1
|
Kuang S, Yang J, Shen Z, Xia J, Lin Z. Single-Cell and Spatial Multi-Omics Analysis Reveal That Targeting JAG1 in Epithelial Cells Reduces Periodontal Inflammation and Alveolar Bone Loss. Int J Mol Sci 2024; 25:13255. [PMID: 39769019 PMCID: PMC11675447 DOI: 10.3390/ijms252413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Mucosal immunity plays a critical role in the pathogenesis of inflammatory immune diseases. This study leverages single-cell RNA sequencing, spatial transcriptomics, and spatial proteomics to compare the cellular mechanisms involved in periodontitis between humans and mice, aiming to develop precise strategies to protect the gingival mucosal barrier. We identified key conserved and divergent features in cellular landscapes and transcriptional profiles across the two species, underscoring the complexity of inflammatory responses and immune dynamics in periodontitis. Additionally, we revealed a novel regulatory mechanism by which epithelial cells modulate macrophage behavior and inflammation through the JAG1-Notch pathway. Validation through animal experiments revealed that JAG1 inhibition reduces inflammation in epithelial cells, mitigating periodontitis. Our findings advance the understanding of periodontal disease pathogenesis and highlight the importance of integrating human and animal model data to develop treatments aligned with human physiology, offering potential therapeutic targets for controlling inflammation and enhancing tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Juan Xia
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, China; (S.K.); (J.Y.); (Z.S.)
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, China; (S.K.); (J.Y.); (Z.S.)
| |
Collapse
|
2
|
Arano-Martinez JA, Hernández-Benítez JA, Martines-Arano H, Rodríguez-Tovar AV, Trejo-Valdez M, García-Pérez BE, Torres-Torres C. Multiphotonic Ablation and Electro-Capacitive Effects Exhibited by Candida albicans Biofilms. Bioengineering (Basel) 2024; 11:333. [PMID: 38671755 PMCID: PMC11048035 DOI: 10.3390/bioengineering11040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
This work reports the modification in the homogeneity of ablation effects with the assistance of nonlinear optical phenomena exhibited by C. albicans ATCC 10231, forming a biofilm. Equivalent optical energies with different levels of intensity were irradiated in comparative samples, and significant changes were observed. Nanosecond pulses provided by an Nd:YAG laser system at a 532 nm wavelength in a single-beam experiment were employed to explore the photodamage and the nonlinear optical transmittance. A nonlinear optical absorption coefficient -2 × 10-6 cm/W was measured in the samples studied. It is reported that multiphotonic interactions can promote more symmetric optical damage derived by faster changes in the evolution of fractional photoenergy transference. The electrochemical response of the sample was studied to further investigate the electronic dynamics dependent on electrical frequency, and an electro-capacitive behavior in the sample was identified. Fractional differential calculations were proposed to describe the thermal transport induced by nanosecond pulses in the fungi media. These results highlight the nonlinear optical effects to be considered as a base for developing photothermally activated phototechnology and high-precision photodamage in biological systems.
Collapse
Affiliation(s)
- Jose Alberto Arano-Martinez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - José Alejandro Hernández-Benítez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Hilario Martines-Arano
- Escuela Superior Tepeji del Río, Universidad Autónoma del Estado de Hidalgo, Tepeji del Río de Ocampo, Hidalgo 42860, Mexico
| | - Aída Verónica Rodríguez-Tovar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Martin Trejo-Valdez
- Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| |
Collapse
|
3
|
Huang F, Xie R, Li R, Liu L, Zhao M, Wang Q, Liu W, Ye P, Wang W, Wang X. Attenuation of NLRP3 Inflammasome by Cigarette Smoke is Correlated with Decreased Defense Response of Oral Epithelial Cells to Candida albicans. Curr Mol Med 2024; 24:790-800. [PMID: 37723958 PMCID: PMC11327737 DOI: 10.2174/1566524023666230612143038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND It is well recognized that both smoke and Candida infection are crucial risk factors for oral mucosal diseases. The nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and its downstream effectors, interleukin (IL)-1β and IL-18, are pivotal to the host defense against Candida and other pathogens. METHODS The present study was designed to explore the effects of cigarette smoke and C. albicans on the NLRP3 inflammasome and its downstream signal pathway via in vitro cell model. Oral epithelial cells (Leuk-1 cells) were exposed to cigarette smoke extract (CSE) for 3 days and/or challenged with C. albicans. RESULTS Microscopically, Leuk-1 cells exerted a defense response to C. albicans by markedly limiting the formation of germ tubes and microcolonies. CSE clearly eliminated the defense response of Leuk-1 cells. Functionally, CSE repressed NLRP3 inflammasome, and IL-1β and IL-18 activation induced by C. albicans in Leuk-1 cells. CONCLUSION Our results suggested that in oral epithelial cells, the NLRP3 inflammasome might be one of the target pathways by which CSE attenuates innate immunity and leads to oral disorders.
Collapse
Affiliation(s)
- Fan Huang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruiqi Xie
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruowei Li
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liu Liu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Maomao Zhao
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiong Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
| | - Weida Liu
- Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
| | - Pei Ye
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Wang T, Pan M, Bao M, Bu Q, Yang R, Yang Y, Shao J, Wang C, Li N. Ethyl caffeate combined with fluconazole exhibits efficacy against azole-resistant oropharyngeal candidiasis via the EFGR/JNK/c-JUN signaling pathway. Med Mycol 2023; 61:myad114. [PMID: 37947257 DOI: 10.1093/mmy/myad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Ethyl caffeate (EC) is a phenylpropanoid compound derived from Elephantopus scaber. In our previous work, EC was investigated to have a strong synergistic antifungal effect against azole-resistant strains of Candida albicans when combined with fluconazole (FLU). However, the protective effect and mechanism of EC + FLU on oropharyngeal candidiasis (OPC) caused by drug-resistant strains of C. albicans have not been investigated. This study aimed to investigate the protective effect and mechanism of EC combined with FLU against C. albicans-resistant strains that lead to OPC. An OPC mouse model revealed that EC + FLU treatment reduced fungal load and massive hyphal invasion of tongue tissues, and ameliorated the integrity of the tongue mucosa. Periodic acid-Schiff staining results showed more structural integrity of the tongue tissues and reduced inflammatory cell infiltration after EC + FLU treatment. Phosphorylation of EGFR (epidermal growth factor receptor) and other proteins in the EFGR/JNK (c-Jun N-terminal kinase)/c-JUN (transcription factor Jun) signaling pathway was significantly downregulated by EC + FLU. EGFR and S100A9 mRNA expression were also reduced. The above results were verified in FaDu cells. ELISA results showed that the concentration of inflammatory factors in the cell supernatant was significantly reduced after EC combined with FLU treatment. Molecular docking revealed that EC exhibited high binding energy to EGFR. In conclusion, EC enhances the susceptibility of azole-resistant C. albicans to FLU, and the underlying mechanism is related to the inhibition of the EGFR/JNK/c-JUN signaling pathway. This result suggests that EC has potential to be developed as an antifungal sensitizer to treat OPC caused by azole-resistant C. albicans.
Collapse
Affiliation(s)
- Tianming Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meshan Road, Hefei 230032, China
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Min Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Mengyuan Bao
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Qingru Bu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Ruotong Yang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Yue Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Jing Shao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Changzhong Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meshan Road, Hefei 230032, China
| |
Collapse
|
5
|
Yaldiz B, Saglam-Metiner P, Cakmak B, Kaya E, Deliogullari B, Yesil-Celiktas O. Essential Oil and Supercritical Carbon Dioxide Extract of Grapefruit Peels Formulated for Candida albicans Infections: Evaluation by an in Vitro Model to Study Fungal-Host Interactions. ACS OMEGA 2022; 7:37427-37435. [PMID: 36312386 PMCID: PMC9608417 DOI: 10.1021/acsomega.2c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Resistance to currently available antifungal agents raises the need to develop alternative remedies. Candida albicans is the most common opportunistic pathogenic fungus of humans, colonizing in the genital and intestinal mucosa, skin, and oral-nasal cavity and reducing quality of life. Herein, essential oil from grapefruit (Citrus paradise) peels was obtained by hydrodistillation, and the remaining plant material was sequentially subjected to supercritical carbon dioxide (SC-CO2) extraction to determine the conditions for maximizing phenolic compounds. A statistical design was used to evaluate the effect of temperature (30, 50, 70 °C), pressure (80, 150, 220 bar), and ethanol as a cosolvent (0%, 10%, and 20% v/v). Essential oil and SC-CO2 extracts were mixed at various ratios to develop an effective antifungal formulation. Subsequently, fungal infection was modeled by coculturing C. albicans with human skin keratinocytes (HaCaT) to mimic dermal mycoses, endothelial cells (HUVEC) to evaluate vascular fate, and cervical adenocarcinoma (HeLa) cells to represent additional genital mycoses. Treatment with essential oil and extract (25:75%) formulation for 8 h exhibited slight cytotoxicity toward HeLa cells, no toxicity toward HaCaT and HUVECs, whereas inhibition of C. albicans. Considering the clinical significance, such in vitro models are essential to screen potential compounds for the treatment of opportunistic fungal infections.
Collapse
Affiliation(s)
- Burcu Yaldiz
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Pelin Saglam-Metiner
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Betul Cakmak
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Elif Kaya
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Buse Deliogullari
- Biomedical
Technologies Graduate Programme, Graduate School of Natural and Applied
Sciences, Ege University,35100 Bornova, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
6
|
Zhao M, Zhang M, Xu K, Wu K, Xie R, Li R, Wang Q, Liu W, Wang W, Wang X. Antimicrobial Effect of Extracellular Vesicles Derived From Human Oral Mucosal Epithelial Cells on Candida albicans. Front Immunol 2022; 13:777613. [PMID: 35844569 PMCID: PMC9283572 DOI: 10.3389/fimmu.2022.777613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans (C. albicans) is a commensal microorganism that colonizes the mucosal surfaces of healthy individuals. Changes in the host or environment can lead to overgrowth of C. albicans and infection of the host. Extracellular vesicles (EVs) are released by almost all cell types and play an increasingly recognized role in fighting microbial infection. The aim of the present study was to assess whether EVs derived from human oral mucosal epithelial (Leuk-1) cells can suppress the growth and invasion of C. albicans. The in vitro efficacy of Leuk-1-EVs against C. albicans was assessed by optical microscopy, laser scanning confocal microscopy, scanning electron microscopy, and transmission electron microscopy. The germ tube formation rate, the percentage of hyphae and the microcolony optical density were also used to analyze the growth of C. albicans in a coculture model with Leuk-1 cells and EVs or after inhibition of the secretion of EVs. A mouse model of oral candidiasis was established and submucosal injection of Leuk-1-EVs in the tongue was performed. Macroscopic observation, H&E staining, PAS staining, and scanning electron microscopy were used to assess antifungal effects of Leuk-1-EVs in vivo. The in vitro results showed that the growth of C. albicans was inhibited and that the morphology and ultrastructure were changed following Leuk-1-EVs treatment. The in vivo results exhibited that white lesions of the tongue, C. albicans infection, and oral mucosal inflammation of the infected mice were significantly alleviated after Leuk-1-EVs treatment. We thus reveal an antifungal capability of EVs derived from oral epithelial cells against C. albicans that is mediated by direct damage effects and potential synergy between EVs and human oral mucosal epithelial cells. This finding offers an intriguing, previously overlooked method of antifungal defense against C. albicans.
Collapse
Affiliation(s)
- Maomao Zhao
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Miaomiao Zhang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kaiyuan Xu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kaihui Wu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruiqi Xie
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruowei Li
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiong Wang
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Weida Liu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Feitosa de Carvalho TA, Nobre FX, de Lima Barros A, Ghosh A, de Almeida Lima e Silva A, Oliveira dos Santos Fontenelle R, Rita de Morais Chaves Santos M, Elias de Matos JM. Investigation of optical, structural, and antifungal properties of lindgrenite obtained by conventional coprecipitation and ultrasound-assisted coprecipitation methods. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Černáková L, Rodrigues CF. Microbial interactions and immunity response in oral Candida species. Future Microbiol 2020; 15:1653-1677. [PMID: 33251818 DOI: 10.2217/fmb-2020-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral candidiasis are among the most common noncommunicable diseases, related with serious local and systemic illnesses. Although these infections can occur in all kinds of patients, they are more recurrent in immunosuppressed ones such as patients with HIV, hepatitis, cancer or under long antimicrobial treatments. Candida albicans continues to be the most frequently identified Candida spp. in these disorders, but other non-C. albicans Candida are rising. Understanding the immune responses involved in oral Candida spp. infections is a key feature to a successful treatment and to the design of novel therapies. In this review, we performed a literature search in PubMed and WoS, in order to examine and analyze common oral Candida spp.-bacteria/Candida-Candida interactions and the host immunity response in oral candidiasis.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology & Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Célia F Rodrigues
- Department of Chemical Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering, University of Porto, Portugal
| |
Collapse
|
9
|
Meng Y, Kang M, Li D, Wang T, Kuang Z, Ma Y. Performance of a new Candida anti-mannan IgM and IgG assays in the diagnosis of candidemia. Rev Inst Med Trop Sao Paulo 2020; 62:e25. [PMID: 32428065 PMCID: PMC7232961 DOI: 10.1590/s1678-9946202062025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/01/2020] [Indexed: 02/08/2023] Open
Abstract
Candida is one of the most frequent pathogens of bloodstream infections, which is associated with high morbidity and mortality rates. Rapid immunological detection methods are essential in the early diagnosis of candidemia. Anti-mannan is one of host-derived biomarkers against cell wall components of Candida. We conducted this study to evaluate the diagnostic performance of two anti-mannan assays (IgM, IgG) for candidemia through the analysis of 40 candidemia patients, 48 participants with Candida colonization and 213 participants with neither Candida colonization nor Candida infections (13 patients with other bloodstream infections, 145 hospitalized patients and 55 healthy controls). The performance of the two assays were evaluated by calculating their sensitivity and specificity. The sensitivity ranged from 0.78 to 0.80 for the IgM assay and 0.68 to 0.75 for the IgG assay. The specificity ranged from 0.97 to 0.98 for the IgM assay and 0.91 to 0.94 for the IgG assay. The diagnostic performance of the anti-mannan IgM assay was better than that of IgG, with higher sensitivity and specificity. Combining the two assays (positive results of single or both assays are both considered as positive) could improve the sensitivity up to 0.93 (0.79-0.98) and only slightly reduce the specificity (0.93(0.89-0.95)). The anti-mannan IgM, IgG assays are rapid and cost-effective assays that may be probably useful in the diagnosis of candidemia.
Collapse
Affiliation(s)
- Yanming Meng
- Sichuan University, West China Hospital, Department of Laboratory Medicine, Chengdu, China
| | - Mei Kang
- Sichuan University, West China Hospital, Department of Laboratory Medicine, Chengdu, China
| | - Dongdong Li
- Sichuan University, West China Hospital, Department of Laboratory Medicine, Chengdu, China
| | - Tingting Wang
- Sichuan University, West China Hospital, Department of Laboratory Medicine, Chengdu, China
| | - Ziwei Kuang
- Sichuan University, West China Hospital, Department of Laboratory Medicine, Chengdu, China
| | - Ying Ma
- Sichuan University, West China Hospital, Department of Laboratory Medicine, Chengdu, China
| |
Collapse
|