1
|
Oh HJ, Imam-Aliagan AB, Kim YB, Kim HJ, Izaguirre IA, Sung CK, Yim H. Clinical applications of circulating biomarkers in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1449232. [PMID: 39239557 PMCID: PMC11375801 DOI: 10.3389/fcell.2024.1449232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Despite recent advances in cancer diagnostics and treatment, the mortality associated with lung cancer is still the highest in the world. Late-stage diagnosis, often accompanied by metastasis, is a major contributor to the high mortality rates, emphasizing the urgent need for reliable and readily accessible diagnostic tools that can detect biomarkers unique to lung cancer. Circulating factors, such as circulating tumor DNA and extracellular vesicles, from liquid biopsy have been recognized as diagnostic or prognostic markers in lung cancer. Numerous clinical studies are currently underway to investigate the potential of circulating tumor DNA, circulating tumor RNA, exosomes, and exosomal microRNA within the context of lung cancer. Those clinical studies aim to address the poor diagnostics and limited treatment options for lung cancer, with the ultimate goal of developing clinical markers and personalized therapies. In this review, we discuss the roles of each circulating factor, its current research status, and ongoing clinical studies of circulating factors in non-small cell lung cancer. Additionally, we discuss the circulating factors specifically found in lung cancer stem cells and examine approved diagnostic assays designed to detect circulating biomarkers in lung cancer patients.
Collapse
Affiliation(s)
- Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Abdulhamid B Imam-Aliagan
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Issac A Izaguirre
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Chang K Sung
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Wang S, Gu S, Chen J, Yuan Z, Liang P, Cui H. Mechanism of Notch Signaling Pathway in Malignant Progression of Glioblastoma and Targeted Therapy. Biomolecules 2024; 14:480. [PMID: 38672496 PMCID: PMC11048644 DOI: 10.3390/biom14040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of glioma and the most common primary tumor of the central nervous system. Despite significant advances in clinical management strategies and diagnostic techniques for GBM in recent years, it remains a fatal disease. The current standard of care includes surgery, radiation, and chemotherapy, but the five-year survival rate for patients is less than 5%. The search for a more precise diagnosis and earlier intervention remains a critical and urgent challenge in clinical practice. The Notch signaling pathway is a critical signaling system that has been extensively studied in the malignant progression of glioblastoma. This highly conserved signaling cascade is central to a variety of biological processes, including growth, proliferation, self-renewal, migration, apoptosis, and metabolism. In GBM, accumulating data suggest that the Notch signaling pathway is hyperactive and contributes to GBM initiation, progression, and treatment resistance. This review summarizes the biological functions and molecular mechanisms of the Notch signaling pathway in GBM, as well as some clinical advances targeting the Notch signaling pathway in cancer and glioblastoma, highlighting its potential as a focus for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shenghao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Sikuan Gu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Zhiqiang Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
3
|
Shahcheraghi SH, Asl ER, Lotfi M, Ayatollahi J, Khaleghinejad SH, Aljabali AAA, Bakshi HA, El-Tanani M, Charbe NB, Serrano-Aroca Á, Mishra V, Mishra Y, Goyal R, Hromić-Jahjefendić A, Uversky VN, Lotfi M, Tambuwala MM. Non-coding RNAs as Key Regulators of the Notch Signaling Pathway in Glioblastoma: Diagnostic, Prognostic, and Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1203-1216. [PMID: 38279763 DOI: 10.2174/0118715273277458231213063147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 01/28/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain malignancy originating from astrocytes, accounting for approximately 30% of central nervous system malignancies. Despite advancements in therapeutic strategies including surgery, chemotherapy, and radiopharmaceutical drugs, the prognosis for GBM patients remains dismal. The aggressive nature of GBM necessitates the identification of molecular targets and the exploration of effective treatments to inhibit its proliferation. The Notch signaling pathway, which plays a critical role in cellular homeostasis, becomes deregulated in GBM, leading to increased expression of pathway target genes such as MYC, Hes1, and Hey1, thereby promoting cellular proliferation and differentiation. Recent research has highlighted the regulatory role of non-coding RNAs (ncRNAs) in modulating Notch signaling by targeting critical mRNA expression at the post-transcriptional or transcriptional levels. Specifically, various types of ncRNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to control multiple target genes and significantly contribute to the carcinogenesis of GBM. Furthermore, these ncRNAs hold promise as prognostic and predictive markers for GBM. This review aims to summarize the latest studies investigating the regulatory effects of ncRNAs on the Notch signaling pathway in GBM.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elmira Roshani Asl
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Hamid A Bakshi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia, 46001, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
4
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
5
|
Jia C, Zhao Y, Huang H, Fan K, Xie T, Xie M. Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysis. J Nutr Biochem 2022; 107:109038. [PMID: 35533901 DOI: 10.1016/j.jnutbio.2022.109038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
The radioresistance of glioma is related to the presence of glioma stem cells. Apigenin, a natural flavonoid compound present in numerous health foods and edible plants, has inhibitory effects on a variety of glioma cells. However, the effects of apigenin on glioma and radiotherapy remain unclear. Here, we used radioresistant SU3-5R stem cells-inoculated subcutaneous glioma model to investigate the effects of apigenin and potential mechanisms. The results showed that after treatment of mouse subcutaneous glioma with apigenin 20 mg/kg for 12 days, irradiation 8 Gray twice or their combination, the tumor volume and weight were significantly decreased, especially in the combined treatment group. Apigenin treatment inhibited the activities of glycolytic related enzymes and expressions of nuclear factor kappa B (NF-κB) p65, hypoxia inducible factor-lα (HIF-1α), glucose transporter (GLUT)-1/3 and pyruvate kinase isozyme type M2 (PKM2) proteins in tumor tissues. After treatment of SU3-5R cells with apigenin 7.5 μM, the fluorescence intensity of CD133 positive cells was decreased, the percentage of cells with comet tails caused by irradiation was increased, and the expressions of lipopolysaccharide-induced NF-κB p65, HIF-1α, GLUT-3 and PKM2 proteins were reduced. These results demonstrate that apigenin can sensitize the radiotherapy of subcutaneous glioma in nude mice, and its mechanisms may result from the attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolytic related enzymes and protein expressions. In conclusion, our findings suggest that apigenin and apigenin-rich health foods can be used in the radiotherapy of glioma as a radiosensitizer.
Collapse
Affiliation(s)
- Changhao Jia
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ying Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Hui Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ke Fan
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Tao Xie
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu Province, China.
| | - Meilin Xie
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
6
|
D S P, Chaturvedi PK, Shimokawa T, Kim KH, Park WY. Silencing of Fused Toes Homolog (FTS) Increases Radiosensitivity to Carbon-Ion Through Downregulation of Notch Signaling in Cervical Cancer Cells. Front Oncol 2021; 11:730607. [PMID: 34765546 PMCID: PMC8576531 DOI: 10.3389/fonc.2021.730607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of Carbon ion radiation (C-ion) alone or in combination with fused toes homolog (FTS) silencing on Notch signaling were investigated in uterine cervical cancer cell lines (ME180 and CaSki). In both cell lines, upon irradiation with C-ion, the expression of Notch signaling molecules (Notch1, 2, 3 and cleaved Notch1), γ-secretase complex molecules and FTS was upregulated dose-dependently (1, 2 and 4 Gy) except Notch1 in ME180 cells where the change in expression was not significant. However, overexpression of these molecules was attenuated upon silencing of FTS. The spheroid formation, expression of stem cell markers (OCT4A, Sox2 and Nanog) and clonogenic cell survival were reduced by the combination as compared to FTS silencing or C-ion irradiation alone. Additionally, immunoprecipitation and immunofluorescence assay revealed interaction and co-localization of FTS with Notch signaling molecules. In conclusion, FTS silencing enhances the radio-sensitivity of the cervical cancer cells to C-ion by downregulating Notch signaling molecules and decreasing the survival of cancer stem cells.
Collapse
Affiliation(s)
- Prabakaran D S
- Department of Radiation Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Pankaj Kumar Chaturvedi
- Department of Radiation Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Takashi Shimokawa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba, Japan
| | - Ki-Hwan Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, South Korea
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| |
Collapse
|
7
|
Therapeutic Targeting of the Gas6/Axl Signaling Pathway in Cancer. Int J Mol Sci 2021; 22:ijms22189953. [PMID: 34576116 PMCID: PMC8469858 DOI: 10.3390/ijms22189953] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022] Open
Abstract
Many signaling pathways are dysregulated in cancer cells and the host tumor microenvironment. Aberrant receptor tyrosine kinase (RTK) pathways promote cancer development, progression, and metastasis. Hence, numerous therapeutic interventions targeting RTKs have been actively pursued. Axl is an RTK that belongs to the Tyro3, Axl, MerTK (TAM) subfamily. Axl binds to a high affinity ligand growth arrest specific 6 (Gas6) that belongs to the vitamin K-dependent family of proteins. The Gas6/Axl signaling pathway has been implicated to promote progression, metastasis, immune evasion, and therapeutic resistance in many cancer types. Therapeutic agents targeting Gas6 and Axl have been developed, and promising results have been observed in both preclinical and clinical settings when such agents are used alone or in combination therapy. This review examines the current state of therapeutics targeting the Gas6/Axl pathway in cancer and discusses Gas6- and Axl-targeting agents that have been evaluated preclinically and clinically.
Collapse
|
8
|
Thippu Jayaprakash K, Hussein M, Shaffer R, Michael A, Nisbet A, Ajaz M. In Vitro Evaluation of Notch Inhibition to Enhance Efficacy of Radiation Therapy in Melanoma. Adv Radiat Oncol 2021; 6:100622. [PMID: 33732959 PMCID: PMC7940786 DOI: 10.1016/j.adro.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose The scope of radiation therapy is limited in melanoma. Using in vitro melanoma models, we investigated a Notch signaling inhibitor as a radiosensitizer to explore its potential to improve the efficacy of radiation therapy to widen the clinical application of radiation therapy in melanoma. Methods and Materials Melanoma cell lines A375, SKMEL28, and G361 were grown using standard tissue culture methods. Radiation was delivered with a clinical x-ray unit, and a gamma secretase inhibitor RO4929097 was used to inhibit Notch signaling. Cell viability signal was used to calculate Loewe's combination index to assess the interaction between radiation and RO4929097 and also the effect of scheduling of radiation and RO4929097 on synergy. Clonogenic assays were used to assess the clonogenic potential. An in vitro 3-dimensional culture model, γ-H2AX, and notch intracellular domain assays were used to interrogate potential underlying biological mechanisms of this approach. Scratch and transwell migration assays were used to assess cell migration. Results A375 and SKMEL28 cell lines showed consistent synergy for most single radiation doses examined, with a tendency for better synergy with the radiation-first schedule (irradiation performed 24 hours before RO4929097 exposure). Clonogenic assays showed dose-dependent reduction in colony numbers. Both radiation and RO4929097 reduced the size of melanospheres grown in 3-dimensional culture in vitro, where RO4929097 demonstrated a significant effect on the size of A375 and SKMEL28 melanospheres, indicating potential modulation of stem cell phenotype. Radiation induced γ-H2AX foci signal levels were reduced after exposure to RO4929097 with a tendency toward reduction in notch intracellular domain levels for all 3 cell lines. RO4929097 impaired both de novo and radiation-enhanced cell migration. Conclusions We demonstrate Notch signaling inhibition with RO4929097 as a promising strategy to potentially improve the efficacy of radiation therapy in melanoma. This strategy warrants further validation in vivo.
Collapse
Affiliation(s)
- Kamalram Thippu Jayaprakash
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, Manor Park, University of Surrey, Guildford, United Kingdom.,Department of Oncology, St. Luke's Cancer Centre, Royal Surrey Hospital, Egerton Road, Guildford, United Kingdom.,Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,Department of Oncology, The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, United Kingdom
| | - Mohammad Hussein
- Department of Medical Physics, St. Luke's Cancer Centre, Royal Surrey Hospital, Guildford, United Kingdom
| | - Richard Shaffer
- GenesisCare UK, Mount Alvernia Hospital, Guildford, United Kingdom
| | - Agnieszka Michael
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, Manor Park, University of Surrey, Guildford, United Kingdom.,Department of Oncology, St. Luke's Cancer Centre, Royal Surrey Hospital, Egerton Road, Guildford, United Kingdom
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, United Kingdom
| | - Mazhar Ajaz
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, Manor Park, University of Surrey, Guildford, United Kingdom.,Department of Oncology, St. Luke's Cancer Centre, Royal Surrey Hospital, Egerton Road, Guildford, United Kingdom
| |
Collapse
|
9
|
Unlocking the Secrets of Cancer Stem Cells with γ-Secretase Inhibitors: A Novel Anticancer Strategy. Molecules 2021; 26:molecules26040972. [PMID: 33673088 PMCID: PMC7917912 DOI: 10.3390/molecules26040972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
The dysregulation of Notch signaling is associated with a wide variety of different human cancers. Notch signaling activation mostly relies on the activity of the γ-secretase enzyme that cleaves the Notch receptors and releases the active intracellular domain. It is well-documented that γ-secretase inhibitors (GSIs) block the Notch activity, mainly by inhibiting the oncogenic activity of this pathway. To date, several GSIs have been introduced clinically for the treatment of various diseases, such as Alzheimer's disease and various cancers, and their impacts on Notch inhibition have been found to be promising. Therefore, GSIs are of great interest for cancer therapy. The objective of this review is to provide a systematic review of in vitro and in vivo studies for investigating the effect of GSIs on various cancer stem cells (CSCs), mainly by modulation of the Notch signaling pathway. Various scholarly electronic databases were searched and relevant studies published in the English language were collected up to February 2020. Herein, we conclude that GSIs can be potential candidates for CSC-targeting therapy. The outcome of our study also indicates that GSIs in combination with anticancer drugs have a greater inhibitory effect on CSCs.
Collapse
|
10
|
Bozzato E, Bastiancich C, Préat V. Nanomedicine: A Useful Tool against Glioma Stem Cells. Cancers (Basel) 2020; 13:cancers13010009. [PMID: 33375034 PMCID: PMC7792799 DOI: 10.3390/cancers13010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
The standard of care therapy of glioblastoma (GBM) includes invasive surgical resection, followed by radiotherapy and concomitant chemotherapy. However, this therapy has limited success, and the prognosis for GBM patients is very poor. Although many factors may contribute to the failure of current treatments, one of the main causes of GBM recurrences are glioma stem cells (GSCs). This review focuses on nanomedicine strategies that have been developed to eliminate GSCs and the benefits that they have brought to the fight against cancer. The first section describes the characteristics of GSCs and the chemotherapeutic strategies that have been used to selectively kill them. The second section outlines the nano-based delivery systems that have been developed to act against GSCs by dividing them into nontargeted and targeted nanocarriers. We also highlight the advantages of nanomedicine compared to conventional chemotherapy and examine the different targeting strategies that have been employed. The results achieved thus far are encouraging for the pursuit of effective strategies for the eradication of GSCs.
Collapse
Affiliation(s)
- Elia Bozzato
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Chiara Bastiancich
- Institute Neurophysiopathol, INP, CNRS, Aix-Marseille University, 13005 Marseille, France;
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Correspondence:
| |
Collapse
|
11
|
Thippu Jayaprakash K, Michael A. Notch Inhibition: a Promising Strategy to Improve Radiosensitivity and Curability of Radiotherapy. Clin Oncol (R Coll Radiol) 2020; 33:e44-e49. [PMID: 32680694 DOI: 10.1016/j.clon.2020.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- K Thippu Jayaprakash
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Cancer Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Oncology, The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, UK.
| | - A Michael
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Department of Oncology, St Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK
| |
Collapse
|
12
|
Tarasov VV, Svistunov AA, Chubarev VN, Zatsepilova TA, Preferanskaya NG, Stepanova OI, Sokolov AV, Dostdar SA, Minyaeva NN, Neganova ME, Klochkov SG, Mikhaleva LM, Somasundaram SG, Kirkland CE, Aliev G. Feasibility of Targeting Glioblastoma Stem Cells: From Concept to Clinical Trials. Curr Top Med Chem 2020; 19:2974-2984. [PMID: 31721715 DOI: 10.2174/1568026619666191112140939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/25/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Glioblastoma is a highly aggressive and invasive brain and Central Nervous System (CNS) tumor. Current treatment options do not prolong overall survival significantly because the disease is highly prone to relapse. Therefore, research to find new therapies is of paramount importance. It has been discovered that glioblastomas contain a population of cells with stem-like properties and that these cells are may be responsible for tumor recurrence. METHODS A review of relevant papers and clinical trials in the field was conducted. A PubMed search with related keywords was used to gather the data. For example, "glioblastoma stem cells AND WNT signaling" is an example used to find information on clinical trials using the database ClinicalTrials.gov. RESULTS Cancer stem cell research has several fundamental issues and uncertainties that should be taken into consideration. Theoretically, a number of treatment options that target glioblastoma stem cells are available for patients. However, only a few of them have obtained promising results in clinical trials. Several strategies are still under investigation. CONCLUSION The majority of treatments to target cancer stem cells have failed during clinical trials. Taking into account a number of biases in the field and the number of unsuccessful investigations, the application of the cancer stem cells concept is questionable in clinical settings, at least with respect to glioblastoma.
Collapse
Affiliation(s)
- Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Andrey A Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Vladimir N Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Tamara A Zatsepilova
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Nina G Preferanskaya
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Olga I Stepanova
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Alexander V Sokolov
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Samira A Dostdar
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation
| | - Nina N Minyaeva
- National Research University Higher School of Economics, 20 Myasnitskaya Street, Moscow 101000,Russian Federation
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432,Russian Federation
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432,Russian Federation
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow 117418,Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV,United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV,United States
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991,Russian Federation.,Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432,Russian Federation.,Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow 117418,Russian Federation.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229,United States
| |
Collapse
|
13
|
Formicola B, D'Aloia A, Dal Magro R, Stucchi S, Rigolio R, Ceriani M, Re F. Differential Exchange of Multifunctional Liposomes Between Glioblastoma Cells and Healthy Astrocytes via Tunneling Nanotubes. Front Bioeng Biotechnol 2019; 7:403. [PMID: 31921808 PMCID: PMC6920177 DOI: 10.3389/fbioe.2019.00403] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
Despite advances in cancer therapies, nanomedicine approaches including the treatment of glioblastoma (GBM), the most common, aggressive brain tumor, remains inefficient. These failures are likely attributable to the complex and not yet completely known biology of this tumor, which is responsible for its strong invasiveness, high degree of metastasis, high proliferation potential, and resistance to radiation and chemotherapy. The intimate connection through which the cells communicate between them plays an important role in these biological processes. In this scenario, tunneling nanotubes (TnTs) are recently gaining importance as a key feature in tumor progression and in particular in the re-growth of GBM after surgery. In this context, we firstly identified structural differences of TnTs formed by U87-MG cells, as model of GBM cells, in comparison with those formed by normal human astrocytes (NHA), used as a model of healthy cells. Successively, we have studied the possibility to exploit U87-MG TnTs as drug-delivery channels in cancer therapy, using liposomes composed of cholesterol/sphingomyelin and surface functionalized with mApoE and chlorotoxin peptides (Mf-LIP) as nanovehicle model. The results showed that U87-MG cells formed almost exclusively thick and long protrusions, whereas NHA formed more thin and short TnTs. Considering that thick TnTs are more efficient in transport of vesicles and organelles, we showed that fluorescent-labeled Mf-LIP can be transported via TnTs between U87-MG cells and with less extent through the protrusions formed by NHA cells. Our results demonstrate that nanotubes are potentially useful as drug-delivery channels for cancer therapy, facilitating the intercellular redistribution of this drug in close and far away cells, thus reaching isolated tumor niches that are hardly targeted by simple drug diffusion in the brain parenchyma. Moreover, the differences identified in TnTs formed by GBM and NHA cells can be exploited to increase treatment precision and specificity.
Collapse
Affiliation(s)
- Beatrice Formicola
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Alessia D'Aloia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Roberta Dal Magro
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Simone Stucchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Roberta Rigolio
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Michela Ceriani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
14
|
Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med 2018; 7:18. [PMID: 29984391 PMCID: PMC6035906 DOI: 10.1186/s40169-018-0198-1] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the abundant ongoing research efforts, cancer remains one of the most challenging diseases to treat globally. Due to the heterogenous nature of cancer, one of the major clinical challenges in therapeutic development is the cancer’s ability to develop resistance. It has been hypothesized that cancer stem cells are the cause for this resistance, and targeting them will lead to tumor regression. A pentaspan transmembrane glycoprotein, CD133 has been suggested to mark cancer stem cells in various tumor types, however, the accuracy of CD133 as a cancer stem cell biomarker has been highly controversial. There are numerous speculations for this, including differences in cell culture conditions, poor in vivo assays, and the inability of current antibodies to detect CD133 variants and deglycosylated epitopes. This review summarizes the most recent and relevant research regarding the controversies surrounding CD133 as a normal stem cell and cancer stem cell biomarker. Additionally, it aims to establish the overall clinical significance of CD133 in cancer. Recent clinical studies have shown that high expression of CD133 in tumors has been indicated as a prognostic marker of disease progression. As such, a spectrum of immunotherapeutic strategies have been developed to target these CD133pos cells with the goal of translation into the clinic. This review compiles the current therapeutic strategies targeting CD133 and discusses their prognostic potential in various cancer subtypes.
Collapse
Affiliation(s)
- Paige M Glumac
- Department of Pharmacology, University of Minnesota Medical School, Nils Hasselmo Hall 3-104, 312 Church St. SE, Minneapolis, MN, 55455, USA
| | - Aaron M LeBeau
- Department of Pharmacology, University of Minnesota Medical School, Nils Hasselmo Hall 3-104, 312 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Krause M, Dubrovska A, Linge A, Baumann M. Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments. Adv Drug Deliv Rev 2017; 109:63-73. [PMID: 26877102 DOI: 10.1016/j.addr.2016.02.002] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/05/2016] [Accepted: 02/03/2016] [Indexed: 12/26/2022]
Abstract
Inactivation of cancer stem cells (CSCs) is of utmost importance for tumor cure after radiotherapy. An increasing body of evidence complies with a higher radioresistance of CSCs compared to the mass of tumor cells, supporting the use of CSC related biomarkers for prediction of radiotherapy outcome. Treatment individualization strategies for patient groups with vastly different risk of recurrence will most likely require application of more than one biomarker. Specifically, inclusion of established biomarkers like tumor size for primary radio(chemo)therapy or human papilloma virus (HPV) infection status in head and neck squamous cell carcinoma seems to be of very high relevance. The high heterogeneity of CSC subclones along with changes of the functional behavior of individual tumors under treatment underlines the importance of the selection of the optimal timepoint(s) of biomarker evaluation, but also provides a potential therapeutic target for combined treatment approaches with irradiation.
Collapse
Affiliation(s)
- Mechthild Krause
- German Cancer Consortium (DKTK) Dresden, Germany; Dept. of Radiation Oncology, Technische Universität Dresden, Germany; OncoRay, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany.
| | - Anna Dubrovska
- German Cancer Consortium (DKTK) Dresden, Germany; OncoRay, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Annett Linge
- German Cancer Consortium (DKTK) Dresden, Germany; Dept. of Radiation Oncology, Technische Universität Dresden, Germany; OncoRay, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Michael Baumann
- German Cancer Consortium (DKTK) Dresden, Germany; Dept. of Radiation Oncology, Technische Universität Dresden, Germany; OncoRay, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany
| |
Collapse
|
16
|
Han B, Liu SH, Guo WD, Zhang B, Wang JP, Cao YK, Liu J. Notch1 downregulation combined with interleukin-24 inhibits invasion and migration of hepatocellular carcinoma cells. World J Gastroenterol 2015; 21:9727-9735. [PMID: 26361419 PMCID: PMC4562956 DOI: 10.3748/wjg.v21.i33.9727] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/06/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To confirm the anti-invasion and anti-migration effects of down-regulation of Notch1 combined with interleukin (IL)-24 in hepatocellular carcinoma (HCC) cells.
METHODS: γ-secretase inhibitors (GSIs) were used to down-regulate Notch1. HepG2 and SMMC7721 cells were seeded in 96-well plates and treated with GSI-I or/and IL-24 for 48 h. Cell viability was measured by MTT assay. The cellular and nuclear morphology was observed under a fluorescence microscope. To further verify the apoptotic phenotype, cell cultures were also analyzed by flow cytometry with Annexin V-FITC/propidium iodide staining. The expression of Notch1, SNAIL1, SNAIL2, E-cadherin, IL-24, XIAP and VEGF was detected by Western blot. The invasion and migration capacities of HCC cells were detected by wound healing assays. Notch1 and Snail were down-regulated by RNA interference, and the target proteins were analyzed by Western blot. To investigate the mechanism of apoptosis, we analyzed HepG2 cells treated with siNotch1 or siCON plus IL-24 or not for 48 h by caspase-3/7 activity luminescent assay.
RESULTS: GSI-I at a dose of 2.5 μmol/L for 24 h caused a reduction in cell viability of about 38% in HepG2 cells. The addition of 50 ng/mL IL-24 in combination with 1 or 2.5 μmol/L GSI-I reduced cell viability of about 30% and 15%, respectively. Treatment with IL-24 alone did not induce any cytotoxic effect. In SMMC7721 cells with the addition of IL-24 to GSI-I (2.5 μmol/L), the reduction of cell viability was only about 25%. Following GSI-I/IL-24 combined treatment for 6 h, the apoptotic rate of HepG2 cells was 47.2%, while no significant effect was observed in cells treated with the compounds employed separately. Decreased expression of Notch1 and its associated proteins SNAIL1 and SNAIL2 was detected in HepG2 cells. Increased E-cadherin protein expression was noted in the presence of IL-24 and GSI-I. Furthermore, the increased GSI-I and IL-24 in HepG2 cell was associated with downregulation of MMP-2, XIAP and VEGF. In the absence of treatment, HepG2 cells could migrate into the scratched space in 24 h. With IL-24 or GSI-I treatment, the wound was still open after 24 h. And the distance of the wound closure strongly correlated with the concentrations of IL-24 and GSI-I. Treatment of Notch-1 silenced HepG2 cells with 50 ng/mL IL-24 alone for 48 h induced cytotoxic effects very similar to those observed in non-silenced cells treated with GSI-I/IL-24 combination. Caspase-3/7 activity was increased in the presence of siNotch1 plus IL-24 treatment.
CONCLUSION: Down-regulation of Notch1 by GSI-I or siRNA combined with IL-24 can sensitize apoptosis and decrease the invasion and migration capabilities of HepG2 cells.
Collapse
|
17
|
Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 2015; 12:527-40. [PMID: 26122185 DOI: 10.1038/nrclinonc.2015.120] [Citation(s) in RCA: 496] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The past 20 years have seen dramatic changes in the delivery of radiation therapy, but the impact of radiobiology on the clinic has been far less substantial. A major consideration in the use of radiotherapy has been on how best to exploit differences between the tumour and host tissue characteristics, which in the past has been achieved empirically by radiation-dose fractionation. New advances are uncovering some of the mechanistic processes that underlie this success story. In this Review, we focus on how these processes might be targeted to improve the outcome of radiotherapy at the individual patient level. This approach would seem a more productive avenue of treatment than simply trying to increase the radiation dose delivered to the tumour.
Collapse
Affiliation(s)
- Dörthe Schaue
- Department of Radiation Oncology, Room B3-109, Center for Health Sciences, Westwood, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA
| | - William H McBride
- Department of Radiation Oncology, Room B3-109, Center for Health Sciences, Westwood, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA
| |
Collapse
|
18
|
Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152:63-82. [PMID: 25944528 DOI: 10.1016/j.pharmthera.2015.05.005] [Citation(s) in RCA: 536] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022]
Abstract
Each year, about 5-6 cases out of 100,000 people are diagnosed with primary malignant brain tumors, of which about 80% are malignant gliomas (MGs). Glioblastoma multiforme (GBM) accounts for more than half of MG cases. They are associated with high morbidity and mortality. Despite current multimodality treatment efforts including maximal surgical resection if feasible, followed by a combination of radiotherapy and/or chemotherapy, the median survival is short: only about 15months. A deeper understanding of the pathogenesis of these tumors has presented opportunities for newer therapies to evolve and an expectation of better control of this disease. Lately, efforts have been made to investigate tumor resistance, which results from complex alternate signaling pathways, the existence of glioma stem-cells, the influence of the blood-brain barrier as well as the expression of 0(6)-methylguanine-DNA methyltransferase. In this paper, we review up-to-date information on MGs treatment including current approaches, novel drug-delivering strategies, molecular targeted agents and immunomodulative treatments, and discuss future treatment perspectives.
Collapse
Affiliation(s)
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, University of Athens, Athens, Greece.
| |
Collapse
|
19
|
Chen W, Hu GH. Biomarkers for enhancing the radiosensitivity of nasopharyngeal carcinoma. Cancer Biol Med 2015; 12:23-32. [PMID: 25859408 PMCID: PMC4383846 DOI: 10.7497/j.issn.2095-3941.2014.0015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/07/2015] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy. The incidence of NPC is higher in Southern China and Southeast Asia compared with Western countries. Given its high radiosensitivity, the standard treatment for NPC is radiotherapy. However, radioresistance remains a serious obstacle to successful treatment. Radioresistance can cause local recurrence and distant metastases in some patients after treatment by radiation. Thus, special emphasis has been given to the discovery of effective radiosensitizers. This review aims to discuss the biomarkers, classified according to the main mechanisms of radiosensitization, which can enhance the sensitivity of NPC cells to ionizing radiation.
Collapse
Affiliation(s)
- Wei Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guo-Hua Hu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
20
|
Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones. Trends Pharmacol Sci 2015; 36:236-52. [PMID: 25799457 DOI: 10.1016/j.tips.2015.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
Abstract
Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.
Collapse
|
21
|
γ-secretase inhibitor DAPT sensitizes t-AUCB-induced apoptosis of human glioblastoma cells in vitro via blocking the p38 MAPK/MAPKAPK2/Hsp27 pathway. Acta Pharmacol Sin 2014; 35:825-31. [PMID: 24793313 DOI: 10.1038/aps.2013.195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/12/2013] [Indexed: 12/27/2022]
Abstract
AIM Trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) is a soluble epoxide hydrolase inhibitor that suppresses glioblastoma cell growth in vitro. The aim of this study was to examine whether the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) could sensitize glioma cells to t-AUCB-induced apoptosis. METHODS Both U251 and U87 human glioblastoma cell lines were tested. Cell growth was assessed using the cell counting kit-8. Cell apoptosis was detected with caspase-3 activity assay kits and flow cytometry. The protein levels in the p38 MAPK/MAPKAPK2/Hsp27 pathway in the cells were analyzed using Western blots. RESULTS Pretreatment with DAPT (2 μmol/L) substantially potentiated the growth inhibition caused by t-AUCB (200 μmol/L) in U251 and U87 cells. Furthermore, pretreatment with DAPT markedly increased t-AUCB-induced apoptosis of U251 and U87 cells. T-AUCB alone did not significant affect caspase-3 activity in the cells, but t-AUCB plus DAPT pretreatment caused significant increase of caspase-3 activity. Furthermore, pretreatment with DAPT completely blocked t-AUCB-induced phosphorylation of p38 MAPK, MAPKAPK2 and Hsp27 in the cells. CONCLUSION The γ-secretase inhibitor DAPT sensitizes t-AUCB-induced apoptosis of human glioblastoma cells in vitro via blocking the p38 MAPK/MAPKAPK2/Hsp27 pathway, suggesting that the combination of t-AUCB and DAPT may be a potentially effective strategy for the treatment of glioblastoma.
Collapse
|
22
|
Alqudah MAY, Agarwal S, Al-Keilani MS, Sibenaller ZA, Ryken TC, Assem M. NOTCH3 is a prognostic factor that promotes glioma cell proliferation, migration and invasion via activation of CCND1 and EGFR. PLoS One 2013; 8:e77299. [PMID: 24143218 PMCID: PMC3797092 DOI: 10.1371/journal.pone.0077299] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/30/2013] [Indexed: 12/18/2022] Open
Abstract
Using a GWA analysis of a comprehensive glioma specimen population, we identified whole gain of chromosome 19 as one of the major chromosomal aberrations that correlates to patients' outcomes. Our analysis of significant loci revealed for the first time NOTCH3 as one of the most significant amplification. NOTCH3 amplification is associated with worse outcome compared to tumors with non-amplified locus. NOTCH receptors (NOTCH1-4) are key positive regulators of cell-cell interactions, angiogenesis, cell adhesion and stem cell niche development which have been shown to play critical roles in several human cancers. Our objective is to determine the molecular roles of NOTCH3 in glioma pathogenesis and aggressiveness. Here we show for the first time that NOTCH3 plays a major role in glioma cell proliferation, cell migration, invasion and apoptosis. Therefore, our study uncovers the prognostic value and the oncogenic function of NOTCH3 in gliomagenesis and supports NOTCH3 as a promising target of therapy in high grade glioma. Our studies allowed the identification of a subset of population that may benefit from GSI- or anti-NOTCH3- based therapies. This may lead to the design of novel strategies to improve therapeutic outcome of patients with glioma by establishing medical and scientific basis for personalized chemotherapies.
Collapse
Affiliation(s)
- Mohammad A. Y. Alqudah
- Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, United States of America
| | - Supreet Agarwal
- Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, United States of America
| | - Maha S. Al-Keilani
- Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, United States of America
| | - Zita A. Sibenaller
- Department of Neurosurgery and Radiation Oncology, University of Iowa, Iowa City, Iowa, United States of America
| | - Timothy C. Ryken
- Department of Neurosurgery and Radiation Oncology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurosurgery, Iowa Spine and Brain Institute, Waterloo, Iowa, United States of America
| | - Mahfoud Assem
- Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
23
|
Kang J, Kim E, Kim W, Seong KM, Youn H, Kim JW, Kim J, Youn B. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines. J Biol Chem 2013; 288:27343-27357. [PMID: 23902763 DOI: 10.1074/jbc.m113.490482] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Radioresistance is a major cause of decreasing the efficiency of radiotherapy for non-small cell lung cancer (NSCLC). To understand the radioresistance mechanisms in NSCLC, we focused on the radiation-induced Notch-1 signaling pathway involved in critical cell fate decisions by modulating cell proliferation. In this study, we investigated the use of Notch-1-regulating flavonoid compounds as novel therapeutic drugs to regulate radiosensitivity in NSCLC cells, NCI-H1299 and NCI-H460, with different levels of radioresistance. Rhamnetin and cirsiliol were selected as candidate Notch-1-regulating radiosensitizers based on the results of assay screening for activity and pharmacological properties. Treatment with rhamnetin or cirsiliol reduced the proliferation of NSCLC cells through the suppression of radiation-induced Notch-1 expression. Indeed, rhamnetin and cirsiliol increased the expression of tumor-suppressive microRNA, miR-34a, in a p53-dependent manner, leading to inhibition of Notch-1 expression. Consequently, reduced Notch-1 expression promoted apoptosis through significant down-regulation of the nuclear factor-κB pathway, resulting in a radiosensitizing effect on NSCLC cells. Irradiation-induced epithelial-mesenchymal transition was also notably attenuated in the presence of rhamnetin and cirsiliol. Moreover, an in vivo xenograft mouse model confirmed the radiosensitizing and epithelial-mesenchymal transition inhibition effects of rhamnetin and cirsiliol we observed in vitro. In these mice, tumor volume was significantly reduced by combinational treatment with irradiation and rhamnetin or cirsiliol compared with irradiation alone. Taken together, our findings provided evidence that rhamnetin and cirsiliol can act as promising radiosensitizers that enhance the radiotherapeutic efficacy by inhibiting radiation-induced Notch-1 signaling associated with radioresistance possibly via miR-34a-mediated pathways.
Collapse
Affiliation(s)
- JiHoon Kang
- Department of Biological Sciences, Pusan National University, Busan 609-735
| | - EunGi Kim
- Department of Biological Sciences, Pusan National University, Busan 609-735
| | - Wanyeon Kim
- Department of Biological Sciences, Pusan National University, Busan 609-735
| | - Ki Moon Seong
- Division of Radiation Effect Research, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., Seoul 132-703
| | - HyeSook Youn
- Department of Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul 143-747
| | - Jung Woo Kim
- Department of Life Science and Biotechnology, Pai Chai University, Daejeon 302-735
| | - Joon Kim
- School of Life Sciences and Biotechnology and BioInstitute, Korea University, Seoul 136-701, South Korea
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan 609-735.
| |
Collapse
|
24
|
Yu SD, Liu FY, Wang QR. Notch inhibitor: a promising carcinoma radiosensitizer. Asian Pac J Cancer Prev 2013; 13:5345-51. [PMID: 23317182 DOI: 10.7314/apjcp.2012.13.11.5345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Radiotherapy is an important part of modern cancer management for many malignancies, and enhancing the radiosensitivity of tumor cells is critical for effective cancer therapies. The Notch signaling pathway plays a key role in regulation of numerous fundamental cellular processes. Further, there is accumulating evidence that dysregulated Notch activity is involved in the genesis of many human cancers. As such, Notch inhibitors are attractive therapeutic agents, although as for other anticancer agents, they exhibit significant and potential side effects. Thus, Notch inhibitors may be best used in combination with other agents or therapy. Herein, we describe evidence supporting the use of Notch inhibitors as novel and potent radiosensitizers in cancer therapy.
Collapse
Affiliation(s)
- Shu-Dong Yu
- Department of Otolaryngology, Qianfoshan Hospital Affiliated to Shandong University, Shandong, China.
| | | | | |
Collapse
|
25
|
Portanova P, Notaro A, Pellerito O, Sabella S, Giuliano M, Calvaruso G. Notch inhibition restores TRAIL-mediated apoptosis via AP1-dependent upregulation of DR4 and DR5 TRAIL receptors in MDA-MB-231 breast cancer cells. Int J Oncol 2013; 43:121-30. [PMID: 23686163 DOI: 10.3892/ijo.2013.1945] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/14/2013] [Indexed: 11/06/2022] Open
Abstract
Notch is a family of transmembrane receptors whose activation through proteolytic cleavage by γ-secretase targets genes which participate in cell development, differentiation and tumorigenesis. Notch signaling is constitutively activated in various cancers, including breast cancer and its upregulation is usually related with poor clinical outcomes. Therefore, targeting Notch signaling with γ-secretase inhibitors (GSIs) is considered a promising strategy for cancer treatment. We report that the γ-secretase inhibitor-I (GSI-I) sensitizes human breast cancer cells to apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The antiproliferative GSI-I/TRAIL synergism was stronger in ER-negative MDA-MB-231 breast cancer cells compared with ER-positive MCF-7 cells. In MDA-MB-231 cells, GSI-I treatment induced upregulation of DR4 and DR5 TRAIL receptors. This effect seemed to be related to the activation of the transcription factor AP1 that was a consequence of Notch inhibition, as demonstrated by Notch-1 silencing experiments. Combined treatment induced loss of the mitochondrial transmembrane potential and activation of caspases. GSI-I alone and/or GSI-I/TRAIL combination also induced a significant decrease in the levels of some survival factors (survivin, c-IAP-2, Bcl-xL, BimEL and pAKT) and upregulation of pro-apoptotic factors BimL, BimS and Noxa, enhancing the cytotoxic potential of the two drugs. Taken together, these results indicate for the first time that GSI-I/TRAIL combination could represent a novel and potentially effective tool for breast cancer treatment.
Collapse
Affiliation(s)
- Patrizia Portanova
- Dipartimento di Medicina traslazionale, Università del Piemonte Orientale, Novara, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Chu Q, Orr BA, Semenkow S, Bar EE, Eberhart CG. Prolonged inhibition of glioblastoma xenograft initiation and clonogenic growth following in vivo Notch blockade. Clin Cancer Res 2013; 19:3224-33. [PMID: 23630166 DOI: 10.1158/1078-0432.ccr-12-2119] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE To examine the effects of clinically relevant pharmacologic Notch inhibition on glioblastoma xenografts. EXPERIMENTAL DESIGN Murine orthotopic xenografts generated from temozolomide-sensitive and -resistant glioblastoma neurosphere lines were treated with the γ-secretase inhibitor MRK003. Tumor growth was tracked by weekly imaging, and the effects on animal survival and tumor proliferation were assessed, along with the expression of Notch targets, stem cell, and differentiation markers, and the biology of neurospheres isolated from previously treated xenografts and controls. RESULTS Weekly MRK003 therapy resulted in significant reductions in growth as measured by imaging, as well as prolongation of survival. Microscopic examination confirmed a statistically significant reduction in cross-sectional tumor area and mitotic index in a MRK003-treated cohort as compared with controls. Expression of multiple Notch targets was reduced in the xenografts, along with neural stem/progenitor cell markers, whereas glial differentiation was induced. Neurospheres derived from MRK003-treated xenografts exhibited reduced clonogenicity and formed less aggressive secondary xenografts. Neurospheres isolated from treated xenografts remained sensitive to MRK003, suggesting that therapeutic resistance does not rapidly arise during in vivo Notch blockade. CONCLUSIONS Weekly oral delivery of MRK003 results in significant in vivo inhibition of Notch pathway activity, tumor growth, stem cell marker expression, and clonogenicity, providing preclinical support for the use of such compounds in patients with malignant brain tumors. Some of these effects can persist for some time after in vivo therapy is complete.
Collapse
Affiliation(s)
- Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|
27
|
Rivera M, Sukhdeo K, Yu J. Ionizing radiation in glioblastoma initiating cells. Front Oncol 2013; 3:74. [PMID: 23579692 PMCID: PMC3619126 DOI: 10.3389/fonc.2013.00074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/23/2013] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a median survival of 12-15 months with treatment consisting of surgical resection followed by ionizing radiation (IR) and chemotherapy. Even aggressive treatment is often palliative due to near universal recurrence. Therapeutic resistance has been linked to a subpopulation of GBM cells with stem cell-like properties termed GBM initiating cells (GICs). Recent efforts have focused on elucidating resistance mechanisms activated in GICs in response to IR. Among these, GICs preferentially activate the DNA damage response (DDR) to result in a faster rate of double-strand break (DSB) repair induced by IR as compared to the bulk tumor cells. IR also activates NOTCH and the hepatic growth factor (HGF) receptor, c-MET, signaling cascades that play critical roles in promoting proliferation, invasion, and resistance to apoptosis. These pathways are preferentially activated in GICs and represent targets for pharmacologic intervention. While IR provides the benefit of improved survival, it paradoxically promotes selection of more malignant cellular phenotypes of GBM. As reviewed here, finding effective combinations of radiation and molecular inhibitors to target GICs and non-GICs is essential for the development of more effective therapies.
Collapse
Affiliation(s)
- Maricruz Rivera
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA ; Department of Molecular Medicine, Lerner College of Medicine of Case Western Reserve University Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
28
|
GSI-I has a better effect in inhibiting hepatocellular carcinoma cell growth than GSI-IX, GSI-X, or GSI-XXI. Anticancer Drugs 2012; 23:683-90. [PMID: 22569108 DOI: 10.1097/cad.0b013e3283549a22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Current studies are ongoing to find new drugs for the treatment of hepatocellular carcinoma (HCC). The discovery of drugs depends on the identification of molecules that can play essential roles in the development of liver cancer, for example, Notch pathway molecules. γ-Secretase inhibitors (GSIs) can inhibit the cleavage of intramembranous substrates of all Notch receptors and subsequently suppress Notch signaling. However, whether the inhibition of the Notch pathway can suppress or promote HCC growth is still under debate. In this study, we examined the expression of Notch pathway molecules in 20 pairs of HCC tissue with their normal counterparts and a panel of eight HCC cell lines. We also determined the effects of different types of GSI treatments on the cell growth of those HCC cell lines. Our results showed that the molecules of the Notch pathway were expressed in six of the eight HCC cell lines. Those six HCC cell lines were more sensitive to GSI-I treatment than the nonexpression ones. Among the four inhibitors, GSI-X and GSI-XXI exerted no effect on HCC cells growth at all. GSI-IX inhibited the growth of four HCC cell lines at 40 μmol/l. In contrast, most of these HCC cell lines were susceptible to a low concentration of GSI-I (1.2 μmol/l) treatment. The suppressive effect of GSI-I on cell growth was because of the inhibition of C-Myc, a Notch target gene. In addition, 80% (16/20) of the specimens showed either an increased expression of at least one Notch receptor or an augmented expression of Jagged1 compared with their normal counterparts. Our study reports for the first time that different kinds of GSIs can block the growth of several HCC cell lines. Our finding suggests that GSI-I is a potential chemical reagent and warrants additional testing in liver cancer therapeutics.
Collapse
|
29
|
Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, Kunz-Schughart LA. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol 2012; 229:355-78. [DOI: 10.1002/path.4086] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/30/2012] [Accepted: 08/04/2012] [Indexed: 12/11/2022]
Affiliation(s)
- Philipp Grosse-Gehling
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Christine A Fargeas
- Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD); Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Claudia Dittfeld
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Yvette Garbe
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Malcolm R Alison
- Blizard Institute; Barts and The London School of Medicine and Dentistry; London; UK
| | - Denis Corbeil
- Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD); Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Leoni A Kunz-Schughart
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| |
Collapse
|
30
|
Bessette B, Durand K, Giraud S, Bégaud G, Mathonnet M, Lalloué F. Decrease in Fas-induced apoptosis by the γ-secretase inhibitor is dependent on p75(NTR) in a glioblastoma cell line. Exp Ther Med 2012; 3:873-877. [PMID: 22969985 DOI: 10.3892/etm.2012.480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/17/2012] [Indexed: 11/06/2022] Open
Abstract
p75(NTR), a member of the tumor necrosis factor superfamily, plays a key role in numerous physiological processes, including cell survival or apoptosis. Yet, the associated signaling pathways remain poorly understood. Similar to Notch, γ-secretase cleavage is implicated in the p75(NTR) signaling pathway leading to nuclear translocation of the intracellular domain and cell death. Fas receptor activation was found to promote cell death apoptosis in several cell lines. The goal of this study was to determine the respective role of p75(NTR) and Notch in the resistance to Fas-induced apoptosis in the U-87 MG glioblastoma cell line. Using the γ-secretase inhibitor, we investigated the modulation of Fas-induced apoptosis dependent on p75(NTR)-Fas receptor interaction. Whereas the U-87 MG cells expressed the Fas receptor at the cell membrane, apoptosis induced by Fas activation was decreased by the γ-secretase inhibitor. These data suggest that γ-secretase is implicated in p75(NTR) and Fas interaction leading to cell death signaling.
Collapse
Affiliation(s)
- Barbara Bessette
- University of Limoges, EA3842, 'Cellular Homeostasis and Pathology', Faculty of Medicine, 87025 Limoges Cedex
| | | | | | | | | | | |
Collapse
|
31
|
Wu Q, Wang X. Neuronal stem cells in the central nervous system and in human diseases. Protein Cell 2012; 3:262-70. [PMID: 22528753 DOI: 10.1007/s13238-012-2930-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 01/06/2023] Open
Abstract
The process of cortical expansion in the central nervous system is a key step of mammalian brain development to ensure its physiological function. Radial glial (RG) cells are a glial cell type contributing to this progress as intermediate neural progenitor cells responsible for an increase in the number of cortical neurons. In this review, we discuss the current understanding of RG cells during neurogenesis and provide further information on the mechanisms of neurodevelopmental diseases and stem cell-related brain tumorigenesis. Knowledge of neuronal stem cell and relative diseases will bridge benchmark research through translational studies to clinical therapeutic treatments of these diseases.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | | |
Collapse
|
32
|
Westphal M, Lamszus K. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 2011; 12:495-508. [PMID: 21811295 DOI: 10.1038/nrn3060] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gliomas are the most common type of primary brain tumour and are often fast growing with a poor prognosis for the patient. Their complex cellular composition, diffuse invasiveness and capacity to escape therapies has challenged researchers for decades and hampered progress towards an effective treatment. Recent molecular characterization of tumour cells combined with new insights into cellular diversification that occurs during development, and the modelling of these processes in transgenic animals have enabled a more detailed understanding of the events that underlie gliomagenesis. Combining this enhanced understanding of the relationship between neural stem cell biology and the cell lineage relationships of tumour cells with model systems offers new opportunities to develop specific and effective therapies.
Collapse
Affiliation(s)
- Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | |
Collapse
|