago Chile
| | - G. Barrera
- Institute of Nutrition and Food Technology; University of Chile; Santiago Chile
| | - M. P. de la Maza
- Institute of Nutrition and Food Technology; University of Chile; Santiago Chile
| | - L. Leiva
- Institute of Nutrition and Food Technology; University of Chile; Santiago Chile
| | - S. Hirsch
- Institute of Nutrition and Food Technology; University of Chile; Santiago Chile
| |
Collapse
|
7
|
Abstract
The purpose of this study was to describe the psychometric testing of the Basic Physical Capability Scale. The study was a secondary data analysis of combined data sets from three studies. Study participants included 93 older adults, recruited from 2 acute-care settings and 110 older adults living in long-term care facilities. Rasch analysis was used for the testing of the measurement model. There was some support for construct validity based on the fit of the items to the scale across both samples. In addition, there was support for hypothesis testing as physical function was significantly associated with physical capability. There was evidence for internal consistency (Alpha coefficients of .77-.83) and interrater reliability based on an intraclass correlation of .81. This study provided preliminary support for the reliability and validity of the Basic Physical Capability Scale, and guidance for scale revisions and continued use.
Collapse
|
8
|
Laye MJ, Solomon TPJ, Karstoft K, Pedersen KK, Nielsen SD, Pedersen BK. Increased shelterin mRNA expression in peripheral blood mononuclear cells and skeletal muscle following an ultra-long-distance running event. J Appl Physiol (1985) 2012; 112:773-81. [DOI: 10.1152/japplphysiol.00997.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Located at the end of chromosomes, telomeres are progressively shortened with each replication of DNA during aging. Integral to the regulation of telomere length is a group of proteins making up the shelterin complex, whose tissue-specific function during physiological stress is not well understood. In this study, we examine the mRNA and protein levels of proteins within and associated with the shelterin complex in subjects ( n = 8, mean age = 44 yr) who completed a physiological stress of seven marathons in 7 days. Twenty-two to 24 h after the last marathon, subjects had increased mRNA levels of DNA repair enzymes Ku70 and Ku80 ( P < 0.05) in both skeletal muscle and peripheral blood mononuclear cells (PBMCs). Additionally, the PBMCs displayed an increment in three shelterin protein mRNA levels (TRF1, TRF2, and Pot-1, P < 0.05) following the event. Seven days of ultrarunning did not result in changes in mean telomere length, telomerase activity, hTert mRNA, or hterc mRNAs found in PBMCs. Higher protein concentrations of TRF2 were found in skeletal muscle vs. PBMCs at rest. Mean telomere length in skeletal muscle did not change and did not contain detectable levels of htert mRNA or telomerase activity. Furthermore, changes in the PBMCs could not be attributed to changes in the proportion of subtypes of CD4+ or CD8+ cells. We have provided the first evidence that, in humans, proteins within and associated with the shelterin complex increase at the mRNA level in response to a physiological stress differentially in PBMCs and skeletal muscle.
Collapse
Affiliation(s)
- Matthew J. Laye
- The Center of Inflammation and Metabolism, Department of Infectious Diseases and Copenhagen Muscle Research Center, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas P. J. Solomon
- The Center of Inflammation and Metabolism, Department of Infectious Diseases and Copenhagen Muscle Research Center, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Karstoft
- The Center of Inflammation and Metabolism, Department of Infectious Diseases and Copenhagen Muscle Research Center, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin K. Pedersen
- The Center of Inflammation and Metabolism, Department of Infectious Diseases and Copenhagen Muscle Research Center, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanne D. Nielsen
- The Center of Inflammation and Metabolism, Department of Infectious Diseases and Copenhagen Muscle Research Center, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente K. Pedersen
- The Center of Inflammation and Metabolism, Department of Infectious Diseases and Copenhagen Muscle Research Center, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Paolillo FR, Milan JC, Aniceto IV, Barreto SG, Rebelatto JR, Borghi-Silva A, Parizotto NA, Kurachi C, Bagnato VS. Effects of infrared-LED illumination applied during high-intensity treadmill training in postmenopausal women. Photomed Laser Surg 2011; 29:639-45. [PMID: 21749263 DOI: 10.1089/pho.2010.2961] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND DATA Technology and physical exercise can enhance physical performance during aging. OBJECTIVE The purpose of this study was to investigate the effects of infrared-light-emitting diode (LED) illumination (850 nm) applied during treadmill training. MATERIALS AND METHODS Twenty postmenopausal women participated in this study. They were randomly divided into two groups. The LED group performed treadmill training associated with infrared-LED illumination (n=10) and the control group performed only treadmill training (n=10). The training was performed during 3 months, twice a week during 30 min at intensities between 85 and 90% of maximal heart rate. The irradiation parameters were 31 mW/cm(2), treatment time 30 min, 14,400 J of total energy and 55.8 J/cm(2) of fluence. Physiological, biomechanical, and body composition parameters were measured at the baseline and after 3 months. RESULTS Both groups improved the time of tolerance limit (Tlim) (p<0.05) during submaximal constant-speed testing. The peak torque did not differ between groups. However, the results showed significantly higher values of power [from 56±10 to 73±8 W (p=0.002)] and total work [from 1,537±295 to 1,760±262 J (p=0.006)] for the LED group when compared to the control group [power: from 58±14 to 60±15 W (p≥0.05) and total work: from 1,504±404 to 1,622±418 J (p≥0.05)]. The fatigue significantly increased for the control group [from 51±6 to 58±5 % (p=0.04)], but not for the LED group [from 60±10 to 60±4 % (p≥0.05)]. No significant differences in body composition were observed for either group. CONCLUSIONS Infrared-LED illumination associated with treadmill training can improve muscle power and delay leg fatigue in postmenopausal women.
Collapse
Affiliation(s)
- Fernanda Rossi Paolillo
- Optics Group from Instituto de Física de São Carlos, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bunout D, de la Maza MP, Barrera G, Leiva L, Hirsch S. Association between sarcopenia and mortality in healthy older people. Australas J Ageing 2011; 30:89-92. [DOI: 10.1111/j.1741-6612.2010.00448.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Ludlow AT, Roth SM. Physical activity and telomere biology: exploring the link with aging-related disease prevention. J Aging Res 2011; 2011:790378. [PMID: 21403893 PMCID: PMC3043290 DOI: 10.4061/2011/790378] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/18/2010] [Accepted: 12/30/2010] [Indexed: 11/20/2022] Open
Abstract
Physical activity is associated with reduced risk of several age-related diseases as well as with increased longevity in both rodents and humans. Though these associations are well established, evidence of the molecular and cellular factors associated with reduced disease risk and increased longevity resulting from physical activity is sparse. A long-standing hypothesis of aging is the telomere hypothesis: as a cell divides, telomeres shorten resulting eventually in replicative senescence and an aged phenotype. Several reports have recently associated telomeres and telomere-related proteins to diseases associated with physical inactivity and aging including cardiovascular disease, insulin resistance, and hypertension. Interestingly several reports have also shown that longer telomeres are associated with higher physical activity levels, indicating a potential mechanistic link between physical activity, reduced age-related disease risk, and longevity. The primary purpose of this review is to discuss the potential importance of physical activity in telomere biology in the context of inactivity- and age-related diseases. A secondary purpose is to explore potential mechanisms and important avenues for future research in the field of telomeres and diseases associated with physical inactivity and aging.
Collapse
Affiliation(s)
- Andrew T Ludlow
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD 20742-2611, USA
| | | |
Collapse
|