1
|
Xu Y, Zhou Y, Meng S, Zhou C, Yang N, Bao L, Lu W. Potential of novel antibacterial bio-adhesive for the treatment of periodontitis. Biomed Mater 2025; 20:035015. [PMID: 40153941 DOI: 10.1088/1748-605x/adc6df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/28/2025] [Indexed: 04/01/2025]
Abstract
Periodontitis seriously affects people's daily health, and the development of a non-antibiotic bio-adhesive with antimicrobial and periodontitis regeneration for periodontal pockets will effectively promote the treatment of periodontitis. In this study, we constructed a hybrid hydrogel (GelMA-BC-PL) by introducing aldehyde bacterial cellulose (BC) short nanofibers into the photosensitive hydrogel gelatin methacryloyl (GelMA), which binds to periodontal tissues to play an adhesive role through the Schiff base reaction, and further introducing ϵ-polylysine (PL), which could achieve the adhesive, antibacterial, and regenerative effect. Pigskin adhesion experiments showed that the adhesion of GelMA hydrogel to pigskin was only 0.39 N, while that of GelMA-BC-PL reached 1.42 N. The adhesion performance of the hydrogel was significantly improved by adding aldehyde BC nanofibers. Due to the introduction of PL, the antimicrobial properties of the hybrid hydrogel against two typical periodontitis bacteria (porphyromanas gingivalis and fusobacterium nucleatum), were significantly improved. Experiments with human periodontal membrane fibroblasts showed that the hybrid hydrogel had excellent cell spreading and proliferation promotion properties. The hybrid hydrogel simultaneously achieves adhesion, antimicrobial properties and promotes periodontal regeneration, which has great potential for application in the treatment of periodontitis diseases.
Collapse
Affiliation(s)
- Yin Xu
- Department of Interventional Radiology, Luwan Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China., 149 Chongqin 2nd Road, Shanghai 200025, People's Republic of China
| | - Yixian Zhou
- Department of Interventional Radiology, Luwan Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China., 149 Chongqin 2nd Road, Shanghai 200025, People's Republic of China
| | - Shengjin Meng
- Department of Interventional Radiology, Luwan Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China., 149 Chongqin 2nd Road, Shanghai 200025, People's Republic of China
| | - Chengchao Zhou
- Department of Interventional Radiology, Luwan Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China., 149 Chongqin 2nd Road, Shanghai 200025, People's Republic of China
| | - Nannan Yang
- Department of Interventional Radiology, Luwan Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China., 149 Chongqin 2nd Road, Shanghai 200025, People's Republic of China
| | - Luhan Bao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Weizhong Lu
- Department of Stomatology, Luwan Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China., 149 Chongqin 2nd Road, Shanghai 200025, People's Republic of China
| |
Collapse
|
2
|
Huang Y, Tang Y, Zhang R, Wu X, Yan L, Chen X, Wu Q, Chen Y, Lv Y, Su Y. Role of periodontal ligament fibroblasts in periodontitis: pathological mechanisms and therapeutic potential. J Transl Med 2024; 22:1136. [PMID: 39709490 PMCID: PMC11663348 DOI: 10.1186/s12967-024-05944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Periodontal ligament fibroblasts (PDLFs) play a crucial role in the etiology of periodontitis and periodontal tissue regeneration. In healthy periodontal tissues, PDLFs maintain the homeostasis of periodontal soft and hard tissues as well as the local immune microenvironment. PDLFs also have the potential for multidirectional transdifferentiation and are involved in periodontal tissue regeneration. On the other hand, PDLFs can become dysfunctional and acquire an inflammatory phenotype to secret various inflammatory cytokines when affected by pathological factors. These cytokines further trigger immune and inflammatory events, and lead to destruction of periodontal soft and hard tissues as well as damage to the regenerative potential of PDLFs. This review summarizes the physiological functions of PDLFs. Meanwhile, this review also highlights recent insights into the pathological mechanisms driving the development of periodontitis through dysfunctional PDLFs and the negative impact on periodontal tissue regeneration. Additionally, this paper summarizes strategies for targeting PDLFs to treat periodontitis, involving blocking multiple stages of the inflammatory response induced by PDLFs and promoting the multidirectional transdifferentiation of PDLFs. Future research directions are proposed to address important questions that have not yet been answered in this field. This article provides a reference for understanding the important role of PDLFs in the pathological mechanisms of periodontitis and for developing new strategies for targeting PDLFs in periodontitis treatment.
Collapse
Affiliation(s)
- Yijie Huang
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Ying Tang
- Department of Prosthodontics, Huangpu District Dental Disease Prevention and Treatment Institute, Shanghai, 200001, China
| | - Ruiqi Zhang
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xiao Wu
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Li Yan
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xiling Chen
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Qianqi Wu
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yiyan Chen
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yingtao Lv
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Ren Y, Zheng J, Cao Y, Zhu Y, Ling Z, Zhang Z, Huang M. Diagnostic significance of LncRNA MIAT in periodontitis and the molecular mechanisms influencing periodontal ligament fibroblasts via the miR-204-5p/DKK1 axis. Arch Oral Biol 2024; 168:106066. [PMID: 39190957 DOI: 10.1016/j.archoralbio.2024.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE This study investigated the clinical importance of long noncoding RNA myocardial infarction-associated transcript (MIAT) in periodontitis and its impact on the functional regulation of human periodontal ligament fibroblasts (hPDLFs). METHODS Ninety-eight periodontitis patients and 74 healthy controls were enrolled. In vitro cellular models were created using Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) to stimulate hPDLFs. Real-time quantitative polymerase chain reaction was used to measure mRNA levels of MIAT and osteogenic factors. Inflammation factor concentration was assessed using an enzyme-linked immunosorbent assay. Cell viability and apoptosis were examined by cell counting kit -8 and flow cytometry assay. The targeting relationship was verified by the dual-luciferase reporter and RNA Immunoprecipitation assay. RESULTS Highly expressed MIAT and Dicckopf-1 (DDK1), and lowly expressed miR-204-5p were found in the gingival crevicular fluid of periodontitis patients and Pg-LPS induced hPDLFs. MIAT has a sensitivity of 76.53 % and a specificity of 86.49 % for identifying patients with periodontitis among healthy individuals. MIAT acts as a sponge for miR-204-5p and upregulates DDK1 mRNA expression. Silencing of MIAT diminished the promotion of apoptosis and inflammation in hPDLFs by Pg-LPS and enhanced osteogenic differentiation. However, a miR-204-5p inhibitor significantly reversed the effect of silenced MIAT. CONCLUSIONS MIAT may act as a promising biomarker for periodontitis. It modulates apoptosis, inflammation, and osteogenic differentiation of PDLFs by focusing on the miR-204-5p/DKK1 axis, indicating its potential as a new therapeutic target for treating periodontitis.
Collapse
Affiliation(s)
- Yu Ren
- Department of stomatology, Dental Well Institute of Temporomandibular Joint Research, Chengdu, China; LESHAN Vocational and Technical College, Leshan, China
| | - Jiwen Zheng
- LESHAN Vocational and Technical College, Leshan, China; Department of stomatology, Leshan Weiduo Dental, Leshan, China
| | - Yang Cao
- Department of stomatology, Leshan Jiajiang Weiduo Dental, Leshan, China
| | - Yu Zhu
- Department of stomatology, Leshan Weiduo Dental, Leshan, China
| | - Zhuo Ling
- Department of stomatology, Dental Well Institute of Temporomandibular Joint Research, Chengdu, China
| | - Zhiqiang Zhang
- Department of stomatology, Dental Well Institute of Temporomandibular Joint Research, Chengdu, China
| | - Mingke Huang
- LESHAN Vocational and Technical College, Leshan, China; Department of stomatology, Leshan Weiduo Dental, Leshan, China.
| |
Collapse
|
4
|
Ding C, Shen Z, Xu R, Liu Y, Xu M, Fan C, Hu D, Xing T. Exosomes derived from periodontitis induce hepatic steatosis through the SCD-1/AMPK signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167343. [PMID: 38986822 DOI: 10.1016/j.bbadis.2024.167343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
AIM To investigate the impact of exosomes released by Porphyromonas gingivalis-Lipopolysaccharide activated THP-1 macrophages and human periodontal ligament fibroblasts on hepatocyte fat metabolism. RESULTS The liver of rats with experimental periodontitis showed obvious steatosis and inflammation compared with control rats. The culture supernatant of macrophages and human periodontal ligament fibroblasts (hPDLFs), when stimulated with Pg-LPS, induced lipogenesis in HepG2 cells. Furthermore, the lipid-promoting effect was effectively inhibited by the addition of the exosome inhibitor GW4869. Subsequently, we isolated exosomes from cells associated with periodontitis. Exosomes released by Pg-LPS-stimulated macrophages and hPDLFs are taken up by hepatocytes, causing mRNA expression related to fat synthesis, promoting triglyceride synthesis, and aggravating NAFLD progression. Finally, two sets of exosomes were injected into mice through the tail vein. In vivo experiments have also demonstrated that periodontitis-associated exosomes promote the development of hepatic injury and steatosis, upregulate SCD-1 expression and inhibit the AMPK signaling pathway. CONCLUSIONS In conclusion, we found that exosomes associated with periodontitis promote hepatocyte adipogenesis by increasing the expression of SCD-1 and suppressing the AMPK pathway, which indicates that close monitoring of the progression of stomatopathy associated extra-oral disorders is important and establishes a theoretical foundation for the prevention and management of fatty liver disease linked to periodontitis.
Collapse
Affiliation(s)
- Chunmeng Ding
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Zhenguo Shen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Ruonan Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yajing Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Mengyue Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Chenyu Fan
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Dongyue Hu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Tian Xing
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| |
Collapse
|
5
|
Sato Y, Maruyama K, Mikami M, Sato S. Effects of nicotine and lipopolysaccharide stimulation on adhesion molecules in human gingival endothelial cells. Odontology 2023; 111:428-438. [PMID: 36214897 DOI: 10.1007/s10266-022-00753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
Smoking is a risk factor for periodontitis, and the immune response of periodontal tissues in patients with periodontitis may be strongly affected by smoking. The purpose of this study was to elucidate the bioactivity and signal transduction of human gingival endothelial cells (HGECs) due to nicotinic stimulation using a cultured medium supplemented with lipopolysaccharide (LPS) as a model of periodontitis. HGECs were cultured in medium supplemented with LPS, nicotine, nicotine + LPS, and medium supplemented without nicotine or LPS (control). Cell proliferation was assessed using Alamar blue. Cytotoxicity was assessed by lactate dehydrogenase leakage. The expression of adhesion molecule-1 (ICAM-1, VCAM-1) was assessed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay. The expression of nicotinic acetylcholine receptor (nAChR) subunits (α3, α5, α7, β2 and β4) was evaluated by RT-PCR. The involvement of p38 mitogen-activated protein kinase (p38MAPK) and protein kinase C (PKC) cell signaling pathways in ICAM-1 and VCAM-1 expression was investigated by RT-qPCR with specific inhibitors. HGECs stimulated with LPS, nicotine and nicotine + LPS showed inhibition of cell proliferation, increase of cell death, and increase of gene and protein expression of ICAM-1. Moreover, HGECs showed the presence of α5 and α7 nAChR subunits. The expression of ICAM-1 in HGECs stimulated with LPS, nicotine, and nicotine + LPS was significantly suppressed by p38MAPK inhibitor, but not by a PKC inhibitor. The nAChR subunits of HGECs are α5 and α7, and that HGECs stimulated with nicotine and LPS express ICAM-1 via p38MAPK pathway.
Collapse
Affiliation(s)
- Yukari Sato
- Field of Advanced Conservative Dentistry and Periodontology, Periodontology, Course of Clinical Science, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, chou-ku, 951-8580, Niigata, Japan.
| | - Kosuke Maruyama
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Masato Mikami
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Soh Sato
- Field of Advanced Conservative Dentistry and Periodontology, Periodontology, Course of Clinical Science, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, chou-ku, 951-8580, Niigata, Japan
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| |
Collapse
|
6
|
Hou M, Liu S, Yan K, Sun Z, Li S. Downregulation of Odontogenic Ameloblast-associated Protein in the Progression of Periodontal Disease Affects Cell Adhesion, Proliferation, and Migration. Arch Oral Biol 2022; 145:105588. [DOI: 10.1016/j.archoralbio.2022.105588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
|
7
|
Portes J, Bullón B, Quiles JL, Battino M, Bullón P. Diabetes Mellitus and Periodontitis Share Intracellular Disorders as the Main Meeting Point. Cells 2021; 10:cells10092411. [PMID: 34572060 PMCID: PMC8467361 DOI: 10.3390/cells10092411] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes and periodontitis are two of the most prevalent diseases worldwide that negatively impact the quality of life of the individual suffering from them. They are part of the chronic inflammatory disease group or, as recently mentioned, non-communicable diseases, with inflammation being the meeting point among them. Inflammation hitherto includes vascular and tissue changes, but new technologies provide data at the intracellular level that could explain how the cells respond to the aggression more clearly. This review aims to emphasize the molecular pathophysiological mechanisms in patients with type 2 diabetes mellitus and periodontitis, which are marked by different impaired central regulators including mitochondrial dysfunction, impaired immune system and autophagy pathways, oxidative stress, and the crosstalk between adenosine monophosphate-activated protein kinase (AMPK) and the renin-angiotensin system (RAS). All of them are the shared background behind both diseases that could explain its relationship. These should be taken in consideration if we would like to improve the treatment outcomes. Currently, the main treatment strategies in diabetes try to reduce glycemia index as the most important aspect, and in periodontitis try to reduce the presence of oral bacteria. We propose to add to the therapeutic guidelines the handling of all the intracellular disorders to try to obtain better treatment success.
Collapse
Affiliation(s)
- Juliana Portes
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
| | - Beatriz Bullón
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
| | - José Luis Quiles
- Biomedical Research Center (CIBM), Department of Physiology, University Campus of Cartuja, Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, C/Isabel Torres, 21, 39011 Santander, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche. Via Tronto 10A, 60126 Torrette di Ancona, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Pedro Bullón
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
- Correspondence:
| |
Collapse
|
8
|
Jin XL, Zhang YN, Sun CR, Zou ZH. Protective effect of low-level laser irradiation on lipopolysaccharide-mediated inflammatory injury of human periodontal ligament fibroblasts. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:260-266. [PMID: 34041873 DOI: 10.7518/hxkq.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To study the effect and mechanism of low-level laser irradiation (LLLI) on lipopolysaccharide (LPS)-induced inflammatory injury of human periodontal ligament fibroblasts (hPDLFs). METHODS hPDLFs were inoculated into well plates and randomly divided into the normal group, LPS group, and LPS+LLLI group. The cells in the normal group were cultured in conventional medium. The hPDLFs in the LPS and LPS+LLLI groups were cultured in RPMI1640 medium containing 1 mg·L-1 LPS. The three subgroups of the LPS+LLLI group were exposed to different LLLI. After 4 days, the cell apoptosis, viability, and intracellular free Ca2+ concentration of each group were measured. The contents of tumor necrosis factor-α (TNF-α), interleukin (IL)-8, IL-1β, and IL-6 were measured by enzyme linked immunosorbent assay (ELISA). Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expression of matrix metalloproteinase (MMP)-2, MMP-3, and MMP-9 genes and proteins of hPDLFs in each group. RESULTS Compared with the normal group, the LPS group showed increased apoptosis rate of hPDLFs and intracellular free Ca2+concentration and decreased cell viability (P<0.05). The TNF-α, IL-8, IL-1β, and IL-6 levels were higher in the cell supernatant (P<0.05), and the expression of MMP-2, MMP-3, and MMP-9 genes and proteins of hPDLFs was significantly increased (P<0.05). Compared with the LPS group, the LPS+LLLI group showed significantly decreased apoptosis rate and intracellular free Ca2+ concentration and significantly increased cell viability (P<0.05). The TNF-α, IL-8, IL-1β, and IL-6 levels in the supernatant of cells and the expression of MMP-2, MMP-3, and MMP-9 genes and proteins of hPDLFs were significantly decreased (P<0.05). CONCLUSIONS LLLI has a protective effect on the inflammatory injury of hPDLFs induced by LPS, and the effect is most obvious when the irradiation intensity is 4 J·cm-2.
Collapse
Affiliation(s)
- Xiao-Lan Jin
- Dept. of Stomatology, Tianjin Jinnan Hospital, Tianjin 300350, China
| | - Ya-Nan Zhang
- Dept. of Stomatology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300192, China
| | - Cheng-Rui Sun
- Dept. of Stomatology, Tianjin Jinnan Hospital, Tianjin 300350, China
| | - Zhao-Hui Zou
- Dept. of Endodontics Third Room, School of Stomatology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
9
|
Bozkurt SB, Tuncer Gokdag I, Hakki SS. Porphyromonas gingivalis-Lipopolysaccharide induces cytokines and enzymes of the mouse cementoblasts. Cytokine 2020; 138:155380. [PMID: 33264747 DOI: 10.1016/j.cyto.2020.155380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022]
Abstract
Lipopolysaccharide is a potent virulence factor of Porphyromonas gingivalis and has been implicated predominant pathogen in the development and progression of periodontal diseases. The aim of this study was to determine the effect of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) on cementoblasts. Cementoblast (OCCM-30) were evaluated proliferation using real-time cell analyzer. In addition, total RNA was isolated at 8, 16, 24 and 72 h from 1000 ng/mL Pg-LPS treated OCCM-30 cells and mRNA expressions of pro/anti-inflammatory cytokine mediators, extracellular matrix enzymes and their tissue inhibitors and of oxidative stress enzymes were studied by real-time polymerase chain reaction. Proliferation analysis indicated that Pg-LPS slightly decreased proliferation of OCCM-30. Pg-LPS had a time-dependent impact on the expression of cytokines and enzymes. There was statistically significant up-regulation of IL-1β and IL-10 in response to Pg-LPS at 8, 16, 24, 72 h but IL-6 expression was reduced compared to control at 8 h. While IL-8 and IL-17 expressions were determined higher than control group at 16 and 24 h, their expressions were decreased compared to control groups at 72 h (p < 0.01). While MMP-1, MMP-2, MMP-3, TIMP-1, TIMP-2 expressions increased, MMP-9 expression reduced at time-points. Also, a time-dependent up-regulation in mRNA levels for oxidative stress enzymes was detected. These results indicated that up-regulation in the transcripts of inflammation-associated cytokines and degradation enzymes were noted in the cementoblasts exposed to Pg-LPS. Cementoblasts infected with the virulence factors of periodontopathogens might also involve to the induction of inflammation and degradation of the periodontal tissues.
Collapse
Affiliation(s)
- S B Bozkurt
- Department of Research Center, Faculty of Dentistry, Hacettepe University, Ankara, Turkey.
| | - I Tuncer Gokdag
- Republic of Turkey Ministry of Health, Oral and Dental Health Center, Ankara, Turkey
| | - Sema Sezgin Hakki
- Department of Periodontology, Faculty of Dentistry, Selcuk University, Konya, Turkey
| |
Collapse
|