1
|
Walther K, Gröger S, Vogler JAH, Wöstmann B, Meyle J. Inflammation indices in association with periodontitis and cancer. Periodontol 2000 2024; 96:281-315. [PMID: 39317462 PMCID: PMC11579835 DOI: 10.1111/prd.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Inflammation is a complex physiological process that plays a pivotal role in many if not all pathological conditions, including infectious as well as inflammatory diseases, like periodontitis and autoimmune disorders. Inflammatory response to periodontal biofilms and tissue destruction in periodontitis is associated with the release of inflammatory mediators. Chronic inflammation can promote the development of cancer. Persistence of inflammatory mediators plays a crucial role in this process. Quantification and monitoring of the severity of inflammation in relation to cancer is essential. Periodontitis is mainly quantified based on the severity and extent of attachment loss and/or pocket probing depth, in addition with bleeding on probing. In recent years, studies started to investigate inflammation indices in association with periodontal diseases. To date, only few reviews have been published focusing on the relationship between blood cell count, inflammation indices, and periodontitis. This review presents a comprehensive overview of different systemic inflammation indices, their methods of measurement, and the clinical applications in relation to periodontitis and cancer. This review outlines the physiological basis of inflammation and the underlying cellular and molecular mechanisms of the parameters described. Key inflammation indices are commonly utilized in periodontology such as the neutrophil to lymphocyte ratio. Inflammation indices like the platelet to lymphocyte ratio, platelet distribution width, plateletcrit, red blood cell distribution width, lymphocyte to monocyte ratio, delta neutrophil index, and the systemic immune inflammation index are also used in hospital settings and will be discussed. The clinical roles and limitations, relationship to systemic diseases as well as their association to periodontitis and treatment response are described.
Collapse
Affiliation(s)
- Kay‐Arne Walther
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Prosthodontics, Dental ClinicJustus Liebig University of GiessenGiessenGermany
| | - Sabine Gröger
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Orthodontics, Dental ClinicJustus Liebig University of GiessenGiessenGermany
| | | | - Bernd Wöstmann
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Prosthodontics, Dental ClinicJustus Liebig University of GiessenGiessenGermany
| | - Jörg Meyle
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Periodontology, Dental ClinicUniversity of BernBernSwitzerland
| |
Collapse
|
2
|
Zhao J, Zheng Q, Ying Y, Luo S, Liu N, Wang L, Xu T, Jiang A, Pan Y, Zhang D. Association between high-density lipoprotein-related inflammation index and periodontitis: insights from NHANES 2009-2014. Lipids Health Dis 2024; 23:321. [PMID: 39342327 PMCID: PMC11439298 DOI: 10.1186/s12944-024-02312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Periodontitis, a persistent inflammatory condition, significantly impairs individuals' overall quality of life. Lymphocyte-to-high-density lipoprotein cholesterol ratio (LHR), monocyte-to-high-density lipoprotein cholesterol ratio (MHR), neutrophil-to-high-density lipoprotein cholesterol ratio (NHR), and platelet-to-high-density lipoprotein cholesterol ratio (PHR) are new convenient and economical biomarkers. However, whether the above high-density lipoprotein-related inflammatory biomarkers are associated with periodontitis has rarely been investigated. Therefore, the research endeavor focused on uncovering potential relationships. METHODS The research encompassed a diverse and extensive sample, comprising 9,470 participants, selected from the National Health and Nutrition Examination Survey spanning the years 2009 to 2014. The association between high-density lipoprotein-related inflammatory biomarkers and periodontitis was explored utilizing a multivariable logistic regression model with weighted analysis. Additionally, the study employed smoothed curve fitting to explore potential nonlinear relationships. Further stratified analyses and interaction tests were performed. RESULTS This study indicated no apparent association between MHR and PHR with periodontitis, whereas LHR and NHR demonstrated a statistically significant positive relationship with the prevalence of periodontitis. In the fully adjusted model, participants belonging to the highest tertile of both LHR and NHR showed a notably higher likelihood of having periodontitis compared to those in the lowest tertile (LHR: OR = 1.22, 95% CI: 1.06, 1.39; NHR: OR = 1.27, 95% CI: 1.09, 1.49). Furthermore, smooth curve fitting was employed to investigate the potential nonlinear relationship between LHR, NHR, and periodontitis. The results indicated that there was a significant increase in the occurrence of periodontitis when Log2 (LHR) exceeded 1.01 and Log2(NHR) surpassed 2.16 (Log2(LHR): OR = 1.42; 95% CI: 1.19, 1.69; Log2(NHR): OR = 1.40; 95% CI: 1.15, 1.71). The subgroup analysis revealed that the associations between periodontitis and either LHR or NHR, separately, were more pronounced among individuals under the age of 50 and those without hypertension. CONCLUSIONS This cross-sectional study revealed a positive relationship between LHR、NHR and periodontitis, particularly when these indicators exceeded their thresholds. LHR and NHR may serve as potential inflammatory markers for identifying periodontitis, thereby facilitating early warning for both patients and dentists, and enabling early intervention in the oral environment. Besides, extensive prospective cohort investigations are essential to confirm and solidify this observation.
Collapse
Affiliation(s)
- Jiahui Zhao
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Heping District, Nanjing North Street No.117, Shenyang, 110002, China
| | - Qifan Zheng
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Heping District, Nanjing North Street No.117, Shenyang, 110002, China
| | - Yue Ying
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Heping District, Nanjing North Street No.117, Shenyang, 110002, China
| | - Shiyin Luo
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Heping District, Nanjing North Street No.117, Shenyang, 110002, China
| | - Nan Liu
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Heping District, Nanjing North Street No.117, Shenyang, 110002, China
| | - Liu Wang
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Heping District, Nanjing North Street No.117, Shenyang, 110002, China
| | - Tong Xu
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Heping District, Nanjing North Street No.117, Shenyang, 110002, China
| | - Aijia Jiang
- Department of Oral mucosiology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Heping District, Nanjing North Street No.117, Shenyang, 110002, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Heping District, Nanjing North Street No.117, Shenyang, 110002, China
| | - Dongmei Zhang
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Heping District, Nanjing North Street No.117, Shenyang, 110002, China.
| |
Collapse
|
3
|
Li R, Wang J, Xiong W, Luo Y, Feng H, Zhou H, Peng Y, He Y, Ye Q. The oral-brain axis: can periodontal pathogens trigger the onset and progression of Alzheimer's disease? Front Microbiol 2024; 15:1358179. [PMID: 38362505 PMCID: PMC10868393 DOI: 10.3389/fmicb.2024.1358179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a progressive cognitive decline. Sporadic AD, accounting for more than 95% of cases, may arise due to the influence of environmental factors. It was reported that periodontitis, a common oral ailment, shares several risk factors with AD, including advanced age, smoking, diabetes, and hypertension, among others. Periodontitis is an inflammatory disease triggered by dysbiosis of oral microorganisms, whereas Alzheimer's disease is characterized by neuroinflammation. Many studies have indicated that chronic inflammation can instigate brain AD-related pathologies, including amyloid-β plaques, Tau protein hyperphosphorylation, neuroinflammation, and neurodegeneration. The potential involvement of periodontal pathogens and/or their virulence factors in the onset and progression of AD by the oral-brain axis has garnered significant attention among researchers with ongoing investigations. This review has updated the periodontal pathogens potentially associated with AD, elucidating their impact on the central nervous system, immune response, and related pathological processes in the brain to provide valuable insights for future research on the oral-brain axis.
Collapse
Affiliation(s)
- Ruohan Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junnan Wang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Luo
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Huixian Feng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Youjian Peng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Luo S, Xu T, Zheng Q, Jiang A, Zhao J, Ying Y, Liu N, Pan Y, Zhang D. Mitochondria: An Emerging Unavoidable Link in the Pathogenesis of Periodontitis Caused by Porphyromonas gingivalis. Int J Mol Sci 2024; 25:737. [PMID: 38255811 PMCID: PMC10815845 DOI: 10.3390/ijms25020737] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a key pathogen of periodontitis. Increasing evidence shows that P. gingivalis signals to mitochondria in periodontal cells, including gingival epithelial cells, gingival fibroblast cells, immune cells, etc. Mitochondrial dysfunction affects the cellular state and participates in periodontal inflammatory response through the aberrant release of mitochondrial contents. In the current review, it was summarized that P. gingivalis induced mitochondrial dysfunction by altering the mitochondrial metabolic state, unbalancing mitochondrial quality control, prompting mitochondrial reactive oxygen species (ROS) production, and regulating mitochondria-mediated apoptosis. This review outlines the impacts of P. gingivalis and its virulence factors on the mitochondrial function of periodontal cells and their role in periodontitis.
Collapse
Affiliation(s)
- Shiyin Luo
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang 110002, China; (S.L.); (T.X.); (Q.Z.); (A.J.); (J.Z.); (Y.Y.); (N.L.)
| | - Tong Xu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang 110002, China; (S.L.); (T.X.); (Q.Z.); (A.J.); (J.Z.); (Y.Y.); (N.L.)
| | - Qifan Zheng
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang 110002, China; (S.L.); (T.X.); (Q.Z.); (A.J.); (J.Z.); (Y.Y.); (N.L.)
| | - Aijia Jiang
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang 110002, China; (S.L.); (T.X.); (Q.Z.); (A.J.); (J.Z.); (Y.Y.); (N.L.)
| | - Jiahui Zhao
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang 110002, China; (S.L.); (T.X.); (Q.Z.); (A.J.); (J.Z.); (Y.Y.); (N.L.)
| | - Yue Ying
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang 110002, China; (S.L.); (T.X.); (Q.Z.); (A.J.); (J.Z.); (Y.Y.); (N.L.)
| | - Nan Liu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang 110002, China; (S.L.); (T.X.); (Q.Z.); (A.J.); (J.Z.); (Y.Y.); (N.L.)
| | - Yaping Pan
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Shenyang 110002, China;
| | - Dongmei Zhang
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Shenyang 110002, China;
| |
Collapse
|
5
|
Li G, Yu Q, Li M, Zhang D, Yu J, Yu X, Xia C, Lin J, Han L, Huang H. Phyllanthus emblica fruits: a polyphenol-rich fruit with potential benefits for oral management. Food Funct 2023; 14:7738-7759. [PMID: 37529983 DOI: 10.1039/d3fo01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The fruit of Phyllanthus emblica Linn., which mainly grows in tropical and subtropical regions, is well-known for its medicine and food homology properties. It has a distinctive flavor, great nutritional content, and potent antioxidant, anti-inflammatory, anti-cancer and immunoregulatory effects. According to an increasing amount of scientific and clinical evidence, this fruit shows significant potential for application and development in the field of oral health management. Through the supplementation of vitamins, superoxide dismutase (SOD) and other nutrients reduce virulence expression of various oral pathogens, prevent tissue and mucosal damage caused by oxidative stress, etc. Phyllanthus emblica fruit can promote saliva secretion, regulate the balance of the oral microecology, prevent and treat oral cancer early, promote alveolar bone remodeling and aid mucosal wound healing. Thus, it plays a specific role in the prevention and treatment of common oral disorders, producing surprising results. For instance, enhancing the effectiveness of scaling and root planing in the treatment of periodontitis, relieving mucosal inflammation caused by radiotherapy for oral cancer, and regulating the blood glucose metabolism to alleviate oral discomfort. Herein, we systematically review the latest research on the use of Phyllanthus emblica fruit in the management of oral health and examine the challenges and future research directions based on its chemical composition and characteristics.
Collapse
Affiliation(s)
- Gefei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qiang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Mengqi Li
- Pharmacy department, Sichuan Nursing Vocational College, Chengdu 610100, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ji Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaohan Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chenxi Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Haozhou Huang
- State key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| |
Collapse
|
6
|
Zhao M, Xie Y, Gao W, Li C, Ye Q, Li Y. Diabetes mellitus promotes susceptibility to periodontitis-novel insight into the molecular mechanisms. Front Endocrinol (Lausanne) 2023; 14:1192625. [PMID: 37664859 PMCID: PMC10469003 DOI: 10.3389/fendo.2023.1192625] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetes mellitus is a main risk factor for periodontitis, but until now, the underlying molecular mechanisms remain unclear. Diabetes can increase the pathogenicity of the periodontal microbiota and the inflammatory/host immune response of the periodontium. Hyperglycemia induces reactive oxygen species (ROS) production and enhances oxidative stress (OS), exacerbating periodontal tissue destruction. Furthermore, the alveolar bone resorption damage and the epigenetic changes in periodontal tissue induced by diabetes may also contribute to periodontitis. We will review the latest clinical data on the evidence of diabetes promoting the susceptibility of periodontitis from epidemiological, molecular mechanistic, and potential therapeutic targets and discuss the possible molecular mechanistic targets, focusing in particular on novel data on inflammatory/host immune response and OS. Understanding the intertwined pathogenesis of diabetes mellitus and periodontitis can explain the cross-interference between endocrine metabolic and inflammatory diseases better, provide a theoretical basis for new systemic holistic treatment, and promote interprofessional collaboration between endocrine physicians and dentists.
Collapse
Affiliation(s)
- Mingcan Zhao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuandong Xie
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Wenjia Gao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Chunwang Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Qiang Ye
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yi Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Liu X, Yang L, Tan X. PD-1/PD-L1 pathway: A double-edged sword in periodontitis. Biomed Pharmacother 2023; 159:114215. [PMID: 36630848 DOI: 10.1016/j.biopha.2023.114215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Periodontitis is a disease caused by infection and immunological imbalance, which often leads to the destruction of periodontal tissue. Programmed death protein 1 (PD-1) and its ligand: programmed death ligand 1 (PD-L1) are important "immune checkpoint" proteins that have a negative regulatory effect on T cells and are targets of immunotherapy. Studies have shown that the expression of PD-1 and PD-L1 in patients with periodontitis is higher than that in healthy individuals. The keystone pathogen Porphyromonas gingivalis (P. gingivalis) is believed to be the main factor driving the upregulation of PD-1/PD-L1. High expression of PD-1/PD-L1 can inhibit the inflammatory response and reduce the destruction of periodontal supporting tissues, but conversely, it can promote the "immune escape" of P. gingivalis, thus magnifying infections. In addition, the PD-1/PD-L1 pathway is also associated with various diseases, such as cancer and Alzheimer's disease. In this review, we discuss the influence and mechanism of the PD-1/PD-L1 pathway as a "double-edged sword" affecting the occurrence and development of periodontitis, as well as its function in periodontitis-related systemic disorders. The PD-1/PD-L1 pathway could be a new avenue for periodontal and its related systemic disorders therapy.
Collapse
Affiliation(s)
- Xiaowei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Lim Y, Kim HY, Sun-Jin An, Choi BK. Activation of bone marrow-derived dendritic cells and CD4 + T cell differentiation by outer membrane vesicles of periodontal pathogens. J Oral Microbiol 2022; 14:2123550. [PMID: 36312320 PMCID: PMC9616074 DOI: 10.1080/20002297.2022.2123550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Outer membrane vesicles (OMVs) released from gram-negative bacteria harbor diverse molecules to communicate with host cells. In this study, we evaluated the OMVs of periodontal pathogens for their effects on the activation of dendritic cells and CD4+ T cell differentiation. OMVs of Porphyromonas gingivalis ATCC 33277, Treponema denticola ATCC 33521, and Tannerella forsythia ATCC 43037 (‘red complex’ pathogens) were isolated by density gradient ultracentrifugation. Mouse bone marrow-derived dendritic cells (BMDCs) were treated with OMVs, and OMV-primed BMDCs were cocultured with naïve CD4+ T cells to analyze the polarization of effector helper T cells. The OMVs upregulated maturation markers, including MHC class II, CD80, CD86, and CD40, on BMDCs. OMVs of P. gingivalis and T. forsythia induced the expression of the proinflammatory cytokines IL-1β, IL-6, IL-23, and IL-12p70 in BMDCs. In T. denticola OMV-primed BMDCs, proinflammatory cytokines were poorly detected, which may be attributed to posttranslational degradation due to the highly proteolytic nature of OMVs. In cocultures of naïve CD4+ T cells with OMV-primed BMDCs, OMVs of P. gingivalis and T. denticola induced the differentiation of Th17 cells, whereas T. forsythia OMVs induced Th1 cell differentiation. These results demonstrate that OMVs derived from the ‘red complex’ periodontal pathogens induce maturation of BMDCs and differentiation of naïve CD4+ T cells to Th1 or Th17 cells.
Collapse
Affiliation(s)
- Younggap Lim
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hyun Young Kim
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | | | - Bong-Kyu Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Huang D, Zhang C, Wang P, Li X, Gao L, Zhao C. JMJD3 Promotes Porphyromonas gingivalis Lipopolysaccharide-Induced Th17-Cell Differentiation by Modulating the STAT3-RORc Signaling Pathway. DNA Cell Biol 2022; 41:778-787. [PMID: 35867069 PMCID: PMC9416562 DOI: 10.1089/dna.2022.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The immune response mediated by Th17 cells is essential in the pathogenesis of periodontitis. Emerging evidence has demonstrated that lipopolysaccharide from Porphyromonas gingivalis (Pg-LPS) could promote Th17-cell differentiation directly, while the downstream signaling remains elusive. This study was aimed to explore the role of JMJD3 (a JmjC family histone demethylase) and signal transducers and activators of transcription 3 (STAT3) in Th17-cell differentiation triggered by Pg-LPS and clarify the interaction between them. We found that the expression of JMJD3 and STAT3 was significantly increased under Th17-polarizing conditions. Pg-LPS could promote Th17-cell differentiation from CD4+ T cells, with an increased expression of JMJD3 and STAT3 compared to the culture without Pg-LPS. The coimmunoprecipitation results showed that the interactions of JMJD3 and STAT3, STAT3 and retinoid-related orphan nuclear receptor γt (RORγt) were enhanced following Pg-LPS stimulation during Th17-cell differentiation. Further blocking assays were performed and the results showed that inhibition of STAT3 or JMJD3 both suppressed the Th17-cell differentiation, JMJD3 inhibitor could reduce the expression of STAT3 and p-STAT3, while JMJD3 expression was not affected when STAT3 was inhibited. Taken together, this study found that JMJD3 could promote Pg-LPS induced Th17-cell differentiation by modulating the STAT3-RORc signaling pathway.
Collapse
Affiliation(s)
- Doudou Huang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Panpan Wang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Immunopathogenesis and distinct role of Th17 in Periodontitis: A review. J Oral Biosci 2022; 64:193-201. [PMID: 35489583 DOI: 10.1016/j.job.2022.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND Periodontitis is a multifactorial inflammatory disease mediated by the host immune response to dental plaque. Periodontitis is characterized by periodontal bone loss and loss of tooth support. Several studies have corroborated the infiltration of T lymphocytes in periodontitis and correlated the infiltration with chronic inflammation in a dysregulated T cell-mediated immune response. The complexity of the disease has prompted multiple studies aiming to understand T cell-mediated pathogenesis. HIGHLIGHT Recent findings have demonstrated the pivotal role of helper T cells in many autoimmune diseases, such as rheumatoid arthritis, which has been conventionally correlated with periodontal bone loss. In contrast, the roles of helper T subsets, Th1, Th2, and particularly Th17, have not been explored. Th17-mediated pathogenesis is a significant aspect of the progression and therapy of periodontitis. CONCLUSION In this review, we highlight the complex role of Th17 in the underlying pro-inflammatory cascades mediated by a repertoire of Th17-released molecules and their role in aggravated inflammation in periodontitis. We also summarize recent therapeutics targeting Th17 and related molecules, primarily to ameliorate inflammation and maintain periodontal care.
Collapse
|
11
|
Jin S, Wetzel D, Schirmer M. Deciphering mechanisms and implications of bacterial translocation in human health and disease. Curr Opin Microbiol 2022; 67:102147. [PMID: 35461008 DOI: 10.1016/j.mib.2022.102147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
Abstract
Significant increases in potential microbial translocation, especially along the oral-gut axis, have been identified in many immune-related and inflammatory diseases, such as inflammatory bowel disease, colorectal cancer, rheumatoid arthritis, and liver cirrhosis, for which we currently have no cure or long-term treatment options. Recent advances in computational and experimental omics approaches now enable strain tracking, functional profiling, and strain isolation in unprecedented detail, which has the potential to elucidate the causes and consequences of microbial translocation. In this review, we discuss current evidence for the detection of bacterial translocation, examine different translocation axes with a primary focus on the oral-gut axis, and outline currently known translocation mechanisms and how they adversely affect the host in disease. Finally, we conclude with an overview of state-of-the-art computational and experimental tools for strain tracking and highlight the required next steps to elucidate the role of bacterial translocation in human health.
Collapse
Affiliation(s)
- Shen Jin
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Daniela Wetzel
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Melanie Schirmer
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
12
|
Zhang J, Xie M, Huang X, Chen G, Yin Y, Lu X, Feng G, Yu R, Chen L. The Effects of Porphyromonas gingivalis on Atherosclerosis-Related Cells. Front Immunol 2022; 12:766560. [PMID: 35003080 PMCID: PMC8734595 DOI: 10.3389/fimmu.2021.766560] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis (AS), one of the most common types of cardiovascular disease, has initially been attributed to the accumulation of fats and fibrous materials. However, more and more researchers regarded it as a chronic inflammatory disease nowadays. Infective disease, such as periodontitis, is related to the risk of atherosclerosis. Porphyromonas gingivalis (P. gingivalis), one of the most common bacteria in stomatology, is usually discovered in atherosclerotic plaque in patients. Furthermore, it was reported that P. gingivalis can promote the progression of atherosclerosis. Elucidating the underlying mechanisms of P. gingivalis in atherosclerosis attracted attention, which is thought to be crucial to the therapy of atherosclerosis. Nevertheless, the pathogenesis of atherosclerosis is much complicated, and many kinds of cells participate in it. By summarizing existing studies, we find that P. gingivalis can influence the function of many cells in atherosclerosis. It can induce the dysfunction of endothelium, promote the formation of foam cells as well as the proliferation and calcification of vascular smooth muscle cells, and lead to the imbalance of regulatory T cells (Tregs) and T helper (Th) cells, ultimately promoting the occurrence and development of atherosclerosis. This article summarizes the specific mechanism of atherosclerosis caused by P. gingivalis. It sorts out the interaction between P. gingivalis and AS-related cells, which provides a new perspective for us to prevent or slow down the occurrence and development of AS by inhibiting periodontal pathogens.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
13
|
Deng J, Lu C, Zhao Q, Chen K, Ma S, Li Z. The Th17/Treg cell balance: crosstalk among the immune system, bone and microbes in periodontitis. J Periodontal Res 2021; 57:246-255. [PMID: 34878170 DOI: 10.1111/jre.12958] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Periodontopathic bacteria constantly stimulate the host, which causes an immune response, leading to host-induced periodontal tissue damage. The complex interaction and imbalance between Th17 and Treg cells may be critical in the pathogenesis of periodontitis. Furthermore, the RANKL/RANK/OPG system plays a significant role in periodontitis bone metabolism, and its relationship with the Th17/Treg cell imbalance may be a bridge between periodontal bone metabolism and the immune system. This article reviews the literature related to the Th17/Treg cell imbalance mediated by pathogenic periodontal microbes, and its mechanism involving RANKL/RANK/OPG in periodontitis bone metabolism, in an effort to provide new ideas for the study of the immunopathological mechanism of periodontitis.
Collapse
Affiliation(s)
- Jianwen Deng
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Chunting Lu
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qingtong Zhao
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Kexiao Chen
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Shuyuan Ma
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China.,Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Jinan University, Chaozhou, China
| |
Collapse
|
14
|
Luong A, Tawfik AN, Islamoglu H, Gobriel HS, Ali N, Ansari P, Shah R, Hung T, Patel T, Henson B, Thankam F, Lewis J, Mintline M, Boehm T, Tumur Z, Seleem D. Periodontitis and diabetes mellitus co-morbidity: A molecular dialogue. J Oral Biosci 2021; 63:360-369. [PMID: 34728373 DOI: 10.1016/j.job.2021.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and periodontitis are two biologically linked diseases that often coexist in complex interaction. While periodontitis may lead to insulin receptor desensitization, diabetes may increase the expression of inflammatory cytokines, such as Tumor Necrosis Factor-α (TNF-α) and Interleukin 6 (IL-6), in the gingival crevicular fluid and activate osteoclasts via Receptor activator of nuclear factor kappa-Β ligand (RANK-L) production, leading to bone resorption. However, the association between the two diseases processes, where one may exacerbate the progression of the other, is unclear. In addition, both diseases have similar mechanistic themes, such as chronic inflammation and oxidative stress. This review aimed to investigate the pathophysiological and molecular mechanisms underlying T2DM and periodontitis. HIGHLIGHT Uncontrolled diabetes is often associated with severe periodontitis, measured by clinical attachment loss. Alteration in the oral microbiome composition, which may activate the host inflammatory response and lead to irreversible oxidative stress, is a common finding in both diseases. An understanding of the molecular crosstalk between the two disease processes is crucial for developing therapeutic targets that inhibit bone resorption and halt the progression of periodontitis in patients with diabetes. CONCLUSION The Oral microbiome composition in T2DM and periodontitis shifts toward dysbiosis, favoring bacterial pathogens, such as Fusobacteria and Porphyromonas species. Both conditions are marked by pro-inflammatory immune activity via the activation of Interleukin 17 (IL-17), Interleukin 1 (IL-1), TNF-α, and Nuclear Factor Kappa Beta (NF-κB). Common molecular crosstalk signaling appears to involve advanced glycation end products (AGEs) and oxidative stress. Thus, future drug targets are multifactorial, ranging from modulatory of host inflammatory response to preventing the accumulation of AGEs and oxidative free radicals.
Collapse
Affiliation(s)
- Anthony Luong
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Andy Nassif Tawfik
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Hicret Islamoglu
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Hanaa Selim Gobriel
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Nada Ali
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Pouya Ansari
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Ruchita Shah
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Tiffany Hung
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Tanusha Patel
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Bradley Henson
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Finosh Thankam
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Jill Lewis
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Mark Mintline
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Tobias Boehm
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Zohra Tumur
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Dalia Seleem
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA.
| |
Collapse
|
15
|
Huang N, Dong H, Luo Y, Shao B. Th17 Cells in Periodontitis and Its Regulation by A20. Front Immunol 2021; 12:742925. [PMID: 34557201 PMCID: PMC8453085 DOI: 10.3389/fimmu.2021.742925] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a prevalent chronic disease that results in loss of periodontal ligament and bone resorption. Triggered by pathogens and prolonged inflammation, periodontitis is modulated by the immune system, especially pro-inflammatory cells, such as T helper (Th) 17 cells. Originated from CD4+ Th cells, Th17 cells play a central role for they drive and regulate periodontal inflammation. Cytokines secreted by Th17 cells are also major players in the pathogenesis of periodontitis. Given the importance of Th17 cells, modulators of Th17 cells are of great clinical potential and worth of discussion. This review aims to provide an overview of the current understanding of the effect of Th17 cells on periodontitis, as well as a brief discussion of current and potential therapies targeting Th17 cells. Lastly, we highlight this article by summarizing the causal relationship between A20 (encoded by TNFAIP3), an anti-inflammatory molecule, and Th17 cell differentiation.
Collapse
Affiliation(s)
- Ning Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqi Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Zhang X, Zhang X, Qiu C, Shen H, Zhang H, He Z, Song Z, Zhou W. The imbalance of Th17/Treg via STAT3 activation modulates cognitive impairment in P. gingivalis LPS-induced periodontitis mice. J Leukoc Biol 2021; 110:511-524. [PMID: 34342041 DOI: 10.1002/jlb.3ma0521-742rrr] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
Periodontitis is one of the most common oral diseases worldwide, and it is associated with various systemic diseases, including cognitive diseases. STAT3 regulates the inflammatory cascade and influences adaptive immunity by modulating Th17/Treg cell differentiation. In this study, we aimed to explore the effect of adaptive immunity inside and outside the brain on the association between periodontitis and cognitive impairment and understand the role of the STAT3 signaling pathway. We established Porphyromonas gingivalis LPS-induced periodontitis mice models by injecting P. gingivalis LPS into the gingival sulcus of mice. Behavioral tests showed that learning and memory abilities were impaired. The flow cytometry data showed an imbalance in the Th17/Treg ratio in the blood and brain samples of the mice. The expression of Th17-related cytokines (IL-1β, IL-17A, IL-21, and IL-22) increased, whereas that of Treg-related cytokines (IL-2 and IL-10) decreased in both the blood and the brain. The level of LPS increased and the STAT3 signaling pathway was activated during this process. These effects were reversed by C188-9, a STAT3 inhibitor. In conclusion, P. gingivalis LPS-induced periodontitis may promote the occurrence and progression of cognitive impairment by modulating the Th17/Treg balance inside and outside the brain. The STAT3 signaling pathway may have immunoregulatory effects on the mouth-to-brain axis.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xuan Zhang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Huanyu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyan He
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
17
|
Zenobia C, Herpoldt KL, Freire M. Is the oral microbiome a source to enhance mucosal immunity against infectious diseases? NPJ Vaccines 2021; 6:80. [PMID: 34078913 PMCID: PMC8172910 DOI: 10.1038/s41541-021-00341-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
Mucosal tissues act as a barrier throughout the oral, nasopharyngeal, lung, and intestinal systems, offering first-line protection against potential pathogens. Conventionally, vaccines are applied parenterally to induce serotype-dependent humoral response but fail to drive adequate mucosal immune protection for viral infections such as influenza, HIV, and coronaviruses. Oral mucosa, however, provides a vast immune repertoire against specific microbial pathogens and yet is shaped by an ever-present microbiome community that has co-evolved with the host over thousands of years. Adjuvants targeting mucosal T-cells abundant in oral tissues can promote soluble-IgA (sIgA)-specific protection to confer increased vaccine efficacy. Th17 cells, for example, are at the center of cell-mediated immunity and evidence demonstrates that protection against heterologous pathogen serotypes is achieved with components from the oral microbiome. At the point of entry where pathogens are first encountered, typically the oral or nasal cavity, the mucosal surfaces are layered with bacterial cohabitants that continually shape the host immune profile. Constituents of the oral microbiome including their lipids, outer membrane vesicles, and specific proteins, have been found to modulate the Th17 response in the oral mucosa, playing important roles in vaccine and adjuvant designs. Currently, there are no approved adjuvants for the induction of Th17 protection, and it is critical that this research is included in the preparedness for the current and future pandemics. Here, we discuss the potential of oral commensals, and molecules derived thereof, to induce Th17 activity and provide safer and more predictable options in adjuvant engineering to prevent emerging infectious diseases.
Collapse
Affiliation(s)
| | | | - Marcelo Freire
- Departments of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA.
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Zhang C, Xu C, Gao L, Li X, Zhao C. Porphyromonas gingivalis lipopolysaccharide promotes T-hel per17 cell differentiation by upregulating Delta-like ligand 4 expression on CD14 + monocytes. PeerJ 2021; 9:e11094. [PMID: 33981487 PMCID: PMC8074840 DOI: 10.7717/peerj.11094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022] Open
Abstract
Backgroud To investigate the effect and mechanism of Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) on Th17 cell differentiation mediated by CD14+ monocytes. Methods P. gingivalis LPS-activated CD14+ monocytes were co-cultured with CD4+T cells in different cell ratios. An indirect co-culture system was also established using transwell chambers. Furthermore, anti- Delta-like ligand 4 (Dll-4) antibody was used to investigate the role of Dll-4 in Th17 cell response. The mRNA expression was analyzed using quantitative reverse transcription-polymerase chain reaction, and secreted cytokines in culture supernatant were detected using enzyme-linked immunosorbent assay. Flow cytometry was used to determine the frequencies of Th17 cells. IL-17 protein expression levels were determined using western blotting assay. Results P. gingivalis LPS increased the expressions of interleukin (IL)-1β, IL-6, IL-23 and transforming growth factor (TGF)-β in CD14+ monocytes. Th17 cell frequency upregulated, which is not solely cytokine-dependent but rather requires cell-cell contact with activated monocytes, particularly in the 1:10 cell ratio. Furthermore, P. gingivalis LPS increased t he expression of Dll-4 on CD14+ monocytes, whereas the anti- Dll-4 a ntibody decreased the response of Th17 cells. The results suggest that P. gingivalis LPS enhances Th17 cell response via Dll-4 upregulation on CD14+ monocytes.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chenrong Xu
- Department of Periodontology, Guangdong Provincial Hospital of Stomatology, Stomatological Hospital of Southern Medical University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Yuan Y, Zhang H, Huang H. microRNAs in inflammatory alveolar bone defect: A review. J Periodontal Res 2020; 56:219-225. [PMID: 33296525 DOI: 10.1111/jre.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023]
Abstract
Inflammatory alveolar bone defects are caused by periodontal pathogens, are one of the most common oral diseases in the clinic, and are characterized by periodontal support tissue damage. MicroRNAs (miRNAs) can participate in a variety of inflammatory lesions and modulate bone metabolism through the posttranscriptional regulation of target genes. In recent years, studies have confirmed that some miRNAs play significant roles in the development of inflammatory alveolar bone defects. Therefore, we reviewed the correlation between miRNAs and inflammatory alveolar bone defects and elucidated the underlying mechanisms to provide new ideas for the prevention and treatment of inflammatory alveolar bone defects.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongming Zhang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hui Huang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
20
|
Quercetin inhibits virulence properties of Porphyromas gingivalis in periodontal disease. Sci Rep 2020; 10:18313. [PMID: 33110205 PMCID: PMC7591570 DOI: 10.1038/s41598-020-74977-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
Porphyromonas gingivalis is a causative agent in the onset and progression of periodontal disease. This study aims to investigate the effects of quercetin, a natural plant product, on P. gingivalis virulence properties including gingipain, haemagglutinin and biofilm formation. Antimicrobial effects and morphological changes of quercetin on P. gingivalis were detected. The effects of quercetin on gingipains activities and hemolytic, hemagglutination activities were evaluated using chromogenic peptides and sheep erythrocytes. The biofilm biomass and metabolism with different concentrations of quercetin were assessed by the crystal violet and MTT assay. The structures and thickness of the biofilms were observed by confocal laser scanning microscopy. Bacterial cell surface properties including cell surface hydrophobicity and aggregation were also evaluated. The mRNA expression of virulence and iron/heme utilization was assessed using real time-PCR. Quercetin exhibited antimicrobial effects and damaged the cell structure. Quercetin can inhibit gingipains, hemolytic, hemagglutination activities and biofilm formation at sub-MIC concentrations. Molecular docking analysis further indicated that quercetin can interact with gingipains. The biofilm became sparser and thinner after quercetin treatment. Quercetin also modulate cell surface hydrophobicity and aggregation. Expression of the genes tested was down-regulated in the presence of quercetin. In conclusion, our study demonstrated that quercetin inhibited various virulence factors of P. gingivalis.
Collapse
|
21
|
Williams SC, Frew JW, Krueger JG. A systematic review and critical appraisal of metagenomic and culture studies in hidradenitis suppurativa. Exp Dermatol 2020; 30:1388-1397. [PMID: 32614993 DOI: 10.1111/exd.14141] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022]
Abstract
Hidradenitis suppurativa (HS), also known as acne inversa, is a chronic inflammatory skin disease with still largely unknown pathogenesis. While infectious organisms have been identified in lesions of the disease since the 1980s, questions remain over the role that bacteria and microbiome play. Recent studies using 16S ribosomal RNA gene sequencing and larger culture-based studies have begun to paint a clearer picture of the microbial world of HS. With this systematic review, we summarize all the work that has been done to date in HS bacteriology, analyse potential pitfalls and limitations of the current studies, and address future directions of investigation. This systematic review attempted to collate and analyse all bacteriology studies done to date. This review was prospectively registered with PROSPERO (1670769) performed in line with the PRISMA checklist. Twenty two studies were identified comprising 862 individual HS patients for culture studies and 206 HS patients for 16S rRNA gene sequencing studies. Methodology tended to be varied, with different sampling, culturing and sequencing methods as well as amount of analysis and stratification of patients. Bacteria identified as elevated in HS lesions in sequencing studies as well as grown from HS lesions in culture studies are identified and discussed. These primarily included the anerobic Gram-negative bacilli Prevotella, Porphyromonas and Fusibacterium, the Gram-positive bacilli Corynebacterium, and the Gram-positive cocci Staphylococcus, Streptococcus and Parvimonas. Potential interactions, as well as work in other disease models with related bacteria are also discussed. Areas of further investigation include in vitro studies of interactions between bacteria and keratinocytes, gut and oral microbiome studies and deep sequencing studies for virulence and phage factors.
Collapse
Affiliation(s)
- Samuel C Williams
- Laboratory of Investigative Dermatology, Rockefeller University, New York, New York.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medical School, New York, New York
| | - John W Frew
- Laboratory of Investigative Dermatology, Rockefeller University, New York, New York
| | - James G Krueger
- Laboratory of Investigative Dermatology, Rockefeller University, New York, New York
| |
Collapse
|