1
|
Li X, Li Q, Wang L, Ding H, Wang Y, Liu Y, Gong T. The interaction between oral microbiota and gut microbiota in atherosclerosis. Front Cardiovasc Med 2024; 11:1406220. [PMID: 38932989 PMCID: PMC11199871 DOI: 10.3389/fcvm.2024.1406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis (AS) is a complex disease caused by multiple pathological factors threatening human health-the pathogenesis is yet to be fully elucidated. In recent years, studies have exhibited that the onset of AS is closely involved with oral and gut microbiota, which may initiate or worsen atherosclerotic processes through several mechanisms. As for how the two microbiomes affect AS, existing mechanisms include invading plaque, producing active metabolites, releasing lipopolysaccharide (LPS), and inducing elevated levels of inflammatory mediators. Considering the possible profound connection between oral and gut microbiota, the effect of the interaction between the two microbiomes on the initiation and progression of AS has been investigated. Findings are oral microbiota can lead to gut dysbiosis, and exacerbate intestinal inflammation. Nevertheless, relevant research is not commendably refined and a concrete review is needed. Hence, in this review, we summarize the most recent mechanisms of the oral microbiota and gut microbiota on AS, illustrate an overview of the current clinical and epidemiological evidence to support the bidirectional connection between the two microbiomes and AS.
Collapse
Affiliation(s)
- Xinsi Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Qian Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Li Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huifen Ding
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yizhong Wang
- Department of Research & Development, Zhejiang Charioteer Pharmaceutical Co., Ltd, Taizhou, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Gong
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Fang T, Liu L, Song D, Huang D. The role of MIF in periodontitis: A potential pathogenic driver, biomarker, and therapeutic target. Oral Dis 2024; 30:921-937. [PMID: 36883414 DOI: 10.1111/odi.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVE Periodontitis is an inflammatory disease that involves an imbalance in the oral microbiota, activation of inflammatory and immune responses, and alveolar bone destruction. Macrophage migration inhibitory factor (MIF) is a versatile cytokine involved in several pathological reactions, including inflammatory processes and bone destruction, both of which are characteristics of periodontitis. While the roles of MIF in cancer and other immune diseases have been extensively characterized, its role in periodontitis remains inconclusive. RESULTS In this review, we describe a comprehensive analysis of the potential roles of MIF in periodontitis from the perspective of immune response and bone regulation at the cellular and molecular levels. Moreover, we discuss its potential reliability as a novel diagnostic and therapeutic target for periodontitis. CONCLUSION This review can aid dental researchers and clinicians in understanding the current state of MIF-related pathogenesis, diagnosis, and treatment of periodontitis.
Collapse
Affiliation(s)
- Tongfeng Fang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Yang Y, Ren D, Zhao D, Zhang B, Ye R. MicroRNA-203 mediates P. gingivalis LPS-induced inflammation and differentiation of periodontal ligament cells. Oral Dis 2022; 29:1715-1725. [PMID: 35034420 DOI: 10.1111/odi.14132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/07/2021] [Accepted: 01/09/2022] [Indexed: 02/05/2023]
Abstract
AIM In this study, we aimed to explore the effects of microRNA-203 (miR-203) on P. gingivalis lipopolysaccharide (P.g. LPS)-stimulated periodontal ligament cells (PDLCs) and identify potential molecular targets for periodontitis treatment. METHODS PDLCs were stimulated by P.g. LPS, followed by quantification of miR-203 and AP-1 expression. Next, loss- and gain-of-function experiments were applied in P.g. LPS-induced PDLCs. The proliferation, apoptosis, and differentiation of PDLCs were determined and mineralized nodule numbers were counted. Functional assays were used to identify interactions among miR-203, activator protein 1 (AP-1), and intercellular adhesion molecule 1 (ICAM-1). In addition, expression of osteogenesis-related genes and release of proinflammatory factors were analyzed. RESULTS miR-203 was found to be downregulated while AP-1 was upregulated in PDLCs stimulated by P.g. LPS. The overexpression of miR-203 promoted P.g. LPS-stimulated PDLC proliferation and differentiation, inhibited apoptosis, and increased the number of mineralized nodules. miR-203 was verified to downregulate AP-1/ICAM-1 axis. miR-203 overexpression reduced the secretion of proinflammatory factors while increasing expression of osteogenesis-related genes in P.g. LPS-stimulated PDLCs, which was reversed by overexpressing AP-1 and ICAM-1. CONCLUSION These experimental data demonstrated the potential inhibitory effects of overexpressed miR-203 on periodontitis development by promoting PDLC differentiation and suppressing inflammatory responses through AP-1/ICAM-1 axis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China.,Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China
| | - Dongping Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China
| | - Duo Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China.,Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China
| |
Collapse
|
4
|
Apocynum Leaf Extract Suppresses the Progress of Atherosclerosis in Rats via the FKN/SYK/p38 Signal Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5524226. [PMID: 34777534 PMCID: PMC8580673 DOI: 10.1155/2021/5524226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/16/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022]
Abstract
To investigate the antiatherosclerotic effects of flavonoids extracted from Apocynum venetum (AVF) leaves in atherosclerotic rats and the underlying mechanisms, a total of 72 male Wistar rats were randomly divided into six groups: control group, model group, simvastatin group, low-dose AVF group, medium-dose AVF group, and high-dose AVF group. Atherosclerosis in rats was induced with a high-fat diet and an intraperitoneal injection of VD3 once daily for three contiguous days at a total injection dose of 70 U/kg. At the end of the 13th week, total serum cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) contents were measured. The hematoxylin-eosin (HE) staining was applied to evaluate the morphological changes. The ELISA method was used to detect related inflammatory factors and oxidative stress indicators. The corresponding protein expression and the mRNA level were detected by western blot analysis and reverse transcriptase PCR. HE staining showed that the thoracic aorta wall was thickened, and the aortic subendothelial foam cells and lipid vacuoles were reduced in the medium/high-AVF groups. Similarly, the TC, TG, LDL-C, and malondialdehyde (MDA) levels in the model group were significantly higher, but the HDL-C level and superoxide dismutase (SOD) activity were lower than those of the control group, and these effects were ameliorated by treatment with simvastatin or AVF. ELISA results showed that compared with the control group, the model group C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) results were significantly increased, and the medium AVF and high AVF could significantly reduce the expression of related inflammatory factors. The AVF inhibited intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin mRNA and related protein expression in the aorta in atherosclerotic rats. Western blot analysis also showed that AVF can significantly reduce the protein expression of fractalkine (FKN), spleen tyrosine kinase (SYK), and p38 mitogen-activated protein kinase (p38) in the rat aorta. We believe that the AVF can effectively reduce blood lipid levels in rats with atherosclerosis and delay atherosclerotic progression by inhibiting excessive inflammatory factors and inhibiting related adhesion factors. The underlying mechanism may be related to the FKN/SYK/p38 signaling pathway activity. Our results contribute to validating the traditional use of the Apocynum leaf extract in the treatment of atherosclerosis.
Collapse
|
5
|
Sun S, Zhang D, Wu Y, Yan L, Liu J, Pan C, Pan Y. The expression of inducible nitric oxide synthase in the gingiva of rats with periodontitis and diabetes mellitus. Arch Oral Biol 2020; 112:104652. [PMID: 32114252 DOI: 10.1016/j.archoralbio.2020.104652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To ascertain the role of inducible nitric oxide synthase (iNOS) in the periodontitis response during diabetes. METHODS Twenty-four male SD rats were randomly divided into four groups: control group (Control), diabetes mellitus group (D), diabetes mellitus plus periodontitis group (DP), and periodontitis group (P). Periodontitis and diabetes were established separately. Then the gingival tissue and alveolar bone were collected. A stereomicroscope was used to evaluate bone loss. The expression of iNOS, TNF-α, and NF-κB in the gingiva was detected by immunohistochemical staining, real-time PCR, and western blot analysis. RESULTS Significant bone loss was observed in the DP and P groups and more extensive bone resorption was discovered in the DP group than in the P group (P < 0.05). The immunohistochemical staining analysis revealed enhanced expression of iNOS located in the gingiva of the three disease groups compared with the control group (P < 0.05). In particular, the level of iNOS was significantly higher in the DP group than in the P group (P < 0.05). This elevated trend of iNOS was further demonstrated by quantitative PCR and western blot analysis. Similarly, the mRNA and protein expression levels of NF-κB in the D, DP, and P groups were significantly higher than those of the control group, as was the level of TNF-α protein (P < 0.05). CONCLUSIONS Our results proved diabetes exacerbated alveolar bone resorption in a periodontitis rat model. iNOS may be the inflammatory mediator in the course of periodontal injury promoted by diabetes.
Collapse
Affiliation(s)
- Shangmin Sun
- Department of Periodontics and Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Nanjing North Street No. 117, Shenyang, 110002, Liaoning Province, China
| | - Dongmei Zhang
- Department of Periodontics and Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Nanjing North Street No. 117, Shenyang, 110002, Liaoning Province, China
| | - Yun Wu
- Department of Periodontics and Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Nanjing North Street No. 117, Shenyang, 110002, Liaoning Province, China
| | - Lu Yan
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Nanjing North Street No. 117, Shenyang, 110002, Liaoning Province, China
| | - Junchao Liu
- Department of Periodontics and Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Nanjing North Street No. 117, Shenyang, 110002, Liaoning Province, China
| | - Chunling Pan
- Department of Periodontics and Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Nanjing North Street No. 117, Shenyang, 110002, Liaoning Province, China
| | - Yaping Pan
- Department of Periodontics and Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Nanjing North Street No. 117, Shenyang, 110002, Liaoning Province, China.
| |
Collapse
|