1
|
Nasti A, Inagaki S, Ho TTB, Seki A, Yoshida K, Satomura K, Sakai Y, Kaneko S, Yamashita T. Cystatin A promotes the antitumor activity of T helper type 1 cells and dendritic cells in murine models of pancreatic cancer. Mol Oncol 2025; 19:1452-1470. [PMID: 39792573 PMCID: PMC12077287 DOI: 10.1002/1878-0261.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/21/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease with poor prognosis due to diagnostic and therapeutic limitations. We previously identified cystatin A (CSTA) as a PDAC biomarker and have conducted the present study to investigate the antitumor effects of CSTA. PDAC murine models were established with genetically modified PAN02 tumor cell lines to evaluate the antitumor immune response. PDAC mouse survival was significantly longer with CSTA, and its antitumor effect was mediated mainly by CD4+ cells and partly by CD8+ cells. We also observed an increased infiltration of CD4+ and CD8+ cells in tumors of mice overexpressing CSTA. Phenotypically, we confirmed higher T helper type 1 (Th1) cell activity and increased frequency and activity of M1 macrophages and dendritic cells (DCs) in CSTA-overexpressing mice. Gene expression analysis highlighted pathways related to interferon gamma (IFN-γ) induction and Th1 lymphocyte activation that were induced by CSTA. Macrophages and DCs shifted toward proinflammatory antitumor phenotypes. Furthermore, activated splenocytes of PDAC model mice expressing CSTA had increased proapoptotic activity. CSTA also promoted the selective migration of CD4+ and CD11c+ immune cells in an in vitro migration assay. In conclusion, CSTA exerts antitumor effects by enhancing Th1-mediated antitumor effects through promotion of DC and M1 macrophage activity, thereby increasing immune cell chemotaxis. CSTA could be a novel therapeutic candidate for PDAC.
Collapse
Affiliation(s)
- Alessandro Nasti
- Information‐Based Medicine DevelopmentGraduate School of Medical Sciences, Kanazawa UniversityJapan
| | - Shingo Inagaki
- System Biology, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityJapan
| | - Tuyen Thuy Bich Ho
- Information‐Based Medicine DevelopmentGraduate School of Medical Sciences, Kanazawa UniversityJapan
| | - Akihiro Seki
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Keiko Yoshida
- System Biology, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityJapan
| | - Kosuke Satomura
- System Biology, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityJapan
| | - Yoshio Sakai
- System Biology, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityJapan
| | - Shuichi Kaneko
- Information‐Based Medicine DevelopmentGraduate School of Medical Sciences, Kanazawa UniversityJapan
- System Biology, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityJapan
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Taro Yamashita
- System Biology, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityJapan
- Department of GastroenterologyKanazawa University HospitalJapan
| |
Collapse
|
2
|
Hou J, Xue Z, Chen Y, Li J, Yue X, Zhang Y, Gao J, Hao Y, Shen J. Development of Stimuli-Responsive Polymeric Nanomedicines in Hypoxic Tumors and Their Therapeutic Promise in Oral Cancer. Polymers (Basel) 2025; 17:1010. [PMID: 40284275 PMCID: PMC12030766 DOI: 10.3390/polym17081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Hypoxic tumors pose considerable obstacles to cancer treatment, as diminished oxygen levels can impair drug effectiveness and heighten therapeutic resistance. Oral cancer, a prevalent malignancy, encounters specific challenges owing to its intricate anatomical structure and the technical difficulties in achieving complete resection, thereby often restricting treatment efficacy. The impact of hypoxia is particularly critical in influencing both the treatment response and prognosis of oral cancers. This article summarizes and examines the potential of polymer nanomedicines to address these challenges. By engineering nanomedicines that specifically react to the hypoxic tumor microenvironment, these pharmaceuticals can markedly enhance targeting precision and therapeutic effectiveness. Polymer nanomedicines enhance therapeutic efficacy while reducing side effects by hypoxia-targeted accumulation. The article emphasizes that these nanomedicines can overcome the drug resistance frequently observed in hypoxic tumors by improving the delivery and bioavailability of anticancer agents. Furthermore, this review elucidates the design and application of polymer nanomedicines for treating hypoxic tumors, highlighting their transformative potential in cancer therapy. Finally, this article gives an outlook on stimuli-responsive polymeric nanomedicines in the treatment of oral cancer.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China; (J.H.); (Z.X.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Zhijun Xue
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China; (J.H.); (Z.X.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Yao Chen
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China; (J.H.); (Z.X.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Jisen Li
- Tianjin Key Laboratory for Disaster Medicine Technology, Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China;
| | - Xin Yue
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Ying Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Jing Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yonghong Hao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- The Second Clinical Division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| |
Collapse
|
3
|
Hossain S, Bin Manjur OH, Shimu MSS, Sultana T, Naim MR, Siddique S, Al Mamun A, Rahman MM, Saleh MA, Hasan MR, Rahman T. In silico evaluation of missense SNPs in cancer-associated Cystatin A protein and their potential to disrupt Cathepsin B interaction. Heliyon 2025; 11:e42478. [PMID: 40007784 PMCID: PMC11850136 DOI: 10.1016/j.heliyon.2025.e42478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Cystatin A (CSTA) functions as a cysteine protease inhibitor by forming tight complexes with the cathepsins. Pathogenic mutations in the CSTA gene can disrupt this interaction, potentially leading to physiological ailments. In this study, eight bioinformatics tools (SIFT, PolyPhen-2, PROVEAN, P-Mut, MutPred2, SNAP2, SNPs & GO, and PHD-SNP) were implemented to analyze non-synonymous SNPs from the dbSNP database. Five mutations (Y43C, Y43N, V48F, Y53H, and E94K) located in the conserved region were found to be highly deleterious and less stabilizing. The protein-protein interaction network found that Cathepsin B (CTSB) interacts highly with CSTA. Mutated CSTAs were created by homology modeling, and their altered binding with CTSB was examined through molecular docking and dynamics simulations. Among these, the Y53H (rs1448459675) and E94K (rs200394711) mutants were recognized as weaker inhibitors because they had 2.5 % and an 8 % lower binding affinity, respectively. Moreover, the E94K-CTSB complex, with a root mean square deviation (RMSD) above 5 Å, was found to be highly unstable during molecular dynamics. The root mean square fluctuation (RMSF) of the E94K mutant showed insufficient flexibility, indicating a reduced capacity to suppress CTSB. These findings suggest that the E94K mutation could affect the protein structure and cathepsin B interaction, potentially leading to pathological consequences as evidenced by colorectal adenocarcinoma patients in the COSMIC (Catalogue of Somatic Mutations in Cancer) database.
Collapse
Affiliation(s)
- Shafaat Hossain
- Department of Biology & Biochemistry, University of Houston, USA
| | - Omar Hamza Bin Manjur
- Department of Biochemistry & Molecular Biology, University of Dhaka, Bangladesh
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Bangladesh
| | | | - Tamanna Sultana
- Department of Biochemistry & Molecular Biology, University of Dhaka, Bangladesh
| | - Mustafizur Rahman Naim
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Shahariar Siddique
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Department of Biochemistry & Biotechnology, University of Science and Technology, Chittagong, Bangladesh
- Institute of Technology Transfer and Innovation (ITTI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | - Md Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Rakibul Hasan
- Institute of Technology Transfer and Innovation (ITTI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Tania Rahman
- Department of Biochemistry & Molecular Biology, University of Dhaka, Bangladesh
| |
Collapse
|
4
|
Mohtasham N, Zarepoor M, Shooshtari Z, Hesari KK, Mohajertehran F. Genes involved in metastasis in oral squamous cell carcinoma: A systematic review. Health Sci Rep 2024; 7:e1977. [PMID: 38665153 PMCID: PMC11043498 DOI: 10.1002/hsr2.1977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024] Open
Abstract
Background and Aims Oral squamous cell carcinoma is the most prevalent malignancy in the oral cavity, with a significant mortality rate. In oral squamous cell carcinoma patients, the survival rate could decrease because of delayed diagnosis. Thus, prevention, early diagnosis, and appropriate treatment can effectively increase the survival rate in patients. In this systematic review, we discussed the role of different genes in oral squamous cell carcinoma metastasis. Herein, we aimed to summarize clinical results, regarding the potential genes that promote oral squamous cell carcinoma metastasis. Methods This systematic review was carried out under the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. An electronic search for all relevant articles published in English between January 2018 and April 2022 was performed using Scopus, PubMed, and Google Scholar search engines. All original studies published in English were included, and we excluded studies that were in a non-English language. Results A total of 4682 articles were found, of which 14 were relevant and detected significant genes in oral squamous cell carcinoma progression. These findings investigated the overexpression of interferon-induced proteins with tetratricopeptide repeats 1 and 3 (IFIT1, IFT3), high-mobility group A2 (HMGA2), transformed growth factor-beta-induced, lectin galactoside-binding soluble 3 binding protein (LGALS3BP), bromodomain containing 4, COP9 signaling complex 6, heterogeneous nuclear ribonucleoproteins A2B1 (HNRNPA2B1), 5'-3' exoribonuclease 2 (XRN2), cystatin-A (CSTA), fibroblast growth factors 8 (FGF8), forkhead box P3, cadherin-3, also known as P-cadherin and Wnt family member 5A, ubiquitin-specific-processing protease 7, and retinoic acid receptor responder protein 2 genes lead to promote metastasis in oral squamous cell carcinoma. Overexpression of some genes (IFIT1, 3, LGALS3BP, HMGA2, HNRNPA2B1, XRN2, CSTA, and FGF8) was proven to be correlated with poor survival rates in oral squamous cell carcinoma patients. Conclusion Studies suggest that metastatic genes indicate a poor prognosis for oral squamous cell carcinoma patients. Detecting these metastatic genes in oral squamous cell carcinoma patients may be of predictive value and can also facilitate assessing oral squamous cell carcinoma development and its response to treatment.
Collapse
Affiliation(s)
- Nooshin Mohtasham
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial PathologySchool of Dentistry, Mashhad University of Medical SciencesMashhadIran
- Oral and Maxillofacial Diseases Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| | - Marzieh Zarepoor
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| | - Zahra Shooshtari
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| | - Kiana Kamyab Hesari
- Doctor of Veterinary Medicine StudentSciences and Research UniversityTehranIran
| | - Farnaz Mohajertehran
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial PathologySchool of Dentistry, Mashhad University of Medical SciencesMashhadIran
- Oral and Maxillofacial Diseases Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
5
|
Li Z, Zheng C, Liu H, Lv J, Wang Y, Zhang K, Kong S, Chen F, Kong Y, Yang X, Cheng Y, Yang Z, Zhang C, Tian Y. A novel oxidative stress-related gene signature as an indicator of prognosis and immunotherapy responses in HNSCC. Aging (Albany NY) 2023; 15:14957-14984. [PMID: 38157249 PMCID: PMC10781479 DOI: 10.18632/aging.205323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE To identify molecular subtypes of oxidative stress-related genes in head and neck squamous cell carcinoma (HNSCC) and to construct a scoring model of oxidative stress-related genes. METHODS R language based scRNA-seq and bulk RNA-seq analyses were used to identify molecular isoforms of oxidative stress-related genes in HNSCC. An oxidative stress-related gene scoring (OSRS) model was constructed, which were verified through online data and immunohistochemical staining of clinical samples. RESULTS Using TCGA-HNSCC datasets, nine predictive genes for overall patient survival, rarely reported in previous similar studies, were screened. AREG and CES1 were identified as prognostic risk factors. CSTA, FDCSP, JCHAIN, IFFO2, PGLYRP4, SPOCK2 and SPINK6 were identified as prognostic factors. Collectively, all genes formed a prognostic risk signature model for oxidative stress in HNSCC, which were validated in GSE41613, GSE103322 and PRJEB23709 datasets. Immunohistochemical staining of SPINK6 in nasopharyngeal cancer samples validated the gene panel. Subsequent analysis indicated that subgroups of the oxidative stress prognostic signature played important roles during cellular communication, the immune microenvironment, the differential activation of transcription factors, oxidative stress and immunotherapeutic responses. CONCLUSIONS The risk model might predict HNSCC prognosis and immunotherapeutic responses.
Collapse
Affiliation(s)
- Zhuoqi Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
| | - Chunning Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hongtao Liu
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, Shandong 250014, P.R. China
| | - Jiling Lv
- Department of Respiratory and Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan, Shandong 250299, P.R. China
| | - Yuanyuan Wang
- Department of Oncology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250299, P.R. China
| | - Kai Zhang
- Generalsurgery Department, Wenshang County People’s Hospital, Wenshang, Shandong 272500, P.R. China
| | - Shuai Kong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Feng Chen
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Yongmei Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
| | - Xiaowei Yang
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Yuxia Cheng
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, Shandong 250014, P.R. China
| | - Zhensong Yang
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Chi Zhang
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
| |
Collapse
|
6
|
Zhou C, Deng H, Fang Y, Wei Z, Shen Y, Qiu S, Ye D, Shen Z, Shen Y. Identification and validation of a novel signature based on T cell marker genes to predict prognosis, immunotherapy response and chemotherapy sensitivity in head and neck squamous carcinoma by integrated analysis of single-cell and bulk RNA-sequencing. Heliyon 2023; 9:e21381. [PMID: 37954266 PMCID: PMC10632748 DOI: 10.1016/j.heliyon.2023.e21381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
T cells are among the most potent anti-tumor cells that are found in humans. Our study sought to develop a reliable signature incorporating T cell marker genes (TMGs) for predicting the prognosis and therapy responsiveness of head and neck squamous cell carcinoma (HNSCC) patients. We downloaded scRNA-seq data from the GSE181919 to identify TMGs. Subsequently, we devised a 12 TMG signature in the TCGA HNSCC cohort by using LASSO analysis. Patients with high-risk scores were shown to experience unfavorable progression-free survival, disease-specific survival, and overall survival, which was validated in the GSE65858 cohort. Additionally, the nomogram integrated risk score and clinical features are more suitable for clinical application. The enrichment analyses of both pathways and functions showed that high- and low-risk patients had functionally related distinctions. Furthermore, analysis of the immunological landscape confirmed that the low-risk patients had a larger percentage of infiltrating immune cells as well as a higher incidence rate of immune-related events. In the meantime, a greater IPS score and expression of immune checkpoint genes suggested significantly favorable responsiveness to immunotherapy in low-risk patients. On the other hand, the high-risk patients had a greater degree of sensitivity to the chemotherapy agents, which included paclitaxel, gemcitabine, docetaxel, and cisplatin. Our finding revealed that this TMG signature independently functioned as a prognostic marker and guided individualized immunotherapy and chemotherapy selection for patients with HNSCC.
Collapse
Affiliation(s)
- Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhengyu Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yiming Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Shijie Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo NO. 2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
de Paula Souza DPS, Dos Reis Pereira Queiroz L, de Souza MG, de Jesus SF, Gomes ESB, Vitorino RT, Santos SHS, Farias LC, de Paula AMB, D'Angelo MFSV, de Carvalho Fraga CA, Guimarães ALS. Identification of potential biomarkers and survival analysis for oral squamous cell carcinoma: A transcriptomic study. Oral Dis 2023; 29:2658-2666. [PMID: 35796645 DOI: 10.1111/odi.14302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is one of the most common neoplasms worldwide. The current study aimed to identify potential biomarkers associated with OSCC survival. MATERIALS AND METHODS Differentially expressed genes (DEGs) in atypical OSCC cases were identified using two public datasets: The Cancer Genome Atlas and the Gene Expression Omnibus database. Receiver operating characteristic (ROC) analysis was performed to identify the cutoff, and the candidate DEGs related to survival. Kaplan-Meier and Cox regression analysis using the categorized genes were employed to identify genes that impact the overall survival in OSCC. RESULTS A total of 263 OSCC samples and 105 healthy tissues were used to identify 295 upregulated and 131 downregulated genes expressed only in non-smokers. ROC analyses identified 25 candidate genes associated with death. Survival analyses demonstrated that the following DEGs, namely CSTA, FGFR2, MMP19, OLR1, PCSK1, RAMP2, and CGB5, are potential OSCC prognostic factors. CONCLUSION We found that CSTA, FGFR2, MMP19, OLR1, PCSK1, RAMP2, and CGB5 are associated with a low survival rate in OSCC. However, further studies are needed to validate our findings and facilitate the development of these factors as potential biomarkers for OSCC survival.
Collapse
|
8
|
Single-cell transcriptomic analysis reveals the critical molecular pattern of UV-induced cutaneous squamous cell carcinoma. Cell Death Dis 2021; 13:23. [PMID: 34934042 PMCID: PMC8692455 DOI: 10.1038/s41419-021-04477-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common nonmelanoma skin cancer characterized by high invasiveness, heterogeneity, and mainly occurs in the ultraviolet (UV)-exposed regions of the skin, but its pathogenesis is still unclear. Here, we generated single-cell transcriptome profiles for 350 cells from six primary UV-induced cSCCs, together with matched adjacent skin samples, and three healthy control skin tissues by single-cell RNA-sequencing technology based on Smart-seq2 strategy. A series of bioinformatics analyses and in vitro experiments were used to decipher and validate the critical molecular pattern of cSCC. Results showed that cSCC cells and normal keratinocytes were significantly distinct in gene expression and chromosomal copy number variation. Furthermore, cSCC cells exhibited 18 hallmark pathways of cancer by gene set enrichment analysis. Differential expression analysis demonstrated that many members belonging to S100 gene family, SPRR gene family, and FABP5 were significantly upregulated in cSCC cells. Further experiments confirmed their upregulation and showed that S100A9 or FABP5 knockdown in cSCC cells inhibited their proliferation and migration through NF-κB pathway. Taken together, our data provide a valuable resource for deciphering the molecular pattern in UV-induced cSCC at a single-cell level and suggest that S100A9 and FABP5 may provide novel targets for therapeutic intervention of cSCC in the future.
Collapse
|