1
|
Colvee-Martin H, Parra JR, Gonzalez GA, Barker W, Duara R. Neuropathology, Neuroimaging, and Fluid Biomarkers in Alzheimer's Disease. Diagnostics (Basel) 2024; 14:704. [PMID: 38611617 PMCID: PMC11012058 DOI: 10.3390/diagnostics14070704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 04/14/2024] Open
Abstract
An improved understanding of the pathobiology of Alzheimer's disease (AD) should lead ultimately to an earlier and more accurate diagnosis of AD, providing the opportunity to intervene earlier in the disease process and to improve outcomes. The known hallmarks of Alzheimer's disease include amyloid-β plaques and neurofibrillary tau tangles. It is now clear that an imbalance between production and clearance of the amyloid beta protein and related Aβ peptides, especially Aβ42, is a very early, initiating factor in Alzheimer's disease (AD) pathogenesis, leading to aggregates of hyperphosphorylation and misfolded tau protein, inflammation, and neurodegeneration. In this article, we review how the AD diagnostic process has been transformed in recent decades by our ability to measure these various elements of the pathological cascade through the use of imaging and fluid biomarkers. The more recently developed plasma biomarkers, especially phosphorylated-tau217 (p-tau217), have utility for screening and diagnosis of the earliest stages of AD. These biomarkers can also be used to measure target engagement by disease-modifying therapies and the response to treatment.
Collapse
Affiliation(s)
- Helena Colvee-Martin
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (H.C.-M.); (W.B.)
| | - Juan Rayo Parra
- Human & Molecular Genetics, Florida International University, Miami, FL 33199, USA; (J.R.P.); (G.A.G.)
| | - Gabriel Antonio Gonzalez
- Human & Molecular Genetics, Florida International University, Miami, FL 33199, USA; (J.R.P.); (G.A.G.)
| | - Warren Barker
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (H.C.-M.); (W.B.)
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (H.C.-M.); (W.B.)
| |
Collapse
|
2
|
Pais MV, Forlenza OV, Diniz BS. Plasma Biomarkers of Alzheimer's Disease: A Review of Available Assays, Recent Developments, and Implications for Clinical Practice. J Alzheimers Dis Rep 2023; 7:355-380. [PMID: 37220625 PMCID: PMC10200198 DOI: 10.3233/adr-230029] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Recently, low-sensitive plasma assays have been replaced by new ultra-sensitive assays such as single molecule enzyme-linked immunosorbent assay (Simoa), the Mesoscale Discovery (MSD) platform, and immunoprecipitation-mass spectrometry (IP-MS) with higher accuracy in the determination of plasma biomarkers of Alzheimer's disease (AD). Despite the significant variability, many studies have established in-house cut-off values for the most promising available biomarkers. We first reviewed the most used laboratory methods and assays to measure plasma AD biomarkers. Next, we review studies focused on the diagnostic performance of these biomarkers to identify AD cases, predict cognitive decline in pre-clinical AD cases, and differentiate AD cases from other dementia. We summarized data from studies published until January 2023. A combination of plasma Aβ42/40 ratio, age, and APOE status showed the best accuracy in diagnosing brain amyloidosis with a liquid chromatography-mass spectrometry (LC-MS) assay. Plasma p-tau217 has shown the best accuracy in distinguishing Aβ-PET+ from Aβ-PET-even in cognitively unimpaired individuals. We also summarized the different cut-off values for each biomarker when available. Recently developed assays for plasma biomarkers have undeniable importance in AD research, with improved analytical and diagnostic performance. Some biomarkers have been extensively used in clinical trials and are now clinically available. Nonetheless, several challenges remain to their widespread use in clinical practice.
Collapse
Affiliation(s)
- Marcos V. Pais
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo, SP, Brazil
| | - Orestes V. Forlenza
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo, SP, Brazil
| | - Breno S. Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
3
|
Fan F, Zou Y, Fang Y, Li P, Xia J, Shen X, Liu Q, Hu Q. Potential neuroprotection of wheat alkylresorcinols in hippocampal neurons via Nrf2/ARE pathway. Food Funct 2020; 11:10161-10169. [PMID: 33155602 DOI: 10.1039/d0fo02285c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
5-n-Alkylresorcinols (ARs) are abundant in wheat bran and potentially antioxidative, although the neuroprotective mechanism is not fully understood. The neuroprotective effect of wheat bran ARs on H2O2-induced neuronal cells and the relationship between neuroprotection and the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant-response element (ARE) pathway were investigated in this study. Seven homologs were identified in the purified ARs by high-performance liquid chromatography-tandem mass spectrometry. Pretreatment with 80 μg mL-1 ARs alleviated 23% HT22 cell death and the up-regulation of intracellular reactive oxygen species level and malondialdehyde under H2O2 stimulation. The neuroprotection effect was proved by the increase in the Nrf2 nuclear location and up-regulation of mRNA and protein expressions of heme oxygenase-1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier subunit l. Wheat bran ARs displayed a neuroprotective function, possibly by promoting the endogenous antioxidant defense system. ARs may be regarded as a functional food ingredient for preventing neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zuccarello E, Acquarone E, Calcagno E, Argyrousi EK, Deng SX, Landry DW, Arancio O, Fiorito J. Development of novel phosphodiesterase 5 inhibitors for the therapy of Alzheimer's disease. Biochem Pharmacol 2020; 176:113818. [PMID: 31978378 DOI: 10.1016/j.bcp.2020.113818] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a gaseous molecule that plays a multifactorial role in several cellular processes. In the central nervous system, the NO dual nature in neuroprotection and neurotoxicity has been explored to unveil its involvement in Alzheimer's disease (AD). A growing body of research shows that the activation of the NO signaling pathway leading to the phosphorylation of the transcription factor cyclic adenine monophosphate responsive element binding protein (CREB) (so-called NO/cGMP/PKG/CREB signaling pathway) ameliorates altered neuroplasticity and memory deficits in AD animal models. In addition to NO donors, several other pharmacological agents, such as phosphodiesterase 5 (PDE5) inhibitors have been used to activate the pathway and rescue memory disorders. PDE5 inhibitors, including sildenafil, tadalafil and vardenafil, are marketed for the treatment of erectile dysfunction and arterial pulmonary hypertension due to their vasodilatory properties. The ability of PDE5 inhibitors to interfere with the NO/cGMP/PKG/CREB signaling pathway by increasing the levels of cGMP has prompted the hypothesis that PDE5 inhibition might be used as an effective therapeutic strategy for the treatment of AD. To this end, newly designed PDE5 inhibitors belonging to different chemical classes with improved pharmacologic profile (e.g. higher potency, improved selectivity, and blood-brain barrier penetration) have been synthesized and evaluated in several animal models of AD. In addition, recent medicinal chemistry effort has led to the development of agents concurrently acting on the PDE5 enzyme and a second target involved in AD. Both marketed and investigational PDE5 inhibitors have shown to reverse cognitive defects in young and aged wild type mice as well as transgenic mouse models of AD and tauopathy using a variety of behavioral tasks. These studies confirmed the therapeutic potential of PDE5 inhibitors as cognitive enhancers. However, clinical studies assessing cognitive functions using marketed PDE5 inhibitors have not been conclusive. Drug discovery efforts by our group and others are currently directed towards the development of novel PDE5 inhibitors tailored to AD with improved pharmacodynamic and pharmacokinetic properties. In summary, the present perspective reports an overview of the correlation between the NO signaling and AD, as well as an outline of the PDE5 inhibitors used as an alternative approach in altering the NO pathway leading to an improvement of learning and memory. The last two sections describe the preclinical and clinical evaluation of PDE5 inhibitors for the treatment of AD, providing a comprehensive analysis of the current status of the AD drug discovery efforts involving PDE5 as a new therapeutic target.
Collapse
Affiliation(s)
- Elisa Zuccarello
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Erica Acquarone
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elisa Calcagno
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY, United States
| | - Donald W Landry
- Department of Medicine, Columbia University, New York, NY, United States
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States; Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.
| | - Jole Fiorito
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, United States.
| |
Collapse
|
5
|
Guzman-Martinez L, Maccioni RB, Farías GA, Fuentes P, Navarrete LP. Biomarkers for Alzheimer’s Disease. Curr Alzheimer Res 2019; 16:518-528. [DOI: 10.2174/1567205016666190517121140] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Alzheimer´s disease (AD) and related forms of dementia are increasingly affecting the aging population throughout the world, at an alarming rate. The World Alzheimer´s Report indicates a prevalence of 46.8 million people affected by AD worldwide. As population ages, this number is projected to triple by 2050 unless effective interventions are developed and implemented. Urgent efforts are required for an early detection of this disease. The ultimate goal is the identification of viable targets for the development of molecular markers and validation of their use for early diagnosis of AD that may improve treatment and the disease outcome in patients. The diagnosis of AD has been difficult to resolve since approaches for early and accurate detection and follow-up of AD patients at the clinical level have been reported only recently. Some proposed AD biomarkers include the detection of pathophysiological processes in the brain in vivo with new imaging techniques and novel PET ligands, and the determination of pathogenic proteins in cerebrospinal fluid showing anomalous levels of hyperphosphorylated tau and low Aβ peptide. These biomarkers have been increasingly accepted by AD diagnostic criteria and are important tools for the design of clinical trials, but difficulties in accessibility to costly and invasive procedures have not been completely addressed in clinical settings. New biomarkers are currently being developed to allow determinations of multiple pathological processes including neuroinflammation, synaptic dysfunction, metabolic impairment, protein aggregation and neurodegeneration. Highly specific and sensitive blood biomarkers, using less-invasive procedures to detect AD, are derived from the discoveries of peripheric tau oligomers and amyloid variants in human plasma and platelets. We have also developed a blood tau biomarker that correlates with a cognitive decline and also with neuroimaging determinations of brain atrophy.
Collapse
|
6
|
Akingbade OES, Gibson C, Kalaria RN, Mukaetova-Ladinska EB. Platelets: Peripheral Biomarkers of Dementia? J Alzheimers Dis 2019; 63:1235-1259. [PMID: 29843245 DOI: 10.3233/jad-180181] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dementia continues to be the most burdening neurocognitive disorder, having a negative impact on the lives of millions. The search for biomarkers to improve the clinical diagnosis of dementia is ongoing, with the focus on effective use of readily accessible peripheral markers. In this review, we concentrate on platelets as biomarkers of dementia and analyze their potential as easily-accessible clinical biomarkers for various subtypes of dementia. Current platelet protein biomarkers that have been investigated for their clinical utility in the diagnosis of dementia, in particular Alzheimer's disease, include amyloid-β protein precursor (AβPP), the AβPP secretases (BACE1 and ADAM10), α-synuclein, tau protein, serotonin, cholesterol, phospholipases, clusterin, IgG, surface receptors, MAO-B, and coated platelets. Few of them, i.e., platelet tau, AβPP (particularly with regards to coated platelets) and secreted ADAM10 and BACE1 show the most promise to be taken forward into clinical setting to diagnose dementia. Aside from protein biomarkers, changes in factors such as mean platelet volume have the potential to play a very specific role in both the dementia diagnosis and prognosis. This review raises a number of research questions for consideration before application of the above biomarkers to routine clinical setting. It is without doubt that there is a need for more clarification on the effects of dementia on platelet morphology and protein content before these changes can be clinically applied as dementia biomarkers and explored further in differentiating distinct dementia subtypes.
Collapse
Affiliation(s)
- Oluwatomi E S Akingbade
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK.,School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Claire Gibson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Elizabeta B Mukaetova-Ladinska
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK.,Evington Centre, Leicester General Hospital, Leicester, UK
| |
Collapse
|
7
|
Guzmán-Martínez L, Tapia JP, Farías GA, González A, Estrella M, Maccioni RB. The Alz-tau Biomarker for Alzheimer's Disease: Study in a Caucasian Population. J Alzheimers Dis 2019; 67:1181-1186. [PMID: 30775977 DOI: 10.3233/jad-180637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The establishment of a molecular biomarker for early detection of Alzheimer's disease (AD) is critical for diagnosis and follow up of patients, and as a quantitative parameter in the evaluation of potential new drugs to control AD. A list of blood biomarkers has been reported but none has been validated for the Alzheimer's clinic. The changes in hyperphosphorylated tau and amyloid peptide in the cerebrospinal fluid is currently used as a tool in the clinics and for research purposes, but this method is highly invasive. Recently, we reported a non-invasive and reliable blood biomarker that correlates the increase in the ratio of heavy tau (HMWtau) and the low molecular weight tau (LMWtau) in human platelets and the decrease in the brain volume as measured by structural MRI. This molecular marker has been named Alz-tau®. Beyond the clinical trials developed with a Latin American population, the present study focuses on an evaluation of this biomarker in a Caucasian population. We examined 36 AD patients and 15 cognitively normal subjects recruited in Barcelona, Spain. Tau levels in platelets were determined by immunoreactivity and the cognitive status by using GDS and MMSE neuropsychological tests. The HMW/LMW tau ratio was statistically different between controls and AD patients. A high correlation was found between the increase in MMSE scores and HMW/LMW tau ratio. This study showed that this ratio is significantly higher in AD patients than controls. Moreover, this study on a peripheral marker of AD is valuable to understanding the AD pathogenesis.
Collapse
Affiliation(s)
- Leonardo Guzmán-Martínez
- Laboratory of Neuroscience, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - José Pablo Tapia
- Laboratory of Neuroscience, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Gonzalo A Farías
- Department of Neurology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Andrea González
- Laboratory of Neuroscience, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Matías Estrella
- Laboratory of Neuroscience, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neuroscience, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile.,Department of Neurology, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Rafique W, Kramer V, Pardo T, Smits R, Spilhaug MM, Hoepping A, Savio E, Engler H, Kuljs R, Amaral H, Riss PJ. Image-Guided Development of Heterocyclic Sulfoxides as Ligands for Tau Neurofibrillary Tangles: From First-in-Man to Second-Generation Ligands. ACS OMEGA 2018; 3:7567-7579. [PMID: 30087917 PMCID: PMC6068598 DOI: 10.1021/acsomega.8b00975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Positron emission tomography (PET) imaging of misfolded protein aggregates that form in neurodegenerative processes of the brain is key to providing a robust marker for improved diagnosis and evaluation of treatments. We report the development of advanced radiotracer candidates based on the sulfoxide scaffold found in proton pump inhibitors (lansoprazole, prevacid) with inherent affinity to neurofibrillary tangles in Alzheimer's disease and related disorders (e.g., dementia with Lewy bodies and the frontotemporal degeneration syndrome). First-in-man results obtained with [18F]lansoprazole and N-methyl-[18F]lansoprazole were used to guide the design of a set of 24 novel molecules with suitable properties for neuroimaging with PET. Compounds were synthesized and characterized pharmacologically, and the binding affinity of the compounds to synthetic human tau-441 fibrils was determined. Selectivity of binding was assessed using α-synuclein and β-amyloid fibrils to address the key misfolded proteins of relevance in dementia. To complete the pharmacokinetic profiling in vitro, plasma protein binding and lipophilicity were investigated. Highly potent and selective new radiotracer candidates were identified for further study.
Collapse
Affiliation(s)
- Waqas Rafique
- Realomics
SRI, Kjemisk Institutt, Universitetet i
Oslo, Sem Sælands
vei 26, Kjemibygningen, 0371 Oslo, Norway
| | - Vasko Kramer
- Positronpharma
SA, Rancagua 878, 7500921 Providencia, Santiago, Chile
- Center
of Nuclear Medicine Positronmed, Julio Prado 714, 7501068 Providencia, Santiago, Chile
| | - Tania Pardo
- Departamento
de Montevideo, Uruguayan Centre of Molecular
Imaging (CUDIM), Av.
Dr. Américo Ricaldoni 2010, 11600 Montevideo, Uruguay
| | - René Smits
- Advanced
Biochemical Compounds GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany
| | - Mona M. Spilhaug
- Realomics
SRI, Kjemisk Institutt, Universitetet i
Oslo, Sem Sælands
vei 26, Kjemibygningen, 0371 Oslo, Norway
| | - Alexander Hoepping
- Advanced
Biochemical Compounds GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany
| | - Eduardo Savio
- Departamento
de Montevideo, Uruguayan Centre of Molecular
Imaging (CUDIM), Av.
Dr. Américo Ricaldoni 2010, 11600 Montevideo, Uruguay
| | - Henry Engler
- Departamento
de Montevideo, Uruguayan Centre of Molecular
Imaging (CUDIM), Av.
Dr. Américo Ricaldoni 2010, 11600 Montevideo, Uruguay
| | - Rodrigo Kuljs
- Zdrav
Mozak Clinical Neuroscience Center, Julio Prado 714, 7501068 Providencia, Santiago, Chile
| | - Horacio Amaral
- Positronpharma
SA, Rancagua 878, 7500921 Providencia, Santiago, Chile
- Center
of Nuclear Medicine Positronmed, Julio Prado 714, 7501068 Providencia, Santiago, Chile
| | - Patrick J. Riss
- Realomics
SRI, Kjemisk Institutt, Universitetet i
Oslo, Sem Sælands
vei 26, Kjemibygningen, 0371 Oslo, Norway
- Klinik
for Kirurgi og Nevrofag, Oslo Universitets
Sykehus HF—Rikshospitalet, Postboks
4950 Nydalen, 0424 Oslo, Norway
- Norsk
Medisinsk Syklotronsenter AS, Gaustad,
Postboks 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
9
|
Maynard S, Hejl AM, Dinh TST, Keijzers G, Hansen ÅM, Desler C, Moreno-Villanueva M, Bürkle A, Rasmussen LJ, Waldemar G, Bohr VA. Defective mitochondrial respiration, altered dNTP pools and reduced AP endonuclease 1 activity in peripheral blood mononuclear cells of Alzheimer's disease patients. Aging (Albany NY) 2016; 7:793-815. [PMID: 26539816 PMCID: PMC4637207 DOI: 10.18632/aging.100810] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS Accurate biomarkers for early diagnosis of Alzheimer's disease (AD) are badly needed. Recent reports suggest that dysfunctional mitochondria and DNA damage are associated with AD development. In this report, we measured various cellular parameters, related to mitochondrial bioenergetics and DNA damage, in peripheral blood mononuclear cells (PBMCs) of AD and control participants, for biomarker discovery. METHODS PBMCs were isolated from 53 patients with AD of mild to moderate degree and 30 age-matched healthy controls. Tests were performed on the PBMCs from as many of these participants as possible. We measured glycolysis and mitochondrial respiration fluxes using the Seahorse Bioscience flux analyzer, mitochondrial ROS production using flow cytometry, dNTP levels by way of a DNA polymerization assay, DNA strand breaks using the Fluorometric detection of Alkaline DNA Unwinding (FADU) assay, and APE1 incision activity (in cell lysates) on a DNA substrate containing an AP site (to estimate DNA repair efficiency). RESULTS In the PBMCs of AD patients, we found reduced basal mitochondrial oxygen consumption, reduced proton leak, higher dATP level, and lower AP endonuclease 1 activity, depending on adjustments for gender and/or age. CONCLUSIONS This study reveals impaired mitochondrial respiration, altered dNTP pools and reduced DNA repair activity in PBMCs of AD patients, thus suggesting that these biochemical activities may be useful as biomarkers for AD.
Collapse
Affiliation(s)
- Scott Maynard
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thuan-Son T Dinh
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Guido Keijzers
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Åse M Hansen
- Department of Public Health, University of Copenhagen, 1014 Copenhagen, Denmark.,The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Claus Desler
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| | - Lene J Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Gunhild Waldemar
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Vilhelm A Bohr
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark.,Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| |
Collapse
|
10
|
Jia LH, Liu YN. Downregulated serum miR-223 servers as biomarker in Alzheimer's disease. Cell Biochem Funct 2016; 34:233-7. [PMID: 27027823 DOI: 10.1002/cbf.3184] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Li-Hua Jia
- Department of Neurology, Liaocheng People's Hospital, Medical School of Liaocheng; Taishan Medical University; Liaocheng Shandong China
| | - Yi-Ning Liu
- Department of Neurology, Liaocheng People's Hospital, Medical School of Liaocheng; Taishan Medical University; Liaocheng Shandong China
| |
Collapse
|
11
|
Sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases. Arch Toxicol 2015; 89:1439-67. [DOI: 10.1007/s00204-015-1496-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 01/05/2023]
|
12
|
Zafari S, Backes C, Meese E, Keller A. Circulating Biomarker Panels in Alzheimer's Disease. Gerontology 2015; 61:497-503. [PMID: 25720553 DOI: 10.1159/000375236] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022] Open
Abstract
The early diagnosis of diseases frequently represents an important unmet clinical need supporting in-time treatment of pathologies. This also applies to neurodegenerative diseases such as Alzheimer's disease (AD), the most common form of dementia, estimated to affect millions of individuals worldwide. The respective diagnostic and prognostic markers, especially for the preclinical stages of AD, are expected to improve patients' outcome significantly. In the last decades, many approaches to detecting AD have been developed, including markers to discover changes in amyloid-β levels [from cerebrospinal fluid (CSF) or using positron emission tomography] or other brain imaging technologies such as structural magnetic resonance imaging (MRI), functional-connectivity MRI or task-related functional MRI. A major challenge is the detection of AD using minimally or even noninvasive biomarkers from body fluids such as plasma or serum. Circulating biomarker candidates based on mRNAs or proteins measured from blood cells, plasma or serum have been proposed for various pathologies including AD. As for other diseases, there is a tendency to use marker signatures obtained by high-throughput approaches, which allow the generation of profiles of hundreds to thousands of biomarkers simultaneously [microarrays, mass spectrometry or next-generation sequencing (NGS)]. Beyond mRNAs and proteins, recent approaches have measured small noncoding RNA (so-called microRNA) profiles in AD patients' blood samples using NGS or array-based technologies. Generally, the development of marker panels is in its early stages and requires further, substantial clinical validation. In this review, we provide an overview of different circulating AD biomarkers, starting with a brief summary of CSF markers and focusing on novel biomarker signatures such as small noncoding RNA profiles.
Collapse
Affiliation(s)
- Sachli Zafari
- Clinical Bioinformatics, Saarland University, Saarbrx00FC;cken, Germany
| | | | | | | |
Collapse
|
13
|
Guzmán-Martinez L, Farías GA, Maccioni RB. Tau oligomers as potential targets for Alzheimer's diagnosis and novel drugs. Front Neurol 2013; 4:167. [PMID: 24191153 PMCID: PMC3808896 DOI: 10.3389/fneur.2013.00167] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/15/2013] [Indexed: 12/14/2022] Open
Abstract
A cumulative number of approaches have been carried out to elucidate the pathogenesis of Alzheimer’s disease (AD). Tangles formation has been identified as a major event involved in the neurodegenerative process, due to the conversion of either soluble peptides or oligomers into insoluble filaments. Most of recent studies share in common the observation that formation of tau oligomers and the subsequent pathological filaments arrays is a critical step in AD etiopathogenesis. Oligomeric tau species appear to be toxic for neuronal cells, and therefore appear as an appropriate target for the design of molecules that may control morphological and functional alterations leading to cognitive impairment. Thus, current therapeutic strategies are aimed at three major types of molecules: (1) inhibitors of protein kinases and phosphatases that modify tau and that may control neuronal degeneration, (2) methylene blue, and (3) natural phytocomplexes and polyphenolics compounds able to either inhibit the formation of tau filaments or disaggregate them. Only a few polyphenolic molecules have emerged to prevent tau aggregation. In this context, fulvic acid (FA), a humic substance, has potential protective activity cognitive impairment. In fact, formation of paired helical filaments in vitro, is inhibited by FA affecting the length of fibrils and their morphology.
Collapse
Affiliation(s)
- Leonardo Guzmán-Martinez
- Laboratory of Cellular and Molecular Neurosciences, Faculty of Sciences, University of Chile , Santiago , Chile ; International Center for Biomedicine (ICC) , Santiago , Chile
| | | | | |
Collapse
|
14
|
Tan L, Yu JT, Liu QY, Tan MS, Zhang W, Hu N, Wang YL, Sun L, Jiang T, Tan L. Circulating miR-125b as a biomarker of Alzheimer's disease. J Neurol Sci 2013; 336:52-6. [PMID: 24139697 DOI: 10.1016/j.jns.2013.10.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/10/2013] [Accepted: 10/01/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous small RNAs of 21-25 nucleotides that post-transcriptionally regulate gene expressions. Recently, circulating miRNAs have been reported as promising biomarkers for neurodegenerative disorders and processes affecting the central nervous system. This study was conducted to investigate the potential role of serum miRNAs as diagnostic biomarkers for Alzheimer's disease (AD). METHODS Serum samples were obtained from 105 probable AD patients and 150 age- and gender-matched normal controls. The serum concentrations of miRNAs miR-9, miR-29a, miR-29b, miR-101, miR-125b, and miR-181c were measured with a real-time quantitative reverse transcriptase PCR (qRT-PCR) method. RESULTS We found both miR-125b and miR-181c were down-regulated while miR-9 was up-regulated in serum of AD patients compared with that of normal controls. Among the receiver operating characteristic (ROC) results, miR-125b alone showed its priority with a specificity up to 68.3% and a sensitivity of 80.8%. Importantly, miR-125b was correlated with the Mini Mental State Examination (MMSE) in AD patients. CONCLUSIONS Our results indicate that serum miR-125b may serve as a useful noninvasive biomarker for AD.
Collapse
Affiliation(s)
- Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China; Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, PR China; Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, PR China.
| | - Qiu-Yan Liu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, PR China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Nan Hu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Ying-Li Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Lei Sun
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Teng Jiang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, PR China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China; Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, PR China; Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
15
|
Prasher VP, Uppal H, Parveen S, Adams C, Haque S. Ten year serial mean corpuscular volume--a peripheral marker for Alzheimer's disease in Down syndrome. Int J Geriatr Psychiatry 2013; 28:1097-8. [PMID: 24038164 DOI: 10.1002/gps.3956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|