1
|
Partida-Rodríguez O, Brown EM, Woodward SE, Cirstea M, Reynolds LA, Petersen C, Vogt SL, Peña-Díaz J, Thorson L, Arrieta MC, Hernández EG, Rojas-Velázquez L, Moran P, González Rivas E, Serrano-Vázquez A, Pérez-Juárez H, Torres J, Ximénez C, Finlay BB. Fecal microbiota transplantation from protozoa-exposed donors downregulates immune response in a germ-free mouse model, its role in immune response and physiology of the intestine. PLoS One 2024; 19:e0312775. [PMID: 39466773 PMCID: PMC11515975 DOI: 10.1371/journal.pone.0312775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Intestinal parasites are part of the intestinal ecosystem and have been shown to establish close interactions with the intestinal microbiota. However, little is known about the influence of intestinal protozoa on the regulation of the immune response. In this study, we analyzed the regulation of the immune response of germ-free mice transplanted with fecal microbiota (FMT) from individuals with multiple parasitic protozoans (P) and non-parasitized individuals (NP). We determined the production of intestinal cytokines, the lymphocyte populations in both the colon and the spleen, and the genetic expression of markers of intestinal epithelial integrity. We observed a general downregulation of the intestinal immune response in mice receiving FMT-P. We found significantly lower intestinal production of the cytokines IL-6, TNF, IFN-γ, MCP-1, IL-10, and IL-12 in the FMT-P. Furthermore, a significant decrease in the proportion of CD3+, CD4+, and Foxp3+ T regulatory cells (Treg) was observed in both, the colon and spleen with FMT-P in contrast to FMT-NP. We also found that in FMT-P mice there was a significant decrease in tjp1 expression in all three regions of the small intestine; ocln in the ileum; reg3γ in the duodenum and relmβ in both the duodenum and ileum. We also found an increase in colonic mucus layer thickness in mice colonized with FMT-P in contrast with FMT-NP. Finally, our results suggest that gut protozoa, such as Blastocystis hominis, Entamoeba coli, Endolimax nana, Entamoeba histolytica/E. dispar, Iodamoeba bütschlii, and Chilomastix mesnili consortia affect the immunoinflammatory state and induce functional changes in the intestine via the gut microbiota. Likewise, it allows us to establish an FMT model in germ-free mice as a viable alternative to explore the effects that exposure to intestinal parasites could have on the immune response in humans.
Collapse
Affiliation(s)
- Oswaldo Partida-Rodríguez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Eric M. Brown
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Sarah E. Woodward
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Mihai Cirstea
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Lisa A. Reynolds
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Microbiology, Faculty of Science, University of Victoria, Victoria, Canada
| | - Charisse Petersen
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Stefanie L. Vogt
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Jorge Peña-Díaz
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Lisa Thorson
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Marie-Claire Arrieta
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Eric G. Hernández
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Liliana Rojas-Velázquez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Patricia Moran
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Enrique González Rivas
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Angélica Serrano-Vázquez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Horacio Pérez-Juárez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, Instituto Mexicano del Seguro Social (IMSS), Mexico, Mexico
| | - Cecilia Ximénez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - B. B. Finlay
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Guzmán-Téllez P, Martínez-Castillo M, Flores-Huerta N, Rosales-Morgan G, Pacheco-Yépez J, la Garza MD, Serrano-Luna J, Shibayama M. Lectins as virulence factors in Entamoeba histolytica and free-living amoebae. Future Microbiol 2020; 15:919-936. [PMID: 32716210 DOI: 10.2217/fmb-2019-0275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/02/2020] [Indexed: 02/08/2023] Open
Abstract
Currently, there is growing interest in the identification and purification of microbial lectins due to their involvement in the pathogenicity mechanisms of pathogens, such as Entamoeba histolytica and free-living amoebae. The Gal/GalNAc lectin from E. histolytica participates in adhesion, cytotoxicity and regulation of immune responses. Furthermore, mannose- and galactose-binding protein have been described in Acanthamoeba castellanii and Balamuthia mandrillaris, respectively and they also contribute to host damage. Finally, in Naegleria fowleri, molecules containing mannose and fucose are implicated in adhesion and cytotoxicity. Considering their relevance in the pathogenesis of the diseases caused by these protozoa, lectins appear to be promising targets in the diagnosis, vaccination and treatment of these infections.
Collapse
Affiliation(s)
- Paula Guzmán-Téllez
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Moisés Martínez-Castillo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
- Department of Experimental Medicine, Liver, Pancreas & Motility Laboratory (HIPAM), School of Medicine, National Autonomous University of Mexico (UNAM) Mexico City, Mexico
| | - Nadia Flores-Huerta
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Gabriela Rosales-Morgan
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
3
|
Villalobos-Gómez FDR, García-Lorenzana M, Escobedo G, Talamás-Rohana P, Salinas-Gutiérrez R, Hernández-Ramírez VI, Sánchez-Alemán E, Campos-Esparza MDR, Muñoz-Ortega MH, Ventura-Juárez J. Entamoeba histolytica L220 induces the in vitro activation of macrophages and neutrophils and is modulated by neurotransmitters. Acta Parasitol 2018; 63:270-279. [PMID: 29654688 DOI: 10.1515/ap-2018-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
The neuroimmunoregulation of inflammation has been well characterized. Entamoeba histolytica provokes an inflammatory response in the host in which macrophages and neutrophils are the first line of defense. The aim of this study was to analyze the effect of the 220 kDa lectin of Entamoeba histolytica on stimulation of human macrophages and neutrophils, especially the secretion of cytokines and the relation of these to neurotransmitters. Human cells were interacted with L220, epinephrine, nicotine, esmolol and vecuronium bromide. The concentrations of IL-1β, IFN-γ, TNF-α and IL-10 were determined by ELISA at, 4 h of interaction. L220 has a cytokine stimulating function of macrophages and neutrophils for secretion of IL-1β, and IL-10 only by macrophages, which was modulated by the effect of vecuronium on cholinergic receptors in this immune cells.
Collapse
Affiliation(s)
- Fabiola Del Rocío Villalobos-Gómez
- Universidad Autónoma de Aguascalientes, Departamento de Morfología, Centro de Ciencias Básicas, Edificio 202, Av. Universidad 940 Ciudad Universitaria C.P. 20130, Aguascalientes, Ags.,México
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, CDMX, México
| | - Mario García-Lorenzana
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, C.P. 09340 CDMX, México
| | - Galileo Escobedo
- Universidad Nacional Autónoma de México, Hospital General de México "Dr. Eduardo Liceaga", Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de Medicina, Dr. Balmis #148, Col. Doctores, C.P. 06720, Ciudad de México, México
| | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Avenida Instituto Politécnico Nacional 2508, C.P. 07360, Ciudad de México, México
| | - Rogelio Salinas-Gutiérrez
- Universidad Autónoma de Aguascalientes, Departamento de Estadística, Centro de Ciencias Básicas, Edificio 202, Av. Universidad 940 Ciudad Universitaria C.P. 20130, Aguascalientes, Ags.,México
| | - Verónica-Ivonne Hernández-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Avenida Instituto Politécnico Nacional 2508, C.P. 07360, Ciudad de México, México
| | - Esperanza Sánchez-Alemán
- Universidad Autónoma de Aguascalientes, Departamento de Morfología, Centro de Ciencias Básicas, Edificio 202, Av. Universidad 940 Ciudad Universitaria C.P. 20130, Aguascalientes, Ags.,México
| | - María Del Rosario Campos-Esparza
- Universidad Autónoma de Aguascalientes, Departamento de Morfología, Centro de Ciencias Básicas, Edificio 202, Av. Universidad 940 Ciudad Universitaria C.P. 20130, Aguascalientes, Ags.,México
| | - Martín Humberto Muñoz-Ortega
- Departamento de Química, Universidad Autónoma de Aguascalientes.Av. Universidad # 940, Ciudad Universitaria, C. P. 20131, Aguascalientes, Ags.,México
| | - Javier Ventura-Juárez
- Universidad Autónoma de Aguascalientes, Departamento de Morfología, Centro de Ciencias Básicas, Edificio 202, Av. Universidad 940 Ciudad Universitaria C.P. 20130, Aguascalientes, Ags.,México
| |
Collapse
|
4
|
Rafiei A, Ajami A, Hajilooi M, Etemadi A. Th-1/Th-2 cytokine pattern in human amoebic colitis. Pak J Biol Sci 2009; 12:1376-1380. [PMID: 20128506 DOI: 10.3923/pjbs.2009.1376.1380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amoebiasis, caused by Entamoeba histolytica, is still considered a major health problem in developing countries. Since the immune response during human amoebiasis has not been clearly defined, we chose to evaluate cytokine production in patients suffering from amoebic colitis. A case-control association study was carried out on 62 subjects, including 31 patients with amoebic colitis and 31 healthy controls (age, sex and geographic region-matched). Serum levels of IL-12, IFN-gamma, IL-13 and IL-5 were measured by solid-phase sandwich enzyme linked immunosorbant assay. Serum levels of IFN-gamma, IL-12, IL-13 and IL-5 were higher in the patients with amoebic colitis than in healthy controls, but were only statistically increased for IL-5 (p = 0.04) and IL-13 (p = 0.014). Stratification of patients according to gender revealed that IL-13 was significantly elevated in men as compared to levels measured in women (p = 0.04). These findings suggest that E. histolytica induce a mixed Th-1/Th-2 response with a polarization toward Th-2 during the early stage of amoebiasis, which may aide in developing a clinical illness.
Collapse
Affiliation(s)
- A Rafiei
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | | | |
Collapse
|
5
|
Lejeune M, Rybicka JM, Chadee K. Recent discoveries in the pathogenesis and immune response toward Entamoeba histolytica. Future Microbiol 2009; 4:105-18. [PMID: 19207103 DOI: 10.2217/17460913.4.1.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Entamoeba histolytica is an enteric dwelling human protozoan parasite that causes the disease amoebiasis, which is endemic in the developing world. Over the past four decades, considerable effort has been made to understand the parasite and the disease. Improved diagnostics can now differentiate pathogenic E. histolytica from that of the related but nonpathogenic Entamoeba dispar, thus minimizing screening errors. Classically, the triad of Gal-lectin, cysteine proteinases and amoebapores of the parasite were thought to be the major proteins involved in the pathogenesis of amoebiasis. However, other amoebic molecules such as lipophosphopeptidoglycan, perioxiredoxin, arginase, and lysine and glutamic acid-rich proteins are also implicated. Recently, the genome of E. histolytica has been sequenced, which has widened our scope to study additional virulence factors. E. histolytica genome-based approaches have now confirmed the presence of Golgi apparatus-like vesicles and the machinery for glycosylation, thus improving the chances of identifying potential drug targets for chemotherapeutic intervention. Apart from Gal-lectin-based vaccines, promising vaccine targets such as serine-rich E. histolytica protein have yielded encouraging results. Considerable efforts have also been made to skew vaccination responses towards appropriate T-helper cell immunity that could augment the efficacy of vaccine candidates under study. Thus, ongoing efforts mining the information made available with the sequencing of the E. histolytica genome will no doubt identify and characterize other important potential vaccine/drug targets and lead to effective immunologic strategies for the control of amoebiasis.
Collapse
Affiliation(s)
- Manigandan Lejeune
- University of Calgary, Department of Microbiology & Infectious Diseases, Calgary, AB, T2N 4N1, Canada.
| | | | | |
Collapse
|