1
|
Zhang N, Wang W, Zhang R, Liu Y, Wang Y, Bai Y, Li C. Melatonin alleviates oral epithelial cell inflammation via Keap1/Nrf2 signaling. Int J Immunopathol Pharmacol 2025; 39:3946320251318147. [PMID: 39936565 PMCID: PMC11822817 DOI: 10.1177/03946320251318147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Oral mucosal diseases manifest primarily as inflammatory conditions. These diseases affect approximately half a billion people worldwide. OBJECTIVE Novel and effective strategies for treating inflammatory diseases of the oral mucosa have great potential for improving patient outcomes, and warrant study. METHODS The impact of melatonin on inflammation was investigated using RAW264.7 macrophages and HOEC and HSC-3 oral epithelial cells. RESULTS Melatonin decreased macrophage-induced inflammation by acting through the melatonin receptor MTNR1A. Additionally, melatonin mitigated macrophage-induced inflammation in oral epithelial cells. Importantly, the results demonstrated that the effects of melatonin on oral epithelial inflammation were mediated through the KEAP1/Nrf2 signaling pathway. CONCLUSION These findings will contribute to the development of innovative therapies for inflammatory conditions affecting the oral epithelium.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Stomatology, Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Wenjing Wang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rongxia Zhang
- Department of Stomatology, Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yaxuan Liu
- Department of Stomatology, Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yamei Wang
- Department of Stomatology, Qinhuangdao Haigang Hospital, Qinhuangdao, Hebei, China
| | - Yang Bai
- Department of Stomatology, Qinhuangdao Haigang Hospital, Qinhuangdao, Hebei, China
| | - Chencong Li
- Physical Examination Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Hosseinzadeh A, Jamshidi Naeini A, Sheibani M, Gholamine B, Reiter RJ, Mehrzadi S. Melatonin and oral diseases: possible therapeutic roles based on cellular mechanisms. Pharmacol Rep 2024; 76:487-503. [PMID: 38607587 DOI: 10.1007/s43440-024-00593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Oral diseases, including periodontal disorders, oral cancer, periodontitis, and mucositis are the major challenges for both patients and healthcare providers. These conditions often involve inflammation, oxidative stress, and impaired cellular processes, leading to symptoms ranging from discomfort to severe debilitation. Conventional treatments for such oral diseases exhibit constraints, prompting the investigation of innovative therapeutic approaches. Considering the anti-inflammatory, anti-oxidant, and anti-cancer effects of melatonin, this study was carried out to investigate the potential protective effects of melatonin in mitigating the severity of oral diseases. Studies indicate that melatonin influences the differentiation of periodontal stem cells, inhibits oral cancer progression, reduces inflammation associated with periodontitis, and alleviates the severity of oral mucositis. Melatonin has demonstrated potential efficacy in both preclinical and clinical investigations; however, findings are frequently heterogeneous and contingent upon contextual factors. This review provides a comprehensiveoverview of current state of knowledge in this domain, elucidating the multifaceted role that melatonin may assume in combatingoral diseases. Further research should be directed toward determining the most effective dosing, timing, and administration methods for melatonin-based therapies for oral diseases.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Kantrong N, Jit-Armart P, Arayatrakoollikit U. Melatonin antagonizes lipopolysaccharide-induced pulpal fibroblast responses. BMC Oral Health 2020; 20:91. [PMID: 32223750 PMCID: PMC7104493 DOI: 10.1186/s12903-020-1055-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/27/2020] [Indexed: 01/13/2023] Open
Abstract
Background Pulpal inflammation is known to be mediated by multiple signaling pathways. However, whether melatonin plays regulatory roles in pulpal inflammation remains unclear. This study aimed at elucidating an in situ expression of melatonin and its receptors in human pulpal tissues, and the contribution of melatonin on the antagonism of lipopolysaccharide (LPS)-infected pulpal fibroblasts. Methods Melatonin expression in pulpal tissues harvested from healthy teeth was investigated by immunohistochemical staining. Its receptors, melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2), were also immunostained in pulpal tissues isolated from healthy teeth and inflamed teeth diagnosed with irreversible pulpitis. Morphometric analysis was subsequently performed. After LPS infection of cultured pulpal fibroblasts, cyclo-oxygenase (COX) and interleukin-1 β (IL-1 β) transcripts were examined by using reverse transcription-polymerase chain reaction (RT-PCR). Analysis of mRNA expression was performed to investigate an antagonism of LPS stimulation by melatonin via COX and IL-1 β induction. Mann-Whitney U test and One-way ANOVA were used for statistical analysis to determine a significance level. Results Melatonin was expressed in healthy pulpal tissue within the odontoblastic zone, cell-rich zone, and in the pulpal connective tissue. Furthermore, in health, strong MT1 and MT2 expression was distributed similarly in all 3 pulpal zones. In contrast, during disease, expression of MT2 was reduced in inflamed pulpal tissues (P-value< 0.001), but not MT1 (P-value = 0.559). Co-culturing of melatonin with LPS resulted in the reduction of COX-2 and IL-1 β expression in primary pulpal fibroblasts, indicating that melatonin may play an antagonistic role to LPS infection in pulpal fibroblasts. Conclusions Human dental pulp abundantly expressed melatonin and its receptors MT1 and MT2 in the odontoblastic layers and pulpal connective tissue layers. Melatonin exerted antagonistic activity against LPS-mediated COX-2 and IL-1 β induction in pulpal fibroblasts, suggesting its therapeutic potential for pulpal inflammation and a possible role of pulpal melatonin in an immunomodulation via functional melatonin receptors expressed in dental pulp.
Collapse
Affiliation(s)
- Nutthapong Kantrong
- Department of Restorative Dentistry, Faculty of Dentistry, Khon Kaen University, Mittraphap road, Nai Mueang, Mueang, Khon Kaen, 40002, Thailand.,Oral Biology Research Unit, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.,Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Piyabhorn Jit-Armart
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.,Wanon-Niwat Hospital, Wanon-Niwat, Sakon Nakhon, Thailand
| | - Uthaiwan Arayatrakoollikit
- Department of Restorative Dentistry, Faculty of Dentistry, Khon Kaen University, Mittraphap road, Nai Mueang, Mueang, Khon Kaen, 40002, Thailand. .,Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
4
|
Costantino E, Actis AB. Dietary Fatty Acids and Other Nutrients in Relation to Inflammation and Particularly to Oral Mucosa Inflammation. A Literature Review. Nutr Cancer 2018; 71:718-730. [PMID: 30450980 DOI: 10.1080/01635581.2018.1521439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oral mucosa is site of inflammatory process development. When they are chronic, they provide a microenvironment based on cytokines and inflammatory mediators that contribute to cancer initiation, progression, invasion, and metastasis. Certain dietary fatty acids (FAs) have immunomodulatory, inflammatory, and antiinflammatory effects. This review examined the literature on inflammation, mainly referred to the oral mucosa, and its association with dietary FAs and other nutrients. A Pubmed search of studies published in English until June 2018 was carried out. N-3 FAs have shown immunomodulatory and antiinflammatory activity in certain human diseases. These FAs and their mediators may inhibit inflammation, angiogenesis, and cancer via multiple mechanisms. Studies on cellular models of murine and human intestinal mucosa indicate association between dietary n-3 FA intake and the inflammatory state of mucosa membranes. Nevertheless scarce information on the association between dietary FAs and oral inflammation could be found. Based on the evidence, we hypothesize that n-3 FAs reduce the oral mucosa inflammation thus decreasing the risk of developing precancerous lesions and cancer. Molecular and clinical studies referred to this topic should be carried out as a contribution to the oral cancer prevention.
Collapse
Affiliation(s)
- Evangelina Costantino
- a Cátedra B de Anatomía, Facultad de Odontología , Universidad Nacional de Córdoba , Córdoba , Argentina.,b Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET y Facultad de Ciencias Médicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Adriana Beatriz Actis
- a Cátedra B de Anatomía, Facultad de Odontología , Universidad Nacional de Córdoba , Córdoba , Argentina.,b Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET y Facultad de Ciencias Médicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
5
|
Thi Do T, Phoomak C, Champattanachai V, Silsirivanit A, Chaiyarit P. New evidence of connections between increased O-GlcNAcylation and inflammasome in the oral mucosa of patients with oral lichen planus. Clin Exp Immunol 2018; 192:129-137. [PMID: 29247492 DOI: 10.1111/cei.13091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Oral lichen planus (OLP) is considered a chronic inflammatory immune-mediated disease of the oral mucosa. Immunopathogenesis of OLP is thought to be associated with cell-mediated immune dysregulation. O-GlcNAcylation is a form of reversible glycosylation. It has been demonstrated that O-GlcNAcylation promoted nuclear factor kappa B (NF-κB) signalling. Activation of NF-кB can induce expression of nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, which is a large intracellular multi-protein complex involving an immune response. Dysregulated expression of the NLRP3 inflammasome was reported to be associated with autoinflammatory diseases. No integrative studies between O-GlcNAcylation and NLRP3 inflammasome in OLP patients have been reported. The present study aimed to determine the immunohistochemical expression of O-GlcNAcylation, NF-κB signalling molecules and NLRP3 inflammasome in oral mucosae of OLP patients. Oral tissue samples were collected from 30 OLP patients and 30 healthy individuals. Immunohistochemical staining and analyses of immunostaining scores were performed to evaluate expression of O-GlcNAcylation, NF-κB signalling molecules and NLRP3 inflammasome. According to observations in this study, significantly higher levels of O-GlcNAcylation, NF-κB signalling molecules and NLRP3 inflammasome were demonstrated in OLP patients compared with control subjects (P < 0·001). Positive correlations among O-GlcNAcylation, NF-κB signalling molecules and NLRP3 inflammasome were also observed in OLP samples (P < 0·01). In conclusion, the present study provides supportive evidence that increased O-GlcNAcylation is associated with increased expression of NLRP3 inflammasome via the NF-κB signalling pathway. These findings provide a new perspective on immunopathogenesis of OLP in relation to autoinflammation.
Collapse
Affiliation(s)
- T Thi Do
- Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.,Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Khon Kaen University, Khon Kaen, Thailand.,Department of Oral Pathology and Periodontology, Faculty of Dentistry, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - C Phoomak
- Department of Biochemistry, Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - V Champattanachai
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - A Silsirivanit
- Department of Biochemistry, Research Group for Glycosciences and Glycotechnology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - P Chaiyarit
- Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.,Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
6
|
Biological functions of melatonin in relation to pathogenesis of oral lichen planus. Med Hypotheses 2017; 104:40-44. [DOI: 10.1016/j.mehy.2017.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
|