1
|
Fatehfar S, Sameei P, Abdollahzade N, Chodari L, Saboory E, Roshan-Milani S. Maternal Treadmill Exercise and Zinc Supplementation Alleviate Prenatal Stress-Induced Cognitive Deficits and Restore Neurological Biomarkers in Offspring: A Study on Male Rats Aged 30 and 90 Days. Dev Neurobiol 2025; 85:e22964. [PMID: 40195087 DOI: 10.1002/dneu.22964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
The detrimental effects of prenatal stress (PS) on offspring's neurological and behavioral outcomes are well documented. However, strategies to mitigate these effects are underexplored. This study examines whether prenatal zinc supplementation and treadmill exercise can modulate PS-induced cognitive impairments and neurobiological markers in young and adult male rat offspring, leveraging the established neuroprotective potential of both physical activity and zinc. Pregnant rats were divided into five groups: control, stress, stress + exercise, stress + zinc, and stress + exercise + zinc, with all rats except the control group subjected to restraint stress (gestational days 15-19). Pregnant rats in the exercise groups underwent forced exercise, whereas those in the zinc groups received oral zinc sulfate throughout the pregnancy. At postnatal days 30 and 90, the cognitive function of male offspring was evaluated using the Morris water maze (MWM) test, and the hippocampal gene expression levels of caspase-3, brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP) were measured using reverse transcription-polymerase chain reaction (RT-PCR). PS impaired cognitive functions, increased caspase-3 expression, and decreased BDNF and GFAP expression levels in adult rats. Prenatal exercise was found to mitigate PS-induced cognitive deficits primarily through enhancing GFAP expression, whereas prenatal zinc improved PS-induced cognitive impairments mainly through reduced caspase-3 and increased BDNF expression. The combined effect of exercise and zinc was not additive on cognitive functions and biomarkers. Physical activity may alleviate PS-induced cognitive deficits by modulating astrocytic factors, whereas zinc may exert its effects by inhibiting apoptosis via a BDNF-dependent pathway. Further targeted research is necessary to confirm these relationships.
Collapse
Affiliation(s)
- Sina Fatehfar
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Parsa Sameei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shiva Roshan-Milani
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Hisada C, Kajimoto K, Tsugane H, Mitsuo I, Azuma K, Kubo KY. Maternal chewing alleviates prenatal stress-related neuroinflammation mediated by microglia in the hippocampus of the mouse offspring. J Prosthodont Res 2023; 67:588-594. [PMID: 36792221 DOI: 10.2186/jpr.jpr_d_22_00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE Prenatal stress affects the hippocampal structure and function in pups. Maternal chewing ameliorates hippocampus-dependent cognitive impairments induced by prenatal stress. In this study, we investigated hippocampal microglia-mediated neuroinflammation in pups of dams exposed to prenatal stress with or without chewing during gestation. METHODS Pregnant mice were randomly assigned to control, stress, and stress/chewing groups. Stress and stress/chewing animals were subjected to restraint stress for 45 min three times daily from gestation day 12 to parturition, and were given a wooden stick to chew during the stress period. Four-month-old male pups were intraperitoneally administered with lipopolysaccharide (LPS). Serum corticosterone levels were determined 24 h after administration. The expression levels of hippocampal inflammatory cytokines were measured, and the microglia were analyzed morphologically. RESULTS Prenatal stress increased serum corticosterone levels, induced hippocampal microglia priming, and facilitated the release of interleukin-1β and tumor necrosis factor-α in the offspring. LPS treatment significantly increased the effects of prenatal stress on serum corticosterone levels, hippocampal microglial activation, and hippocampal neuroinflammation. Maternal chewing significantly inhibited the increase in serum corticosterone levels, suppressed microglial overactivation, and normalized inflammatory cytokine levels under basal prenatal stress conditions as well as after LPS administration. CONCLUSIONS Our findings indicate that maternal chewing can alleviate the increase in corticosterone levels and inhibit hippocampal microglia-mediated neuroinflammation induced by LPS administration and prenatal stress in adult offspring.
Collapse
Affiliation(s)
- Chie Hisada
- Departments of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, Japan
| | - Kyoko Kajimoto
- Departments of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, Japan
| | - Hiroko Tsugane
- Departments of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, Japan
| | - Iinuma Mitsuo
- Departments of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyusyu, Japan
| | - Kin-Ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, Aichi, Japan
| |
Collapse
|
3
|
Rubinstein MR, Burgueño AL, Quiroga S, Wald MR, Genaro AM. Current Understanding of the Roles of Gut-Brain Axis in the Cognitive Deficits Caused by Perinatal Stress Exposure. Cells 2023; 12:1735. [PMID: 37443769 PMCID: PMC10340286 DOI: 10.3390/cells12131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The term 'perinatal environment' refers to the period surrounding birth, which plays a crucial role in brain development. It has been suggested that dynamic communication between the neuro-immune system and gut microbiota is essential in maintaining adequate brain function. This interaction depends on the mother's status during pregnancy and/or the newborn environment. Here, we show experimental and clinical evidence that indicates that the perinatal period is a critical window in which stress-induced immune activation and altered microbiota compositions produce lasting behavioral consequences, although a clear causative relationship has not yet been established. In addition, we discuss potential early treatments for preventing the deleterious effect of perinatal stress exposure. In this sense, early environmental enrichment exposure (including exercise) and melatonin use in the perinatal period could be valuable in improving the negative consequences of early adversities. The evidence presented in this review encourages the realization of studies investigating the beneficial role of melatonin administration and environmental enrichment exposure in mitigating cognitive alteration in offspring under perinatal stress exposure. On the other hand, direct evidence of microbiota restoration as the main mechanism behind the beneficial effects of this treatment has not been fully demonstrated and should be explored in future studies.
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| | | | | | | | - Ana María Genaro
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| |
Collapse
|
4
|
Yao D, Lu Y, Li L, Wang S, Mu Y, Ding C, Zhao J, Liu M, Xu M, Wu H, Dou C, Zhu Z, Li H. Prolactin and glucocorticoid receptors in the prefrontal cortex are associated with anxiety-like behavior in prenatally stressed adolescent offspring rats. J Neuroendocrinol 2023; 35:e13231. [PMID: 36683309 DOI: 10.1111/jne.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Prenatal stress (PS) causes anxiety in mothers and their offspring and chewing is a commonly observed behavior during maternal stress. Prolactin (PRL) is an anti-anxiety factor that suppresses the hypothalamic-pituitary-adrenal axis. Here, we studied the roles of PRL, corticosterone (CORT), and their receptors in PS-induced anxiety-like behavior in dams and their offspring. We further investigated whether chewing during maternal stress could prevent PS-induced harmful consequences. Pregnant rats were randomly divided into PS, PS + chewing, and control groups. Anxiety-like behaviors of dams and their adolescent offspring were assessed using the open field test and elevated plus maze. Serum levels of PRL and CORT were measured by ELISA. Expression of mRNA and protein of PRLR and glucocorticoid receptor (GR) in the prefrontal cortex (PFC) were evaluated by qRT-PCR and western blotting, respectively. Compared to the control rats, dams and their female offspring, but not male offspring, in the PS group showed increased anxiety-like behaviors. The PS-affected rats had a lower serum PRL level and increased PRLR expression in the PFC. In contrast, these rats had a higher serum CORT level and decreased GR expression in the PFC. Chewing ameliorated anxiety-like behaviors and counteracted stress-induced changes in serum PRL and CORT, as well as the expression of their receptors in the PFC. Conclusion: PS-induced anxiety-like behavior is associated with changes in the serum levels of PRL and CORT and expression of their receptors in the PFC. Moreover, chewing blunts the hormonal and receptor changes and may serve as an effective stress-coping method for preventing PS-induced anxiety-like behavior.
Collapse
Affiliation(s)
- Dan Yao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yong Lu
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Li Li
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Shan Wang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yingjun Mu
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Chenxi Ding
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Jing Zhao
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Mingzhe Liu
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Meina Xu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Haoyue Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Chengyin Dou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Zhongliang Zhu
- Maternal and Infant Health Research Institute, Northwest University, Shaanxi, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Neonatology, The Affiliated Children Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
5
|
Chewing Behavior Attenuates Lung-Metastasis-Promoting Effects of Chronic Stress in Breast-Cancer Lung-Metastasis Model Mice. Cancers (Basel) 2022; 14:cancers14235950. [PMID: 36497431 PMCID: PMC9740082 DOI: 10.3390/cancers14235950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
We assessed the effects of chewing behavior on the lung-metastasis-promoting impact of chronic psychological-stress in mice. Human breast-cancer cells (MDA-MB-231) were injected into the tail vein of female nude mice. Mice were randomly divided into stress, stress-with-chewing, and control groups. We created chronic stress by placing mice in small transparent tubes for 45 min, 3 times a day for 7 weeks. Mice in the stress-with-chewing group were allowed to chew wooden sticks during the experimental period. The histopathological examination showed that chronic psychological-stress increased lung metastasis, and chewing behavior attenuated the stress-related lung metastasis of breast-cancer cells. Chewing behavior decreased the elevated level of the serum corticosterone, normalized the increased expression of glucocorticoid, and attenuated the elevated expression of adrenergic receptors in lung tissues. We also found that chewing behavior normalized the elevated expression of inducible nitric oxide synthase, 4-hydroxynonenal, and superoxide dismutase 2 in lung tissues, induced by chronic stress. The present study demonstrated that chewing behavior could attenuate the promoting effects of chronic psychological-stress on the lung metastasis of breast-cancer cells, by regulating stress hormones and their receptors, and the downstream signaling-molecules, involving angiogenesis and oxidative stress.
Collapse
|
6
|
Zhang JH, Tasaki T, Tsukamoto M, Wang KY, Kubo KY, Azuma K. Deletion of Wnt10a Is Implicated in Hippocampal Neurodegeneration in Mice. Biomedicines 2022; 10:biomedicines10071500. [PMID: 35884806 PMCID: PMC9313158 DOI: 10.3390/biomedicines10071500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus plays an important role in maintaining normal cognitive function and is closely associated with the neuropathogenesis of dementia. Wnt signaling is relevant to neuronal development and maturation, synaptic formation, and plasticity. The role of Wnt10a in hippocampus-associated cognition, however, is largely unclear. Here, we examined the morphological and functional alterations in the hippocampus of Wnt10a-knockout (Wnt10a-/-) mice. Neurobehavioral tests revealed that Wnt10a-/- mice exhibited spatial memory impairment and anxiety-like behavior. Immunostaining and Western blot findings showed that the protein expressions of β-catenin, brain-derived neurotrophic factor, and doublecortin were significantly decreased and that the number of activated microglia increased, accompanied by amyloid-β accumulation, synaptic dysfunction, and microglia-associated neuroinflammation in the hippocampi of Wnt10a-/- mice. Our findings revealed that the deletion of Wnt10a decreased neurogenesis, impaired synaptic function, and induced hippocampal neuroinflammation, eventually leading to hippocampal neurodegeneration and memory deficit, possibly through the β-catenin signaling pathway, providing a novel insight into preventive approaches for hippocampus-dependent cognitive impairment.
Collapse
Affiliation(s)
- Jia-He Zhang
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Fukuoka, Japan;
| | - Takashi Tasaki
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Kanagawa, Japan;
| | - Manabu Tsukamoto
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Fukuoka, Japan;
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Fukuoka, Japan;
| | - Kin-ya Kubo
- Faculty of Human Life and Environmental Science, Nagoya Women’s University, 3-40 Shioji-cho, Mizuho-ku, Nagoya 467-8610, Aichi, Japan;
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Fukuoka, Japan;
- Correspondence: ; Tel.: +81-93-691-7418; Fax: +81-93-691-8544
| |
Collapse
|