1
|
Liu B, Sun Y, Geng T, Wang H, Wu Z, Xu L, Zhang M, Niu X, Zhao C, Shang J, Shang F. C5AR1-induced TLR1/2 pathway activation drives proliferation and metastasis in anaplastic thyroid cancer. Mol Carcinog 2024; 63:1938-1952. [PMID: 38934768 DOI: 10.1002/mc.23784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to elucidate the role and mechanisms of Complement C5a receptor 1 (C5AR1) in driving the malignant progression of anaplastic thyroid carcinoma (ATC). C5AR1 expression was assessed in ATC tissues and cell lines. Functional assays evaluated the effects of C5AR1 knockdown on the malignant features of ATC cells. The interaction between C5AR1 and miR-335-5p was confirmed using a luciferase reporter assay and Fluorescence in situ hybridization, and the impact of C5AR1 knockdown on the Toll-like receptor (TLR) 1/2 signaling pathway was examined. In vivo studies evaluated the effects of C5AR1 modulation on tumor growth and metastasis. C5AR1 levels were elevated in ATC tumor samples and associated with poor survival in ATC patients. C5AR1 knockdown impeded ATC cell proliferation, migration, and invasion in vitro. MiR-335-5p was identified as an upstream regulator of C5AR1, which negatively modulates C5AR1 expression. C5AR1 knockdown diminished TLR1, TLR2, and myeloid differentiation primary response 88 (MyD88) levels, while C5AR1 overexpression activated this pathway. Blocking TLR1/2 signaling abrogated the oncogenic effects of C5AR1 overexpression. C5AR1 silencing inhibited tumor growth and lung metastasis of ATC cells in nude mice. C5AR1 contributes to ATC tumorigenesis and metastasis by activating the TLR1/2 pathway, and is negatively regulated by miR-335-5p. Targeting the miR-335-5p/C5AR1/TLR1/2 axis represents a potential therapeutic strategy for ATC.
Collapse
Affiliation(s)
- Bo Liu
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yueyao Sun
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tongyao Geng
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haobo Wang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenyu Wu
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Xu
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Miao Zhang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xupeng Niu
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chenxu Zhao
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jin Shang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fangjian Shang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Monti M, Ferrari G, Gazzurelli L, Bugatti M, Facchetti F, Vermi W. Plasmacytoid dendritic cells at the forefront of anti-cancer immunity: rewiring strategies for tumor microenvironment remodeling. J Exp Clin Cancer Res 2024; 43:196. [PMID: 39020402 PMCID: PMC11253500 DOI: 10.1186/s13046-024-03121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells executing various innate immunological functions. Their first line of defence consists in type I interferons (I-IFN) production upon nucleic acids sensing through endosomal Toll-like receptor (TLR) 7- and 9-dependent signalling pathways. Type I IFNs are a class of proinflammatory cytokines that have context-dependent functions on cancer immunosurveillance and immunoediting. In the last few years, different studies have reported that pDCs are also able to sense cytosolic DNA through cGAS-STING (stimulator of interferon genes) pathway eliciting a potent I-IFN production independently of TLR7/9. Human pDCs are also endowed with direct effector functions via the upregulation of TRAIL and production of granzyme B, the latter modulated by cytokines abundant in cancer tissues. pDCs have been detected in a wide variety of human malignant neoplasms, including virus-associated cancers, recruited by chemotactic stimuli. Although the role of pDCs in cancer immune surveillance is still uncompletely understood, their spontaneous activation has been rarely documented; moreover, their presence in the tumor microenvironment (TME) has been associated with a tolerogenic phenotype induced by immunosuppressive cytokines or oncometabolites. Currently tested treatment options can lead to pDCs activation and disruption of the immunosuppressive TME, providing a relevant clinical benefit. On the contrary, the antibody-drug conjugates targeting BDCA-2 on immunosuppressive tumor-associated pDCs (TA-pDCs) could be proposed as novel immunomodulatory therapies to achieve disease control in patients with advance stage hematologic malignancies or solid tumors. This Review integrate recent evidence on the biology of pDCs and their pharmacological modulation, suggesting their relevant role at the forefront of cancer immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Luisa Gazzurelli
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
3
|
Ma L, Qin N, Wan W, Song S, Hua S, Jiang C, Li N, Huang L, Gao X. TLR9 activation induces immunosuppression and tumorigenesis via PARP1/PD-L1 signaling pathway in oral squamous cell carcinoma. Am J Physiol Cell Physiol 2024; 326:C362-C381. [PMID: 38105756 DOI: 10.1152/ajpcell.00061.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, and metastasis and immunosuppression are responsible for the poor prognosis of OSCC. Previous studies have shown that poly(ADP-ribose) polymerase (PARP)1 plays a key role in the pathogenesis of OSCC. Therefore, PARP1 may serve as an important research target for the potential treatment of OSCC. Here, we aimed to investigate the role of PARP1 in the tumorigenesis of OSCC and elucidate the key molecular mechanisms of its upstream and downstream regulation in vivo and in vitro. In human OSCC tissues and cells, Toll-like receptor (TLR)9 and PD-L1 were highly expressed and PARP1 was lowly expressed. Suppression of TLR9 remarkably repressed CAL27 and SCC9 cell proliferation, migration, and invasion. After coculture, we found that low expression of TLR9 inhibited PD-L1 expression and immune escape. In addition, TLR9 regulated PD-L1 expression through the PARP1/STAT3 pathway. PARP1 mediated the effects of TLR9 on OSCC cell proliferation, migration, and invasion and immune escape. Additionally, in vivo experiments further verified that TLR9 promoted tumor growth and immune escape by inhibiting PARP1. Collectively, TLR9 activation induced immunosuppression and tumorigenesis via PARP1/PD-L1 signaling pathway in OSCC, providing important insights for subsequent in-depth exploration of the mechanism of OSCC.NEW & NOTEWORTHY In this research, we took PARP1 as the key target to explore its regulatory effect on oral squamous cell carcinoma (OSCC). The key molecular mechanisms involved in its upstream and downstream regulation were elucidated in OSCC cell lines in vitro and tumor-bearing mice in vivo, combined with clinical OSCC tissues.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Oral Medicine, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Niuyu Qin
- Department of Oral Medicine, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Wendong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Saiwen Song
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Siqi Hua
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Long Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xing Gao
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Monti M, Ferrari G, Grosso V, Missale F, Bugatti M, Cancila V, Zini S, Segala A, La Via L, Consoli F, Orlandi M, Valerio A, Tripodo C, Rossato M, Vermi W. Impaired activation of plasmacytoid dendritic cells via toll-like receptor 7/9 and STING is mediated by melanoma-derived immunosuppressive cytokines and metabolic drift. Front Immunol 2024; 14:1227648. [PMID: 38239354 PMCID: PMC10795195 DOI: 10.3389/fimmu.2023.1227648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Plasmacytoid dendritic cells (pDCs) infiltrate a large set of human cancers. Interferon alpha (IFN-α) produced by pDCs induces growth arrest and apoptosis in tumor cells and modulates innate and adaptive immune cells involved in anti-cancer immunity. Moreover, effector molecules exert tumor cell killing. However, the activation state and clinical relevance of pDCs infiltration in cancer is still largely controversial. In Primary Cutaneous Melanoma (PCM), pDCs density decreases over disease progression and collapses in metastatic melanoma (MM). Moreover, the residual circulating pDC compartment is defective in IFN-α production. Methods The activation of tumor-associated pDCs was evaluated by in silico and microscopic analysis. The expression of human myxovirus resistant protein 1 (MxA), as surrogate of IFN-α production, and proximity ligation assay (PLA) to test dsDNA-cGAS activation were performed on human melanoma biopsies. Moreover, IFN-α and CXCL10 production by in vitro stimulated (i.e. with R848, CpG-A, ADU-S100) pDCs exposed to melanoma cell lines supernatants (SN-mel) was tested by intracellular flow cytometry and ELISA. We also performed a bulk RNA-sequencing on SN-mel-exposed pDCs, resting or stimulated with R848. Glycolytic rate assay was performed on SN-mel-exposed pDCs using the Seahorse XFe24 Extracellular Flux Analyzer. Results Based on a set of microscopic, functional and in silico analyses, we demonstrated that the melanoma milieu directly impairs IFN-α and CXCL10 production by pDCs via TLR-7/9 and cGAS-STING signaling pathways. Melanoma-derived immunosuppressive cytokines and a metabolic drift represent relevant mechanisms enforcing pDC-mediated melanoma escape. Discussion These findings propose a new window of intervention for novel immunotherapy approaches to amplify the antitumor innate immune response in cutaneous melanoma (CM).
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Grosso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Nederlands Kanker Instituut, Amsterdam, Netherlands
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Stefania Zini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Consoli
- Oncology Unit, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Matteo Orlandi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
5
|
Chandrasekar SA, Palaniyandi T, Parthasarathy U, Surendran H, Viswanathan S, Wahab MRA, Baskar G, Natarajan S, Ranjan K. Implications of Toll-like receptors (TLRs) and their signaling mechanisms in human cancers. Pathol Res Pract 2023; 248:154673. [PMID: 37453359 DOI: 10.1016/j.prp.2023.154673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Most essential pattern-recognition receptors regulating innate immune functions are toll-like receptors (TLRs). TLRs are characterized by lack of concurrent epithelial markers and are typically identified by their gene expressions. One major mechanism by which TLRs generate their effector functions is by triggering inflammatory responses. Activation of TLRs can impact initiation, advancement, and control of cancers by regulating the inflammatory microenvironment. Several TLRs have been implicated in human cancers and some of them are identified as cancer biomarkers as well; for example, TLRs 2, 3, 5 are expressed more frequently in most cancers. Knowing the upregulation and downregulation of the TLR genes in human cancers will be useful for the development of newer therapeutic targets which can disrupt the pathways associated with such deregulation. We present here the various TLRs and their functions in human lung, gastric, breast, prostate, oral, ovarian, colorectal, cervical, esophageal, bladder and hepatic cancers.
Collapse
Affiliation(s)
- Saran Aravinda Chandrasekar
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India; Department of Biomedical, School of Electronics Engineering (SENSE), VIT(Vellore Institute of Technology), Vellore 632014, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Udhayakumar Parthasarathy
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India
| | - Sudhakar Natarajan
- Department of virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis (NIRT), Chetpet, Chennai 600031, Tamil Nadu, India
| | - Kishu Ranjan
- Department of Pathology, School of Medicine, Yale University, New Haven 06520, USA
| |
Collapse
|
6
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
7
|
Zhu H, Wang K, Du W, Cao H, Zhong Q, Yin S, Zhong J, Li F. H3K9 acetylation modification and TLR9 immune regulation mechanism in patients after anti-HBV treatment. Medicine (Baltimore) 2022; 101:e32431. [PMID: 36596032 PMCID: PMC9803445 DOI: 10.1097/md.0000000000032431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To improve the curative effect of anti-hepatitis B virus (HBV) drugs, methods such as thymosin and entecavir combination have become a focus of clinical investigation. The aim of this retrospective experimental study was to explore the potential mechanism of action of thymosin a1 (Ta1) combined with entecavir in the treatment of HBV infection. A total of 28 patients with chronic hepatitis B, 29 patients treated with thymosin a1 and entecavir combination, and 15 healthy individuals were enrolled in this study. RT-qPCR was conducted to evaluate the mRNA levels of TLR9 in peripheral blood mononuclear cells (PBMCs). The serum level of TLR9 protein was analyzed by ELISA. The binding of TLR9 gene to the protein H3K9Ac in PBMCs was assessed by chromatin immunoprecipitation, and serum inflammatory factors were detected by Luminex technology. The expression levels of TLR9 mRNA and serum TLR9 protein in patients with HBV infection were significantly lower than those in subjects in the control group before treatment but increased after treatment with the Ta1 and entecavir combination. Moreover, the acetylation protein H3K9Ac was significantly bound to the promoter region of the TLR9 gene in patients with HBV infection treated with the Ta1 and entecavir combination compared to that in patients with HBV infection without treatment. Furthermore, the expression levels of interleukin 6 (IL-6), interleukin 12 (IL-12), interferon gamma, and necrosis factor alpha in patients with HBV infection after the combination treatment were slightly decreased compared to those in patients with HBV infection without treatment. In conclusion, the histone acetylation modification of TLR9 was significantly improved in patients with HBV infection after treatment with the Ta1 and entecavir combination, which elevated the expression of TLR9 at the mRNA and protein levels and further regulated the expression of IL-6, IL-12, and other cytokines.
Collapse
Affiliation(s)
- Haipeng Zhu
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
- * Correspondence: Hai-Peng Zhu, Department of Infectious Diseases, Dongguan People’s Hospital, Dongguan, Guangdong 523059, P.R. China (e-mail: )
| | - Ke Wang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Wei Du
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
| | - Huanhuan Cao
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
| | - Qingyang Zhong
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
| | - Sichun Yin
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
| | - Jianbo Zhong
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
| | - Fawu Li
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
| |
Collapse
|
8
|
Early antitumor activity of oral Langerhans cells is compromised by a carcinogen. Proc Natl Acad Sci U S A 2022; 119:2118424119. [PMID: 35012988 PMCID: PMC8784117 DOI: 10.1073/pnas.2118424119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of oral squamous cell carcinoma (OSCC) remains an unmet clinical need. Therefore, elucidating the initial events of OSCC preceding tumor development could benefit OSCC prognosis. Here, we define the Langerhans cells (LCs) of the tongue and demonstrate that LCs protect the epithelium from carcinogen-induced OSCC by rapidly priming αβT cells capable of eliminating γH2AX+ epithelial cells, whereas γδT and natural killer cells are dispensable. The carcinogen, however, dysregulates the epithelial resident mononuclear phagocytes, reducing LC frequencies, while dendritic cells (DCs), macrophages, and plasmacytoid DCs (pDCs) populate the epithelium. Single-cell RNA-sequencing analysis indicates that these newly differentiated cells display an immunosuppressive phenotype accompanied by an expansion of T regulatory (Treg) cells. Accumulation of the Treg cells was regulated, in part, by pDCs and precedes the formation of visible tumors. This suggests LCs play an early protective role during OSCC, yet the capacity of the carcinogen to dysregulate the differentiation of mononuclear phagocytes facilitates oral carcinogenesis.
Collapse
|
9
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
10
|
Han N, Li X, Wang Y, Wang L, Zhang C, Zhang Z, Ruan M, Zhang C. Increased tumor-infiltrating plasmacytoid dendritic cells promote cancer cell proliferation and invasion via TNF-α/NF-κB/CXCR-4 pathway in oral squamous cell carcinoma. J Cancer 2021; 12:3045-3056. [PMID: 33854604 PMCID: PMC8040884 DOI: 10.7150/jca.55580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Tumor-infiltrating immune cells are closely associated with tumor occurrence and progression. The present study explored the potential mechanism of tumor-infiltrating plasmacytoid dendritic cells (pDC) mediating the proliferation and metastasis of cancer cells in oral squamous cell carcinoma (OSCC). Methods: pDC distribution was detected by immunofluorescence and flow cytometry. chemotaxis cytokine receptor-4/7 (CXCR-4/7) expression was detected by quantitative polymerase chain reaction and immunohistochemistry. Cell proliferation and migration were measured by CCK-8, colony formation, wound healing and transwell assay. ELISA and western blotting were used to investigate cytokines secretion and NF-κB pathway activity. Results: Tumor-infiltrating pDC in OSCC was significantly increased and associated with tumor size, lymph node (LN) metastasis (P <0.05). Tumor-infiltrating-pDC-conditioned medium from OSCC patients significantly promoted tumor cell proliferation and invasion, which was at least partly mediated via enhancing the CXCR-4 expression of tumor cell. In addition, the activation of NF-κB pathway played a decisive role in the overexpression of CXCR-4, which was further regulated by pDC-derived TNF-α secretion. Conclusions: Tumor-infiltrating pDC promoted oral cancer proliferation and invasion via activating the TNF-α/NF-κB/CXCR-4 pathway, which may serve as a potential immunological target for the treatment of OSCC in the future.
Collapse
Affiliation(s)
- Nannan Han
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Xing Li
- Department of Dentistry, Affiliated Hospital, Weifang Medical University, Weifang, 261031, China
| | - Yupu Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Lin Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Chunye Zhang
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zun Zhang
- Department of Stomatology, Shanghai East Hospital, Tongji University. Shanghai 200120, China
| | - Min Ruan
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Chenping Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| |
Collapse
|
11
|
Monti M, Vescovi R, Consoli F, Farina D, Moratto D, Berruti A, Specchia C, Vermi W. Plasmacytoid Dendritic Cell Impairment in Metastatic Melanoma by Lactic Acidosis. Cancers (Basel) 2020; 12:cancers12082085. [PMID: 32731406 PMCID: PMC7463681 DOI: 10.3390/cancers12082085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
The introduction of targeted therapies and immunotherapies has significantly improved the outcome of metastatic melanoma (MM) patients. These approaches rely on immune functions for their anti-melanoma response. Plasmacytoid dendritic cells (pDCs) exhibit anti-tumor function by production of effector molecules, type I interferons (I-IFNs), and cytokines. Tissue and blood pDCs result compromised in MM, although these findings are still partially conflicting. This study reports that blood pDCs were dramatically depleted in MM, particularly in patients with high lactate dehydrogenase (LDH) and high tumor burden; the reduced pDC frequency was associated with poor overall survival. Circulating pDCs resulted also in significant impairment in interferon alpha (IFN-α) and C-X-C motif chemokine 10 (CXCL10) production in response to toll-like receptor (TLR)-7/8 agonists; on the contrary, the response to TLR-9 agonist remained intact. In the BRAFV600+ subgroup, no recovery of pDC frequency could be obtained by BRAF and MEK inhibitors (BRAFi; MEKi), whereas their function was partially rescued. Mechanistically, in vitro exposure to lactic acidosis impaired both pDC viability and function. In conclusion, pDCs from MM patients were found to be severely impaired, with a potential role for lactic acidosis. Short-term responses to treatments were not associated with pDC recovery, suggesting long-lasting effects on their compartment.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (C.S.)
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (C.S.)
| | - Francesca Consoli
- Oncology Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (F.C.); (A.B.)
| | - Davide Farina
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Daniele Moratto
- Laboratory of Genetic Disorders of Childhood, Angelo Nocivelli Institute for Molecular Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Alfredo Berruti
- Oncology Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (F.C.); (A.B.)
| | - Claudia Specchia
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (C.S.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (C.S.)
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63101, USA
- Correspondence: ; Tel.: +39-030-399-8425
| |
Collapse
|
12
|
Monti M, Consoli F, Vescovi R, Bugatti M, Vermi W. Human Plasmacytoid Dendritic Cells and Cutaneous Melanoma. Cells 2020; 9:E417. [PMID: 32054102 PMCID: PMC7072514 DOI: 10.3390/cells9020417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The prognosis of metastatic melanoma (MM) patients has remained poor for a long time. However, the recent introduction of effective target therapies (BRAF and MEK inhibitors for BRAFV600-mutated MM) and immunotherapies (anti-CTLA-4 and anti-PD-1) has significantly improved the survival of MM patients. Notably, all these responses are highly dependent on the fitness of the host immune system, including the innate compartment. Among immune cells involved in cancer immunity, properly activated plasmacytoid dendritic cells (pDCs) exert an important role, bridging the innate and adaptive immune responses and directly eliminating cancer cells. A distinctive feature of pDCs is the production of high amount of type I Interferon (I-IFN), through the Toll-like receptor (TLR) 7 and 9 signaling pathway activation. However, published data indicate that melanoma-associated escape mechanisms are in place to hijack pDC functions. We have recently reported that pDC recruitment is recurrent in the early phases of melanoma, but the entire pDC compartment collapses over melanoma progression. Here, we summarize recent advances on pDC biology and function within the context of melanoma immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Francesca Consoli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Medical Oncology, University of Brescia at ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Chen Y, Yang JE, Tang JM, Mao QG, Zheng QZ, Zheng Y. Predictive value of plasmacytoid dendritic cells and Toll-like receptor-9 regarding the treatment efficacy of interferon-α in HBeAg-positive chronic hepatitis B patients. Exp Ther Med 2019; 18:4541-4546. [PMID: 31798696 PMCID: PMC6878902 DOI: 10.3892/etm.2019.8161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection represents a public health threat and a challenge for the medical community. Untimely treatment may lead to liver cirrhosis and even liver cancer. At present, the major treatment for hepatitis B e antigen (HBeAg)-positive chronic hepatitis B patients includes administration of interferon-α (IFN-α), which has anti-viral and immunomodulatory effects. Plasmacytoid dendritic cells (pDCs) and Toll-like receptor-9 (TLR-9) have important roles in anti-viral therapy. However, their predictive value regarding the efficacy of IFN-α treatment of HBeAg-positive chronic hepatitis B (CHB) patients has remained elusive. A total of 178 patients with CHB and HBeAg-positive status, who had not received any previous anti-HBV treatment, were enrolled in the present study. All patients were treated with IFN-α. HBV DNA load, hepatitis B surface antigen and serum alanine aminotransferase were measured prior to and following 48 weeks of treatment. According to HBV levels, the patients were divided into a response group and non-responders group. To determine the amount of pDCs, blood dendritic cell antigen 2 (BDCA-2)- and immunoglobulin-like transcript 7 (ILT7)-expressing cells in liver biopsies were detected using immunohistochemistry. TLR-9 expression in peripheral blood mononuclear cells was determined by reverse transcription-quantitative PCR. There was no significant difference in the proportion of pDCs (BDCA-2; ILT7) and TLR-9 mRNA expression between the response group and the non-responders group prior to IFN-α treatment. After IFN-α treatment, BDCA-2, ILT7 and TLR-9 mRNA expression was obviously increased in the response group compared with that in the non-responders group (P<0.05). Increased expression of BDCA-2, ILT7 and TLR-9 mRNA was negatively correlated with HBV DNA (P<0.05). Increased levels of pDCs and TLR-9 were negatively correlated with HBV DNA, and were thus capable of predicting the IFN-α treatment response in patients with CHB and HBeAg-positive status.
Collapse
Affiliation(s)
- Yue Chen
- Department of Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Xiamen, Fujian 361001, P.R. China
| | - Jia-En Yang
- Department of Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Xiamen, Fujian 361001, P.R. China
| | - Jing-Mo Tang
- Department of Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Xiamen, Fujian 361001, P.R. China
| | - Qian-Guo Mao
- Department of Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Xiamen, Fujian 361001, P.R. China
| | - Qi-Zhong Zheng
- Department of Pathology, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Xiamen, Fujian 361001, P.R. China
| | - Ying Zheng
- Department of Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Xiamen, Fujian 361001, P.R. China
| |
Collapse
|