1
|
Chambers TL, Dimet‐Wiley A, Keeble AR, Haghani A, Lo W, Kang G, Brooke R, Horvath S, Fry CS, Watowich SJ, Wen Y, Murach KA. Methylome-proteome integration after late-life voluntary exercise training reveals regulation and target information for improved skeletal muscle health. J Physiol 2025; 603:211-237. [PMID: 39058663 PMCID: PMC11702923 DOI: 10.1113/jp286681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Exercise is a potent stimulus for combatting skeletal muscle ageing. To study the effects of exercise on muscle in a preclinical setting, we developed a combined endurance-resistance training stimulus for mice called progressive weighted wheel running (PoWeR). PoWeR improves molecular, biochemical, cellular and functional characteristics of skeletal muscle and promotes aspects of partial epigenetic reprogramming when performed late in life (22-24 months of age). In this investigation, we leveraged pan-mammalian DNA methylome arrays and tandem mass-spectrometry proteomics in skeletal muscle to provide detailed information on late-life PoWeR adaptations in female mice relative to age-matched sedentary controls (n = 7-10 per group). Differential CpG methylation at conserved promoter sites was related to transcriptional regulation genes as well as Nr4a3, Hes1 and Hox genes after PoWeR. Using a holistic method of -omics integration called binding and expression target analysis (BETA), methylome changes were associated with upregulated proteins related to global and mitochondrial translation after PoWeR (P = 0.03). Specifically, BETA implicated methylation control of ribosomal, mitoribosomal, and mitochondrial complex I protein abundance after training. DNA methylation may also influence LACTB, MIB1 and UBR4 protein induction with exercise - all are mechanistically linked to muscle health. Computational cistrome analysis predicted several transcription factors including MYC as regulators of the exercise trained methylome-proteome landscape, corroborating prior late-life PoWeR transcriptome data. Correlating the proteome to muscle mass and fatigue resistance revealed positive relationships with VPS13A and NPL levels, respectively. Our findings expose differential epigenetic and proteomic adaptations associated with translational regulation after PoWeR that could influence skeletal muscle mass and function in aged mice. KEY POINTS: Late-life combined endurance-resistance exercise training from 22-24 months of age in mice is shown to improve molecular, biochemical, cellular and in vivo functional characteristics of skeletal muscle and promote aspects of partial epigenetic reprogramming and epigenetic age mitigation. Integration of DNA CpG 36k methylation arrays using conserved sites (which also contain methylation ageing clock sites) with exploratory proteomics in skeletal muscle extends our prior work and reveals coordinated and widespread regulation of ribosomal, translation initiation, mitochondrial ribosomal (mitoribosomal) and complex I proteins after combined voluntary exercise training in a sizeable cohort of female mice (n = 7-10 per group and analysis). Multi-omics integration predicted epigenetic regulation of serine β-lactamase-like protein (LACTB - linked to tumour resistance in muscle), mind bomb 1 (MIB1 - linked to satellite cell and type 2 fibre maintenance) and ubiquitin protein ligase E3 component N-recognin 4 (UBR4 - linked to muscle protein quality control) after training. Computational cistrome analysis identified MYC as a regulator of the late-life training proteome, in agreement with prior transcriptional analyses. Vacuolar protein sorting 13 homolog A (VPS13A) was positively correlated to muscle mass, and the glycoprotein/glycolipid associated sialylation enzyme N-acetylneuraminate pyruvate lyase (NPL) was associated to in vivo muscle fatigue resistance.
Collapse
Affiliation(s)
- Toby L. Chambers
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| | | | - Alexander R. Keeble
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Amin Haghani
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
| | - Wen‐Juo Lo
- Department of Educational Statistics and Research MethodsUniversity of ArkansasFayettevilleARUSA
| | - Gyumin Kang
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Robert Brooke
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Steve Horvath
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Stanley J. Watowich
- Ridgeline TherapeuticsHoustonTXUSA
- Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Yuan Wen
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Kevin A. Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
2
|
Xu Q, Li J, Wu Y, Zhou W, Xu Z. Colorectal Cancer Chemotherapy Drug Bevacizumab May Induce Muscle Atrophy Through CDKN1A and TIMP4. Front Oncol 2022; 12:897495. [PMID: 35847900 PMCID: PMC9283830 DOI: 10.3389/fonc.2022.897495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
The muscle in the organism has the function of regulating metabolism. Long-term muscle inactivity or the occurrence of chronic inflammatory diseases are easy to induce muscle atrophy. Bevacizumab is an antiangiogenic drug that prevents the formation of neovascularization by inhibiting the activation of VEGF signaling pathway. It is used in the first-line treatment of many cancers in clinic. Studies have shown that the use of bevacizumab in the treatment of tumors can cause muscle mass loss and may induce muscle atrophy. Based on bioinformatics analysis, this study sought the relationship and influence mechanism between bevacizumab and muscle atrophy. The differences of gene and sample expression between bevacizumab treated group and control group were studied by RNA sequencing. WGCNA is used to find gene modules related to bevacizumab administration and explore biological functions through metascape. Differential analysis was used to analyze the difference of gene expression between the administration group and the control group in different muscle tissues. The key genes timp4 and CDKN1A were obtained through Venn diagram, and then GSEA was used to explore their biological functions in RNA sequencing data and geo chip data. This study studied the role of bevacizumab in muscle through the above methods, preliminarily determined that timp4 and CDKN1A may be related to muscle atrophy, and further explored their functional mechanism in bevacizumab myotoxicity.
Collapse
|
3
|
Liu Q, Deng J, Qiu Y, Gao J, Li J, Guan L, Lee H, Zhou Q, Xiao J. Non-coding RNA basis of muscle atrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1066-1078. [PMID: 34786211 PMCID: PMC8569427 DOI: 10.1016/j.omtn.2021.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle atrophy is a common complication of many chronic diseases including heart failure, cancer cachexia, aging, etc. Unhealthy habits and usage of hormones such as dexamethasone can also lead to muscle atrophy. However, the underlying mechanisms of muscle atrophy are not completely understood. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play vital roles in muscle atrophy. This review mainly discusses the regulation of ncRNAs in muscle atrophy induced by various factors such as heart failure, cancer cachexia, aging, chronic obstructive pulmonary disease (COPD), peripheral nerve injury (PNI), chronic kidney disease (CKD), unhealthy habits, and usage of hormones; highlights the findings of ncRNAs as common regulators in multiple types of muscle atrophy; and summarizes current therapies and underlying mechanisms for muscle atrophy. This review will deepen the understanding of skeletal muscle biology and provide new strategies and insights into gene therapy for muscle atrophy.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jiali Deng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Qiulian Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Nguyen MT, Min KH, Lee W. MiR-96-5p Induced by Palmitic Acid Suppresses the Myogenic Differentiation of C2C12 Myoblasts by Targeting FHL1. Int J Mol Sci 2020; 21:ijms21249445. [PMID: 33322515 PMCID: PMC7764195 DOI: 10.3390/ijms21249445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
Skeletal myogenesis is a multi-stage process that includes the cell cycle exit, myogenic transcriptional activation, and morphological changes to form multinucleated myofibers. Recent studies have shown that saturated fatty acids (SFA) and miRNAs play crucial roles in myogenesis and muscle homeostasis. Nevertheless, the target molecules and myogenic regulatory mechanisms of miRNAs are largely unknown, particularly when myogenesis is dysregulated by SFA deposition. This study investigated the critical role played by miR-96-5p on the myogenic differentiation in C2C12 myoblasts. Long-chain SFA palmitic acid (PA) significantly reduced FHL1 expression and inhibited the myogenic differentiation of C2C12 myoblasts but induced miR-96-5p expression. The knockdown of FHL1 by siRNA stimulated cell proliferation and inhibited myogenic differentiation of myoblasts. Interestingly, miR-96-5p suppressed FHL1 expression by directly targeting the 3’UTR of FHL1 mRNA. The transfection of an miR-96-5p mimic upregulated the expressions of cell cycle-related genes, such as PCNA, CCNB1, and CCND1, and increased myoblast proliferation. Moreover, the miR-96-5p mimic inhibited the expressions of myogenic factors, such as myoblast determination protein (MyoD), myogenin (MyoG), myocyte enhancer factor 2C (MEF2C), and myosin heavy chain (MyHC), and dramatically impeded differentiation and fusion of myoblasts. Overall, this study highlights the role of miR-96-5p in myogenesis via FHL1 suppression and suggests a novel regulatory mechanism for myogenesis mediated by miRNA in a background of obesity.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea; (M.T.N.); (K.-H.M.)
| | - Kyung-Ho Min
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea; (M.T.N.); (K.-H.M.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea; (M.T.N.); (K.-H.M.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, 10326 Goyang, Korea
- Correspondence: ; Tel.: +82-54-770-2409; Fax: +82-54-770-2447
| |
Collapse
|
5
|
Piotrowska J, Guszkowska M, Leś A, Rutkowska I. Changes in the Static Balance of Older Women Participating in Regular Nordic Walking Sessions and Nordic Walking Combined with Cognitive Training. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5617. [PMID: 32759833 PMCID: PMC7432769 DOI: 10.3390/ijerph17155617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022]
Abstract
Regular Nordic walking (NW) improves physical fitness, including the ability to maintain balance, in older adults. However, little is known about whether complementing the exercise programme with cognitive training (CT) contributes to increased effects. The aim of the study was to determine and compare the effect of regular NW and NW combined with CT on the ability to maintain static balance in older adults. The study examined 61 women aged 64 to 93 years living in adult day care centres. Twenty people participated in a three-month programme combining NW and CT (group NW + CT), 20 people participated only in NW classes (group NW), and 21 people were a control group (group C). The Romberg balance test, Fullerton Functional Fitness Test, and Attention and Perceptivity Test were used. After the programme, an increase in the time of maintaining the balance (with eyes open on the left and right legs) was observed in groups NW + CT and NW, with no such changes found in group C. This increase was greater in group NW + CT. Increased agility and strength of the hand were predictors of improving the ability to maintain balance. Regular NW improved the ability to maintain balance with eyes open in female residents of adult day care centres.
Collapse
Affiliation(s)
- Joanna Piotrowska
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland; (J.P.); (A.L.)
| | - Monika Guszkowska
- Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland;
| | - Anna Leś
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland; (J.P.); (A.L.)
| | - Izabela Rutkowska
- Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland;
| |
Collapse
|
6
|
Yanai K, Kaneko S, Ishii H, Aomatsu A, Ito K, Hirai K, Ookawara S, Ishibashi K, Morishita Y. MicroRNAs in Sarcopenia: A Systematic Review. Front Med (Lausanne) 2020; 7:180. [PMID: 32549041 PMCID: PMC7270169 DOI: 10.3389/fmed.2020.00180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, which is characterized by the loss of skeletal muscle, has been reported to contribute to development of physical disabilities, various illnesses, and increasing mortality. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit translation of target messenger RNAs. Previous studies have shown that miRNAs play pivotal roles in the development of sarcopenia. Therefore, this systematic review focuses on miRNAs that regulate sarcopenia.
Collapse
Affiliation(s)
- Katsunori Yanai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Shohei Kaneko
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hiroki Ishii
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Akinori Aomatsu
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.,Division of Intensive Care Unit, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
7
|
Van Pelt DW, Hettinger ZR, Vanderklish PW. RNA-binding proteins: The next step in translating skeletal muscle adaptations? J Appl Physiol (1985) 2019; 127:654-660. [PMID: 31120811 DOI: 10.1152/japplphysiol.00076.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The decline of skeletal muscle mass during illness, injury, disuse, and aging is associated with poor health outcomes. Therefore, it is important to pursue a greater understanding of the mechanisms that dictate skeletal muscle adaptation. In this review, we propose that RNA-binding proteins (RBPs) comprise a critical regulatory node in the orchestration of adaptive responses in skeletal muscle. While RBPs have broadly pleiotropic molecular functions, our discussion is constrained at the outset by observations from hibernating animals, which suggest that RBP regulation of RNA stability and its impact on translational reprogramming is a key component of skeletal muscle response to anabolic and catabolic stimuli. We discuss the limited data available on the expression and functions of RBPs in adult skeletal muscle in response to disuse, aging, and exercise. A model is proposed in which dynamic changes in RBPs play a central role in muscle adaptive processes through their differential effects on mRNA stability. While limited, the currently available data suggest that understanding how adaptive (and maladaptive) changes in the expression of RBPs regulate mRNA stability in skeletal muscle could be an informative and productive research area for finding new strategies to limit atrophy and promote hypertrophy.
Collapse
Affiliation(s)
- Douglas W Van Pelt
- College of Health Sciences, Department of Rehabilitation Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Zachary R Hettinger
- College of Health Sciences, Department of Rehabilitation Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Peter W Vanderklish
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
8
|
Ma JF, Sanchez BJ, Hall DT, Tremblay AMK, Di Marco S, Gallouzi IE. STAT3 promotes IFNγ/TNFα-induced muscle wasting in an NF-κB-dependent and IL-6-independent manner. EMBO Mol Med 2017; 9:622-637. [PMID: 28264935 PMCID: PMC5412921 DOI: 10.15252/emmm.201607052] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cachexia is a debilitating syndrome characterized by involuntary muscle wasting that is triggered at the late stage of many cancers. While the multifactorial nature of this syndrome and the implication of cytokines such as IL‐6, IFNγ, and TNFα is well established, we still do not know how various effector pathways collaborate together to trigger muscle atrophy. Here, we show that IFNγ/TNFα promotes the phosphorylation of STAT3 on Y705 residue in the cytoplasm of muscle fibers by activating JAK kinases. Unexpectedly, this effect occurs both in vitro and in vivo independently of IL‐6, which is considered as one of the main triggers of STAT3‐mediated muscle wasting. pY‐STAT3 forms a complex with NF‐κB that is rapidly imported to the nucleus where it is recruited to the promoter of the iNos gene to activate the iNOS/NO pathway, a well‐known downstream effector of IFNγ/TNFα‐induced muscle loss. Together, these findings show that STAT3 and NF‐κB respond to the same upstream signal and cooperate to promote the expression of pro‐cachectic genes, the identification of which could provide effective targets to combat this deadly syndrome.
Collapse
Affiliation(s)
- Jennifer F Ma
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Brenda J Sanchez
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Derek T Hall
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Anne-Marie K Tremblay
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Sergio Di Marco
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Imed-Eddine Gallouzi
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada .,Life Sciences Division, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Doha, Qatar
| |
Collapse
|
9
|
Potes Y, de Luxán-Delgado B, Rodriguez-González S, Guimarães MRM, Solano JJ, Fernández-Fernández M, Bermúdez M, Boga JA, Vega-Naredo I, Coto-Montes A. Overweight in elderly people induces impaired autophagy in skeletal muscle. Free Radic Biol Med 2017; 110:31-41. [PMID: 28549989 DOI: 10.1016/j.freeradbiomed.2017.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/11/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Sarcopenia is the gradual loss of skeletal muscle mass, strength and quality associated with aging. Changes in body composition, especially in skeletal muscle and fat mass are crucial steps in the development of chronic diseases. We studied the effect of overweight on skeletal muscle tissue in elderly people without reaching obesity to prevent this extreme situation. Overweight induces a progressive protein breakdown reflected as a progressive withdrawal of anabolism against the promoted catabolic state leading to muscle wasting. Protein turnover is regulated by a network of signaling pathways. Muscle damage derived from overweight displayed by oxidative and endoplasmic reticulum (ER) stress induces inflammation and insulin resistance and forces the muscle to increase requirements from autophagy mechanisms. Our findings showed that failure of autophagy in the elderly deprives it to deal with the cell damage caused by overweight. This insufficiently efficient autophagy leads to an accumulation of p62 and NBR1, which are robust markers of protein aggregations. This impaired autophagy affects myogenesis activity. Depletion of myogenic regulatory factors (MRFs) without links to variations in myostatin levels in overweight patients suggest a possible reduction of satellite cells in muscle tissue, which contributes to declined muscle quality. This discovery has important implications that improve the understanding of aged-related atrophy caused by overweight and demonstrates how impaired autophagy is one of the main responsible mechanisms that aggravate muscle wasting. Therefore, autophagy could be an interesting target for therapeutic interventions in humans against muscle impairment diseases.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería s/n, 33006 Oviedo, Asturias, Spain
| | - Beatriz de Luxán-Delgado
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería s/n, 33006 Oviedo, Asturias, Spain
| | - Susana Rodriguez-González
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería s/n, 33006 Oviedo, Asturias, Spain
| | - Marcela Rodrigues Moreira Guimarães
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería s/n, 33006 Oviedo, Asturias, Spain; Laboratory of Nutritional Investigation and Degenerative-Chronic Diseases (LINDCD), Federal University of Rio de Janeiro, Xavier Sigaud Street, 290, 22290-240 Rio de Janeiro City, Rio de Janeiro State, Brazil
| | - Juan J Solano
- Geriatric Service, Monte Naranco Hospital, Av. Dolores Fernández Vega 107, 33012 Oviedo, Asturias, Spain
| | - María Fernández-Fernández
- Geriatric Service, Monte Naranco Hospital, Av. Dolores Fernández Vega 107, 33012 Oviedo, Asturias, Spain
| | - Manuel Bermúdez
- Geriatric Service, Monte Naranco Hospital, Av. Dolores Fernández Vega 107, 33012 Oviedo, Asturias, Spain
| | - Jose A Boga
- Microbiology Service, Central University Hospital of Asturias, Av. Roma s/n, 33011 Oviedo, Asturias, Spain
| | - Ignacio Vega-Naredo
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería s/n, 33006 Oviedo, Asturias, Spain; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, 3004-517 Cantanhede, Portugal
| | - Ana Coto-Montes
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería s/n, 33006 Oviedo, Asturias, Spain.
| |
Collapse
|
10
|
Latorre E, Harries LW. Splicing regulatory factors, ageing and age-related disease. Ageing Res Rev 2017; 36:165-170. [PMID: 28456680 DOI: 10.1016/j.arr.2017.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Alternative splicing is a co-transcriptional process, which allows for the production of multiple transcripts from a single gene and is emerging as an important control point for gene expression. Alternatively expressed isoforms often have antagonistic function and differential temporal or spatial expression patterns, yielding enormous plasticity and adaptability to cells and increasing their ability to respond to environmental challenge. The regulation of alternative splicing is critical for numerous cellular functions in both pathological and physiological conditions, and deregulated alternative splicing is a key feature of common chronic diseases. Isoform choice is controlled by a battery of splicing regulatory proteins, which include the serine arginine rich (SRSF) proteins and the heterogeneous ribonucleoprotein (hnRNP) classes of genes. These important splicing regulators have been implicated in age-related disease, and in the ageing process itself. This review will outline the important contribution of splicing regulator proteins to ageing and age-related disease.
Collapse
|
11
|
Wang C, Liu W, Liu Z, Chen L, Liu X, Kuang S. Hypoxia Inhibits Myogenic Differentiation through p53 Protein-dependent Induction of Bhlhe40 Protein. J Biol Chem 2015; 290:29707-16. [PMID: 26468276 DOI: 10.1074/jbc.m115.688671] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 11/06/2022] Open
Abstract
Satellite cells are muscle-resident stem cells capable of self-renewal and differentiation to repair injured muscles. However, muscle injury often leads to an ischemic hypoxia environment that impedes satellite cell differentiation and reduces the efficiency of muscle regeneration. Here we performed microarray analyses and identified the basic helix-loop-helix family transcription factor Bhlhe40 as a candidate mediator of the myogenic inhibitory effect of hypoxia. Bhlhe40 is strongly induced by hypoxia in satellite cell-derived primary myoblasts. Overexpression of Bhlhe40 inhibits Myog expression and mimics the effect of hypoxia on myogenesis. Inhibition of Bhlhe40, conversely, up-regulates Myog expression and promotes myogenic differentiation. Importantly, Bhlhe40 knockdown rescues myogenic differentiation under hypoxia. Mechanistically, Bhlhe40 binds to the proximal E-boxes of the Myog promoter and reduces the binding affinity and transcriptional activity of MyoD on Myog. Interestingly, hypoxia induces Bhlhe40 expression independent of HIF1α but through a novel p53-dependent signaling pathway. Our study establishes a crucial role of Bhlhe40 in mediating the repressive effect of hypoxia on myogenic differentiation and suggests that inhibition of Bhlhe40 or p53 may facilitate muscle regeneration after ischemic injuries.
Collapse
Affiliation(s)
- Chao Wang
- From the Departments of Animal Science and
| | - Weiyi Liu
- From the Departments of Animal Science and
| | - Zuojun Liu
- From the Departments of Animal Science and
| | | | - Xiaoqi Liu
- Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906
| | - Shihuan Kuang
- From the Departments of Animal Science and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906
| |
Collapse
|
12
|
Nozaki T, Nikai S, Okabe R, Nagahama K, Eto N. A novel in vitro model of sarcopenia using BubR1 hypomorphic C2C12 myoblasts. Cytotechnology 2015; 68:1705-15. [PMID: 26464273 DOI: 10.1007/s10616-015-9920-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/01/2015] [Indexed: 12/23/2022] Open
Abstract
Sarcopenia is the age-related loss of skeletal muscle mass and function with adverse outcomes that include physical disability, poor quality of life, and death. The detailed molecular mechanisms remain unknown. An in vitro muscle atrophy model is needed to enable mechanistic studies. To create such a model, we employed BubR1 insufficiency which causes premature ageing in mice. Using C2C12 cells, a recognized in vitro model of the skeletal muscle cell, we obtained the BubR1 hypomorphic C2C12 (C2C12BKD) cells by using shRNA. The resulting C2C12BKD cells displayed several characteristics of the sarcopenic muscle cell. In C2C12BKD cells, formation of myotubes, assessed by analysis of fusion index, was markedly reduced as was the expression of myogenin and MyoD, two marker genes for myogenesis. Moreover, the cells showed increased expression of the muscle-specific ubiquitin ligases Atrogin-1 and MuRF-1, indicating increased protein degradation through the ubiquitin-proteasome dependent proteolytic pathway. These results suggest that C2C12BKD cells are potentially useful as a novel in vitro model of sarcopenia.
Collapse
Affiliation(s)
- Takateru Nozaki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Shiori Nikai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ryo Okabe
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Kiyoko Nagahama
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Nozomu Eto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan.
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
13
|
Chinzei N, Hayashi S, Ueha T, Fujishiro T, Kanzaki N, Hashimoto S, Sakata S, Kihara S, Haneda M, Sakai Y, Kuroda R, Kurosaka M. P21 deficiency delays regeneration of skeletal muscular tissue. PLoS One 2015; 10:e0125765. [PMID: 25942471 PMCID: PMC4420284 DOI: 10.1371/journal.pone.0125765] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/26/2015] [Indexed: 11/21/2022] Open
Abstract
The potential relationship between cell cycle checkpoint control and tissue regeneration has been indicated. Despite considerable research being focused on the relationship between p21 and myogenesis, p21 function in skeletal muscle regeneration remains unclear. To clarify this, muscle injury model was recreated by intramuscular injection of bupivacaine hydrochloride in the soleus of p21 knockout (KO) mice and wild type (WT) mice. The mice were sacrificed at 3, 14, and 28 days post-operation. The results of hematoxylin-eosin staining and immunofluorescence of muscle membrane indicated that muscle regeneration was delayed in p21 KO mice. Cyclin D1 mRNA expression and both Ki-67 and PCNA immunohistochemistry suggested that p21 deficiency increased cell cycle and muscle cell proliferation. F4/80 immunohistochemistry also suggested the increase of immune response in p21 KO mice. On the other hand, both the mRNA expression and western blot analysis of MyoD, myogenin, and Pax7 indicated that muscular differentiation was delayed in p21KO mice. Considering these results, we confirmed that muscle injury causes an increase in cell proliferation. However, muscle differentiation in p21 KO mice was inhibited due to the low expression of muscular synthesis genes, leading to a delay in the muscular regeneration. Thus, we conclude that p21 plays an important role in the in vivo healing process in muscular injury.
Collapse
Affiliation(s)
- Nobuaki Chinzei
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ueha
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaaki Fujishiro
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Kanzaki
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shingo Hashimoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuhei Sakata
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinsuke Kihara
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiko Haneda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Kurosaka
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
14
|
Hitachi K, Tsuchida K. Role of microRNAs in skeletal muscle hypertrophy. Front Physiol 2014; 4:408. [PMID: 24474938 PMCID: PMC3893574 DOI: 10.3389/fphys.2013.00408] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/25/2013] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle comprises approximately 40% of body weight, and is important for locomotion, as well as for metabolic homeostasis. Adult skeletal muscle mass is maintained by a fine balance between muscle protein synthesis and degradation. In response to cytokines, nutrients, and mechanical stimuli, skeletal muscle mass is increased (hypertrophy), whereas skeletal muscle mass is decreased (atrophy) in a variety of conditions, including cancer cachexia, starvation, immobilization, aging, and neuromuscular disorders. Recent studies have determined two important signaling pathways involved in skeletal muscle mass. The insulin-like growth factor-1 (IGF-1)/Akt pathway increases skeletal muscle mass via stimulation of protein synthesis and inhibition of protein degradation. By contrast, myostatin signaling negatively regulates skeletal muscle mass by reducing protein synthesis. In addition, the discovery of microRNAs as novel regulators of gene expression has provided new insights into a multitude of biological processes, especially in skeletal muscle physiology. We summarize here the current knowledge of microRNAs in the regulation of skeletal muscle hypertrophy, focusing on the IGF-1/Akt pathway and myostatin signaling.
Collapse
Affiliation(s)
- Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan
| |
Collapse
|
15
|
Froehlich JM, Fowler ZG, Galt NJ, Smith DL, Biga PR. Sarcopenia and piscines: the case for indeterminate-growing fish as unique genetic model organisms in aging and longevity research. Front Genet 2013; 4:159. [PMID: 23967015 PMCID: PMC3743216 DOI: 10.3389/fgene.2013.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/30/2013] [Indexed: 01/07/2023] Open
Abstract
Sarcopenia and dynapenia pose significant problems for the aged, especially as life expectancy rises in developed countries. Current therapies are marginally efficacious at best, and barriers to breakthroughs in treatment may result from currently employed model organisms. Here, we argue that the use of indeterminate-growing teleost fish in skeletal muscle aging research may lead to therapeutic advancements not possible with current mammalian models. Evidence from a comparative approach utilizing the subfamily Danioninae suggests that the indeterminate growth paradigm of many teleosts arises from adult muscle stem cells with greater proliferative capacity, even in spite of smaller progenitor populations. We hypothesize that paired-box transcription factors, Pax3/7, are involved with this enhanced self-renewal and that prolonged expression of these factors may allow some fish species to escape, or at least forestall, sarcopenia/dynapenia. Future research efforts should focus on the experimental validation of these genes as key factors in indeterminate growth, both in the context of muscle stem cell proliferation and in prevention of skeletal muscle senescence.
Collapse
Affiliation(s)
- Jacob M Froehlich
- Department of Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | | | |
Collapse
|
16
|
Strength Training in the Elderly People. ADVANCES IN REHABILITATION 2013. [DOI: 10.2478/rehab-2014-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streszczenie
Proces starzenia się człowieka charakteryzuje się licznymi zmianami, które dotyczą struktur na poziomie molekularnym, komórkowym, narządowym oraz całego organizmu. Jednym ze skutków zmniejszającej się aktywności fizycznej oraz postępujących procesów starzenia się organizmu człowieka jest systematyczne obniżanie się siły mięśniowej, któremu towarzyszy pogorszenie sprawności w podstawowych czynnościach codziennych. Ćwiczenia fizyczne, w tym ćwiczenia ukierunkowane na zwiększenie siły mięśniowej, wykonywane przez osoby starsze spowalniają proces starzenia się i zapobiegają występowaniu wielu chorób. Jakkolwiek nawet stała i regularna aktywność fizyczna nie może zapobiec spadkowi siły wraz z wiekiem, to zmiany adaptacyjne w centralnym układzie nerwowym i mięśniowym wywołane stosowaniem ćwiczeń siłowych w dużym stopniu mogą rekompensować ten proces.
Ćwiczenia ukierunkowane na zwiększenie siły i masy mięśniowej, nazywane ćwiczeniami siłowymi, są na świecie powszechnie znane i stosowane przez ludzi w podeszłym wieku. W Polsce model usprawniania fizycznego osób starszych bazuje prawie wyłącznie na ćwiczeniach wytrzymałościowych i rozciągających, a stosowanie klasycznych ćwiczeń siłowych często wywołuje obawy.
Celem pracy jest uzasadnienie potrzeby stosowania ćwiczeń ukierunkowanych na zwiększenie siły mięśniowej w usprawnianiu osób starszych i przedstawienie efektów ich zastosowania.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Sarcopenia, or the decline of skeletal muscle tissue with age, is one of the most important causes of functional decline and loss of independence in older adults. The purpose of this article is to review the current definitions of sarcopenia, its potential causes and clinical consequences, and the potential for intervention. RECENT FINDINGS Although no consensus diagnosis has been reached, sarcopenia is increasingly defined by both loss of muscle mass and loss of muscle function or strength. Its cause is widely regarded as multifactorial, with neurological decline, hormonal changes, inflammatory pathway activation, declines in activity, chronic illness, fatty infiltration, and poor nutrition, all shown to be contributing factors. Recent molecular findings related to apoptosis, mitochondrial decline, and the angiotensin system in skeletal muscle have highlighted biological mechanisms that may be contributory. Interventions in general continue to target nutrition and exercise. SUMMARY Efforts to develop a consensus definition are ongoing and will greatly facilitate the development and testing of novel interventions for sarcopenia. Although pharmaceutical agents targeting multiple biological pathways are being developed, adequate nutrition and targeted exercise remain the gold standard for therapy.
Collapse
Affiliation(s)
- Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|