1
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 PMCID: PMC11855577 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Levy JJ, Diallo AB, Saldias Montivero MK, Gabbita S, Salas LA, Christensen BC. Insights to aging prediction with AI based epigenetic clocks. Epigenomics 2025; 17:49-57. [PMID: 39584810 DOI: 10.1080/17501911.2024.2432854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
Over the past century, human lifespan has increased remarkably, yet the inevitability of aging persists. The disparity between biological age, which reflects pathological deterioration and disease, and chronological age, indicative of normal aging, has driven prior research focused on identifying mechanisms that could inform interventions to reverse excessive age-related deterioration and reduce morbidity and mortality. DNA methylation has emerged as an important predictor of age, leading to the development of epigenetic clocks that quantify the extent of pathological deterioration beyond what is typically expected for a given age. Machine learning technologies offer promising avenues to enhance our understanding of the biological mechanisms governing aging by further elucidating the gap between biological and chronological ages. This perspective article examines current algorithmic approaches to epigenetic clocks, explores the use of machine learning for age estimation from DNA methylation, and discusses how refining the interpretation of ML methods and tailoring their inferences for specific patient populations and cell types can amplify the utility of these technologies in age prediction. By harnessing insights from machine learning, we are well-positioned to effectively adapt, customize and personalize interventions aimed at aging.
Collapse
Affiliation(s)
- Joshua J Levy
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH, USA
- Department of Dermatology, Dartmouth Health, Lebanon, NH, USA
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
| | - Alos B Diallo
- Program in Quantitative Biomedical Sciences, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
| | | | - Sameer Gabbita
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lucas A Salas
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies at Dartmouth College, Hanover, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
- Molecular and Cellular Biology Program, Guarini School of Graduate and Advanced Studies, Hanover, NH, USA
| |
Collapse
|
3
|
Zhu X, Liu T, Yin X. TMEM158, as plasma cfRNA marker, promotes proliferation and doxorubicin resistance in ovarian cancer. THE PHARMACOGENOMICS JOURNAL 2024; 24:34. [PMID: 39543089 DOI: 10.1038/s41397-024-00357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
The current study aimed to identify the potential biomarker for the diagnosis of ovarian cancer within plasma cell-free RNA (cfRNA) species and to characterize their oncogenic properties. cfRNAs were isolated from the peripheral blood of ovarian cancer patients and sequenced using an NGS platform. Principal component analysis (PCA) was performed using Salmon software. Gene ontology (GO) analysis was conducted with clusterProfiler. The relative abundance of TMEM158 transcripts was determined by real-time PCR. Cell viability and proliferation was monitored using the MTT and cell counting assays, respectively. The protein levels of TMEM158 and ABCG2 were quantified by immunoblotting. We observed a clear separation of cfRNAs between ovarian cancer patients and healthy individuals. Additionally, we identified TMEM158 as the most significantly differential gene in both peripheral blood and tumor tissues. Overexpression of TMEM158 stimulated cell viability and promoted cell proliferation in ovarian cancer cells. Notably, the aberrant upregulation of TMEM158 was closely associated with doxorubicin resistance in ovarian cancer. Mechanistically, we demonstrated that TMEM158 positively regulates ABCG2 expression, which consequently contributes to drug resistance. In summary, we identified cfRNA TMEM158 as a potential diagnostic biomarker for ovarian cancer and elucidated the critical involvement of TMEM158-ABCG2 signaling axis in the development of doxorubicin resistance.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Center for Reproductive Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Tongchao Liu
- Department of Gynecology, Zhucheng People's Hospital, Zhucheng, 262200, Shandong, China
| | - Xuexue Yin
- Department of Gynecology, Zibo Central Hospital, Zibo, 255000, Shandong, China.
| |
Collapse
|
4
|
Velázquez-Flores MÁ, Ruiz Esparza-Garrido R. Fragments derived from non-coding RNAs: how complex is genome regulation? Genome 2024; 67:292-306. [PMID: 38684113 DOI: 10.1139/gen-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The human genome is highly dynamic and only a small fraction of it codes for proteins, but most of the genome is transcribed, highlighting the importance of non-coding RNAs on cellular functions. In addition, it is now known the generation of non-coding RNA fragments under particular cellular conditions and their functions have revealed unexpected mechanisms of action, converging, in some cases, with the biogenic pathways and action machineries of microRNAs or Piwi-interacting RNAs. This led us to the question why the cell produces so many apparently redundant molecules to exert similar functions and regulate apparently convergent processes? However, non-coding RNAs fragments can also function similarly to aptamers, with secondary and tertiary conformations determining their functions. In the present work, it was reviewed and analyzed the current information about the non-coding RNAs fragments, describing their structure and biogenic pathways, with special emphasis on their cellular functions.
Collapse
Affiliation(s)
- Miguel Ángel Velázquez-Flores
- Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX, México
| | - Ruth Ruiz Esparza-Garrido
- Investigadora por México, Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX, México
| |
Collapse
|
5
|
Jiao CN, Zhou F, Liu BM, Zheng CH, Liu JX, Gao YL. Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:1110-1121. [PMID: 38055359 DOI: 10.1109/jbhi.2023.3336247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.
Collapse
|
6
|
Statsenko Y, Kuznetsov NV, Morozova D, Liaonchyk K, Simiyu GL, Smetanina D, Kashapov A, Meribout S, Gorkom KNV, Hamoudi R, Ismail F, Ansari SA, Emerald BS, Ljubisavljevic M. Reappraisal of the Concept of Accelerated Aging in Neurodegeneration and Beyond. Cells 2023; 12:2451. [PMID: 37887295 PMCID: PMC10605227 DOI: 10.3390/cells12202451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Genetic and epigenetic changes, oxidative stress and inflammation influence the rate of aging, which diseases, lifestyle and environmental factors can further accelerate. In accelerated aging (AA), the biological age exceeds the chronological age. OBJECTIVE The objective of this study is to reappraise the AA concept critically, considering its weaknesses and limitations. METHODS We reviewed more than 300 recent articles dealing with the physiology of brain aging and neurodegeneration pathophysiology. RESULTS (1) Application of the AA concept to individual organs outside the brain is challenging as organs of different systems age at different rates. (2) There is a need to consider the deceleration of aging due to the potential use of the individual structure-functional reserves. The latter can be restored by pharmacological and/or cognitive therapy, environment, etc. (3) The AA concept lacks both standardised terminology and methodology. (4) Changes in specific molecular biomarkers (MBM) reflect aging-related processes; however, numerous MBM candidates should be validated to consolidate the AA theory. (5) The exact nature of many potential causal factors, biological outcomes and interactions between the former and the latter remain largely unclear. CONCLUSIONS Although AA is commonly recognised as a perspective theory, it still suffers from a number of gaps and limitations that assume the necessity for an updated AA concept.
Collapse
Affiliation(s)
- Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Big Data Analytic Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Daria Morozova
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Katsiaryna Liaonchyk
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Gillian Lylian Simiyu
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Darya Smetanina
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Aidar Kashapov
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Sarah Meribout
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Klaus Neidl-Van Gorkom
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Rifat Hamoudi
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
| | - Fatima Ismail
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Suraiya Anjum Ansari
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bright Starling Emerald
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
7
|
Tyczewska A, Rzepczak A, Sobańska D, Grzywacz K. The emerging roles of tRNAs and tRNA-derived fragments during aging: Lessons from studies on model organisms. Ageing Res Rev 2023; 85:101863. [PMID: 36707034 DOI: 10.1016/j.arr.2023.101863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Aging is a gradual decline of various functions of organisms resulting in diminished abilities to protect against the environmental damage and reinforce the physiological harmony. Age-related functional declines have been thought to be passive and not regulated. However, studies on numerous model organisms, from yeast to mammals, exposed that the mechanisms of lifespan regulation are remarkably conserved throughout the evolution. Following the pioneering genetic studies in C. elegans, it has been shown that the genes related to the longevity are conserved in yeast, flies and mice. For a long time, tRNAs have been only considered as molecules transporting amino acids to the ribosome during translation. Nonetheless, it has become apparent from many biological studies that tRNAs are entangled in a variety of physiological and pathological processes. This review focuses on the emerging roles of tRNA-associated processes in aging and lifespan of model organisms. More specificaly, we present a summary on the importance of tRNA metabolism, epitranscriptome and possible roles of tRNA-derived fragments in aging and lifespan regulation. Better understanding of the basic mechanisms of aging could lead to the development of new diagnostics and treatments for aging-related diseases.
Collapse
Affiliation(s)
- Agata Tyczewska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Alicja Rzepczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Daria Sobańska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Kamilla Grzywacz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
8
|
Wang Y, Liu T, Xiao W, Bai Y, Yue D, Feng L. Ox-LDL induced profound changes of small non-coding RNA in rat endothelial cells. Front Cardiovasc Med 2023; 10:1060719. [PMID: 36824457 PMCID: PMC9941181 DOI: 10.3389/fcvm.2023.1060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Atherosclerosis (AS) is a common cardiovascular disease with a high incidence rate and mortality. Endothelial cell injury and dysfunction are early markers of AS. Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of AS. Ox-LDL promotes endothelial cell apoptosis and induces inflammation and oxidative stress in endothelial cells. Small non-coding RNAs (sncRNAs) mainly include Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), microRNAs (miRNAs) and repeat-associated RNAs. Studies have shown that small non-coding RNAs play an increasingly important role in diseases. Methods We used ox-LDL to treat rat endothelial cells to simulate endothelial cell injury. The expression changes of sncRNA were analyzed by small RNA high-throughput sequencing, and the expression changes of piRNA, snoRNA, snRNA, miRNA and repeat-associated RNA were verified by quantitative polymerase chain reaction (qPCR). Results Small RNA sequencing showed that 42 piRNAs were upregulated and 38 piRNAs were downregulated in endothelial cells treated with ox-LDL. PiRNA DQ614630 promoted the apoptosis of endothelial cells. The snoRNA analysis results showed that 80 snoRNAs were upregulated and 68 snoRNAs were downregulated in endothelial cells with ox-LDL treatment, and snoRNA ENSRNOT00000079032.1 inhibited the apoptosis of endothelial cells. For snRNA, we found that 20 snRNAs were upregulated and 26 snRNAs were downregulated in endothelial cells with ox-LDL treatment, and snRNA ENSRNOT00000081005.1 increased the apoptosis of endothelial cells. Analysis of miRNAs indicated that 106 miRNAs were upregulated and 91 miRNAs were downregulated in endothelial cells with ox-LDL treatment, and miRNA rno-novel-136-mature promoted the apoptosis of endothelial cells. The repeat RNA analysis results showed that 4 repeat RNAs were upregulated and 6 repeat RNAs were downregulated in endothelial cells treated with ox-LDL. Discussion This study first reported the expression changes of sncRNAs in endothelial cells with ox-LDL treatment, which provided new markers for the diagnosis and treatment of endothelial cell injury.
Collapse
Affiliation(s)
| | | | - Wenying Xiao
- Department of Cardiology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | | | | | | |
Collapse
|
9
|
Differential expression of non-coding RNAs and association with cerebral ischemic vascular disorders; diagnostic and therapeutic opportunities. Genes Genomics 2022:10.1007/s13258-022-01281-6. [PMID: 35802344 DOI: 10.1007/s13258-022-01281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Over the last few decades, research associated with the coding genome, primarily DNA and transcriptome (mRNA, rRNA, and tRNA), has changed our understanding in several aspects, including physiology, diagnostics, and therapeutics. A large proportion of the human genome that encodes proteins is essential for physiology. However, the human genome represents a significantly large proportion of non-translational, i.e., non-coding (nc) RNAs like microRNAs, siRNAs, piRNAs, lncRNAs, and circRNAs. These ncRNAs do not translate into functional proteins but are associated with several events, such as the regulation of gene expression via several mechanisms. Our understanding of ncRNAs has advanced in the last decade, such as microRNAs and siRNAs, but still, several other ncRNAs remain unexplored. The study comprehended the association of ncRNAs in cerebral ischemia. METHODS In this study searches utilizing multiple databases, PubMed, EMBASE, and Google Scholar were made. The literature survey was done on ncRNA including short and lncRNA associated with the onset, and progression of cerebral ischemia. The literature search was also made for the studies associated with the diagnostic and therapeutic role of ncRNAs for cerebral ischemia. RESULTS AND DISCUSSION Reports suggested that both short and long ncRNAs are critical players of gene expression and are hence associated with the pathophysiology of cerebral ischemia. The reports demonstrate ncRNAs precisely lncRNAs and microRNAs are not only associated with cerebral ischemia progression but also potential diagnostic and therapeutic candidates. IN CONCLUSION This review is certainly helpful to understand the interplay of ncRNAs in understanding gene expression profile and pathophysiology of cerebral ischemia. These ncRNAs molecules show potential for diagnostic and therapeutic development.
Collapse
|
10
|
tiRNAs: Insights into Their Biogenesis, Functions, and Future Applications in Livestock Research. Noncoding RNA 2022; 8:ncrna8030037. [PMID: 35736634 PMCID: PMC9231384 DOI: 10.3390/ncrna8030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) belong to a group of transfer ribonucleic acid (tRNA)-derived fragments that have recently gained interest as molecules with specific biological functions. Their involvement in the regulation of physiological processes and pathological phenotypes suggests molecular roles similar to those of miRNAs. tsRNA biogenesis under specific physiological conditions will offer new perspectives in understanding diseases, and may provide new sources for biological marker design to determine and monitor the health status of farm animals. In this review, we focus on the latest discoveries about tsRNAs and give special attention to molecules initially thought to be mainly associated with tRNA-derived stress-induced RNAs (tiRNAs). We present an outline of their biological functions, offer a collection of useful databases, and discuss future research perspectives and applications in livestock basic and applied research.
Collapse
|
11
|
Jusic A, Thomas PB, Wettinger SB, Dogan S, Farrugia R, Gaetano C, Tuna BG, Pinet F, Robinson EL, Tual-Chalot S, Stellos K, Devaux Y. Noncoding RNAs in age-related cardiovascular diseases. Ageing Res Rev 2022; 77:101610. [PMID: 35338919 DOI: 10.1016/j.arr.2022.101610] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 11/01/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in the adult population worldwide and represent a severe economic burden and public health concern. The majority of human genes do not code for proteins. However, noncoding transcripts play important roles in ageing that significantly increases the risk for CVDs. Noncoding RNAs (ncRNAs) are critical regulators of multiple biological processes related to ageing such as oxidative stress, mitochondrial dysfunction and chronic inflammation. NcRNAs are also involved in pathophysiological developments within the cardiovascular system including arrhythmias, cardiac hypertrophy, fibrosis, myocardial infarction and heart failure. In this review article, we cover the roles of ncRNAs in cardiovascular ageing and disease as well as their potential therapeutic applications in CVDs.
Collapse
|
12
|
Wu L, Xie X, Liang T, Ma J, Yang L, Yang J, Li L, Xi Y, Li H, Zhang J, Chen X, Ding Y, Wu Q. Integrated Multi-Omics for Novel Aging Biomarkers and Antiaging Targets. Biomolecules 2021; 12:39. [PMID: 35053186 PMCID: PMC8773837 DOI: 10.3390/biom12010039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is closely related to the occurrence of human diseases; however, its exact biological mechanism is unclear. Advancements in high-throughput technology provide new opportunities for omics research to understand the pathological process of various complex human diseases. However, single-omics technologies only provide limited insights into the biological mechanisms of diseases. DNA, RNA, protein, metabolites, and microorganisms usually play complementary roles and perform certain biological functions together. In this review, we summarize multi-omics methods based on the most relevant biomarkers in single-omics to better understand molecular functions and disease causes. The integration of multi-omics technologies can systematically reveal the interactions among aging molecules from a multidimensional perspective. Our review provides new insights regarding the discovery of aging biomarkers, mechanism of aging, and identification of novel antiaging targets. Overall, data from genomics, transcriptomics, proteomics, metabolomics, integromics, microbiomics, and systems biology contribute to the identification of new candidate biomarkers for aging and novel targets for antiaging interventions.
Collapse
Affiliation(s)
- Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Juan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Haixin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| |
Collapse
|
13
|
Wilson KA, Chamoli M, Hilsabeck TA, Pandey M, Bansal S, Chawla G, Kapahi P. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metab 2021; 33:2142-2173. [PMID: 34555343 PMCID: PMC8845500 DOI: 10.1016/j.cmet.2021.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) has long been viewed as the most robust nongenetic means to extend lifespan and healthspan. Many aging-associated mechanisms are nutrient responsive, but despite the ubiquitous functions of these pathways, the benefits of DR often vary among individuals and even among tissues within an individual, challenging the aging research field. Furthermore, it is often assumed that lifespan interventions like DR will also extend healthspan, which is thus often ignored in aging studies. In this review, we provide an overview of DR as an intervention and discuss the mechanisms by which it affects lifespan and various healthspan measures. We also review studies that demonstrate exceptions to the standing paradigm of DR being beneficial, thus raising new questions that future studies must address. We detail critical factors for the proposed field of precision nutrigeroscience, which would utilize individualized treatments and predict outcomes using biomarkers based on genotype, sex, tissue, and age.
Collapse
Affiliation(s)
| | - Manish Chamoli
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tyler A Hilsabeck
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manish Pandey
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Sakshi Bansal
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
14
|
Dhahbi JM, Chen JW, Bhupathy S, Atamna H, Cavalcante MB, Saccon TD, Nunes ADC, Mason JB, Schneider A, Masternak MM. Specific PIWI-Interacting RNAs and Related Small Noncoding RNAs Are Associated With Ovarian Aging in Ames Dwarf (df/df) Mice. J Gerontol A Biol Sci Med Sci 2021; 76:1561-1570. [PMID: 34387333 PMCID: PMC8361361 DOI: 10.1093/gerona/glab113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
The Ames dwarf (df/df) mouse is a well-established model for delayed aging. MicroRNAs (miRNAs), the most studied small noncoding RNAs (sncRNAs), may regulate ovarian aging to maintain a younger ovarian phenotype in df/df mice. In this study, we profile other types of ovarian sncRNAs, PIWI-interacting RNAs (piRNAs) and piRNA-like RNAs (piLRNAs), in young and aged df/df and normal mice. Half of the piRNAs derive from transfer RNA fragments (tRF-piRNAs). Aging and dwarfism alter the ovarian expression of these novel sncRNAs. Specific tRF-piRNAs that increased with age might target and decrease the expression of the breast cancer antiestrogen resistance protein 3 (BCAR3) gene in the ovaries of old df/df mice. A set of piLRNAs that decreased with age and map to D10Wsu102e mRNA may have trans-regulatory functions. Other piLRNAs that decreased with age potentially target and may de-repress transposable elements, leading to a beneficial impact on ovarian aging in df/df mice. These results identify unique responses in ovarian tissues with regard to aging and dwarfism. Overall, our findings highlight the complexity of the aging effects on gene expression and suggest that, in addition to miRNAs, piRNAs, piLRNAs, tRF-piRNAs, and their potential targets can be central players in the maintenance of a younger ovarian phenotype in df/df mice.
Collapse
Affiliation(s)
- Joseph M Dhahbi
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | - Joe W Chen
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | - Supriya Bhupathy
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | - Hani Atamna
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | | | - Tatiana D Saccon
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Rio Grande, Brazil
| | - Allancer D C Nunes
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | - Jeffrey B Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, USA
| | - Augusto Schneider
- Faculdade de Nutricao, Universidade Federal de Pelotas, Rio Grande, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poland
| |
Collapse
|
15
|
Chen W, Li L, Wang J, Li Q, Zhang R, Wang S, Wu Y, Xing D. Extracellular vesicle YRNA in atherosclerosis. Clin Chim Acta 2021; 517:15-22. [DOI: 10.1016/j.cca.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
|
16
|
Proshkina EN, Solovev IA, Shaposhnikov MV, Moskalev AA. Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Mol Biol 2021. [DOI: 10.1134/s0026893320060096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Lei X, Mudiyanselage TB, Zhang Y, Bian C, Lan W, Yu N, Pan Y. A comprehensive survey on computational methods of non-coding RNA and disease association prediction. Brief Bioinform 2020; 22:6042241. [PMID: 33341893 DOI: 10.1093/bib/bbaa350] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
The studies on relationships between non-coding RNAs and diseases are widely carried out in recent years. A large number of experimental methods and technologies of producing biological data have also been developed. However, due to their high labor cost and production time, nowadays, calculation-based methods, especially machine learning and deep learning methods, have received a lot of attention and been used commonly to solve these problems. From a computational point of view, this survey mainly introduces three common non-coding RNAs, i.e. miRNAs, lncRNAs and circRNAs, and the related computational methods for predicting their association with diseases. First, the mainstream databases of above three non-coding RNAs are introduced in detail. Then, we present several methods for RNA similarity and disease similarity calculations. Later, we investigate ncRNA-disease prediction methods in details and classify these methods into five types: network propagating, recommend system, matrix completion, machine learning and deep learning. Furthermore, we provide a summary of the applications of these five types of computational methods in predicting the associations between diseases and miRNAs, lncRNAs and circRNAs, respectively. Finally, the advantages and limitations of various methods are identified, and future researches and challenges are also discussed.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | | | - Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Chen Bian
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Wei Lan
- School of Computer, Electronics and Information at Guangxi University, Nanning, China
| | - Ning Yu
- Department of Computing Sciences at the College at Brockport, State University of New York, Rochester, NY, USA
| | - Yi Pan
- Computer Science Department at Georgia State University, Atlanta, GA, USA
| |
Collapse
|
18
|
Belyi AA, Alekseev AA, Fedintsev AY, Balybin SN, Proshkina EN, Shaposhnikov MV, Moskalev AA. The Resistance of Drosophila melanogaster to Oxidative, Genotoxic, Proteotoxic, Osmotic Stress, Infection, and Starvation Depends on Age According to the Stress Factor. Antioxidants (Basel) 2020; 9:antiox9121239. [PMID: 33297320 PMCID: PMC7762242 DOI: 10.3390/antiox9121239] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023] Open
Abstract
We studied how aging affects the ability of Drosophila melanogaster to tolerate various types of stress factors. Data were obtained on the resistance of D. melanogaster to oxidative and genotoxic (separately paraquat, Fe3+, Cu2+, and Zn2+ ions), proteotoxic (hyperthermia, Cd2+ ions), and osmotic (NaCl) stresses, starvation, and infection with the pathological Beauveria bassiana fungus at different ages. In all cases, we observed a strong negative correlation between age and stress tolerance. The largest change in the age-dependent decline in survival occurred under oxidative and osmotic stress. In most experiments, we observed that young Drosophila females have higher stress resistance than males. We checked whether it is possible to accurately assess the biological age of D. melanogaster based on an assessment of stress tolerance. We have proposed a new approach for assessing a biological age of D. melanogaster using a two-parameter survival curve model. For the model, we used an algorithm that evaluated the quality of age prediction for different age and gender groups. The best predictions were obtained for females who were exposed to CdCl2 and ZnCl2 with an average error of 0.32 days and 0.36 days, respectively. For males, the best results were observed for paraquat and NaCl with an average error of 0.61 and 0.68 days, respectively. The average accuracy for all stresses in our model was 1.73 days.
Collapse
Affiliation(s)
- Alexei A. Belyi
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Alexey A. Alekseev
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.A.); (S.N.B.)
| | - Alexander Y. Fedintsev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Stepan N. Balybin
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.A.); (S.N.B.)
| | - Ekaterina N. Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Mikhail V. Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Alexey A. Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
- Correspondence: ; Tel.: +78-21-231-2894
| |
Collapse
|
19
|
Aprahamian I, Mamoni RL, Cervigne NK, Augusto TM, Romanini CV, Petrella M, da Costa DL, Lima NA, Borges MK, Oude Voshaar RC. Design and protocol of the multimorbidity and mental health cohort study in frailty and aging (MiMiCS-FRAIL): unraveling the clinical and molecular associations between frailty, somatic disease burden and late life depression. BMC Psychiatry 2020; 20:573. [PMID: 33261579 PMCID: PMC7706060 DOI: 10.1186/s12888-020-02963-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND To explore the mutual relationship between multimorbidity, mental illness and frailty, we have set-up the Multimorbidity and Mental health Cohort Study in FRAILty and Aging (MiMiCS-FRAIL) cohort. At the population level, multimorbidity, frailty and late-life depression are associated with similar adverse outcomes (i.e. falls, disability, hospitalization, death), share the same risk factors, and partly overlap in their clinical presentation. Moreover, these three variables may share a common underlying pathophysiological mechanism like immune-metabolic dysregulation. The overall objectives of MiMiCS-FRAIL are 1) to explore (determinants of) the cross-sectional and longitudinal relationship between multimorbidity, depression, and frailty among non-demented geriatric outpatients; 2) to evaluate molecular levels of senoinflammation as a broad pathophysiological process underlying these conditions; and 3) to examine adverse outcomes of multimorbidity, frailty and depression and their interconnectedness. METHODS MiMiCS-FRAIL is an ongoing observational cohort study of geriatric outpatients in Brazil, with an extensive baseline assessment and yearly follow-up assessments. Each assessment includes a comprehensive geriatric assessment to identify multimorbidity and geriatric syndromes, a structured psychiatric diagnostic interview and administration of the PHQ-9 to measure depression, and several frailty measures (FRAIL, Physical Phenotype criteria, 36-item Frailty Index). Fasten blood samples are collected at baseline to assess circulating inflammatory and anti-inflammatory cytokines, leukocytes' subpopulations, and to perform immune-metabolic-paired miRome analyses. The primary outcome is death and secondary outcomes are the number of falls, hospital admissions, functional ability, well-being, and dementia. Assuming a 5-year mortality rate between 25 and 40% and a hazard rate varying between 1.6 and 2.3 for the primary determinants require a sample size between 136 and 711 patients to detect a statistically significant effect with a power of 80% (beta = 0.2), an alpha of 5% (0.05), and an R2 between the predictor (death) and all covariates of 0.20. Local ethical board approved this study. DISCUSSION Frailty might be hypothesized as a final common pathway by which many clinical conditions like depression and chronic diseases (multimorbidity) culminate in many adverse effects. The MiMiCS-FRAIL cohort will help us to understand the interrelationship between these variables, from a clinical perspective as well as their underlying molecular signature.
Collapse
Affiliation(s)
- Ivan Aprahamian
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Ronei Luciano Mamoni
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Nilva Karla Cervigne
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Taize Machado Augusto
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | | | - Marina Petrella
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Daniele Lima da Costa
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Natalia Almeida Lima
- Geriatrics Division, Department of Internal Medicine, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Marcus K. Borges
- grid.11899.380000 0004 1937 0722Institute and Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Richard C. Oude Voshaar
- grid.11899.380000 0004 1937 0722Institute and Department of Psychiatry, University of São Paulo, São Paulo, Brazil ,grid.4494.d0000 0000 9558 4598University Medical Center Groningen, University Center for Psychiatry and Interdisciplinary Center for Psychopathology of Emotion Regulation, Groningen, Netherlands
| |
Collapse
|
20
|
Rivero-Segura NA, Bello-Chavolla OY, Barrera-Vázquez OS, Gutierrez-Robledo LM, Gomez-Verjan JC. Promising biomarkers of human aging: In search of a multi-omics panel to understand the aging process from a multidimensional perspective. Ageing Res Rev 2020; 64:101164. [PMID: 32977058 DOI: 10.1016/j.arr.2020.101164] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
The aging process has been linked to the occurrence of chronic diseases and functional impairments, including cancer, sarcopenia, frailty, metabolic, cardiovascular, and neurodegenerative diseases. Nonetheless, aging is highly variable and heterogeneous and represents a challenge for its characterization. In this sense, intrinsic capacity (IC) stands as a novel perspective by the World Health Organization, which integrates the individual wellbeing, environment, and risk factors to understand aging. However, there is a lack of quantitative and qualitative attributes to define it objectively. Therefore, in this review we attempt to summarize the most relevant and promising biomarkers described in clinical studies at date over different molecular levels, including epigenomics, transcriptomics, proteomics, metabolomics, and the microbiome. To aid gerontologists, geriatricians, and biomedical researchers to understand the aging process through the IC. Aging biomarkers reflect the physiological state of individuals and the underlying mechanisms related to homeostatic changes throughout an individual lifespan; they demonstrated that aging could be measured independently of time (that may explain its heterogeneity) and to be helpful to predict age-related syndromes and mortality. In summary, we highlight the areas of opportunity and gaps of knowledge that must be addressed to fully integrate biomedical findings into clinically useful tools and interventions.
Collapse
Affiliation(s)
| | - O Y Bello-Chavolla
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - O S Barrera-Vázquez
- Departamento de Famacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - J C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico.
| |
Collapse
|
21
|
Labi V, Derudder E. Cell signaling and the aging of B cells. Exp Gerontol 2020; 138:110985. [PMID: 32504658 DOI: 10.1016/j.exger.2020.110985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/17/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
The uniqueness of each B cell lies in the structural diversity of the B-cell antigen receptor allowing the virtually limitless recognition of antigens, a necessity to protect individuals against a range of challenges. B-cell development and response to stimulation are exquisitely regulated by a group of cell surface receptors modulating various signaling cascades and their associated genetic programs. The effects of these signaling pathways in optimal antibody-mediated immunity or the aberrant promotion of immune pathologies have been intensely researched in the past in young individuals. In contrast, we are only beginning to understand the contribution of these pathways to the changes in B cells of old organisms. Thus, critical transcription factors such as E2A and STAT5 show differential expression or activity between young and old B cells. As a result, B-cell physiology appears altered, and antibody production is impaired. Here, we discuss selected phenotypic changes during B-cell aging and attempt to relate them to alterations of molecular mechanisms.
Collapse
Affiliation(s)
- Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria.
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
22
|
Feng F, Wang J, Bao R, Li L, Tong X, Han S, Zhang H, Wen W, Xiao L, Zhang C. LncPrep + 96kb 2.2 kb Inhibits Estradiol Secretion From Granulosa Cells by Inducing EDF1 Translocation. Front Cell Dev Biol 2020; 8:481. [PMID: 32695776 PMCID: PMC7338311 DOI: 10.3389/fcell.2020.00481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
LncPrep + 96kb is a novel long non-coding RNA expressed in murine granulosa cells with two transcripts that are 2.2 and 2.8 kb in length. However, the potential roles of lncPrep + 96kb in granulosa cells remain poorly understood. In this study, we investigated the effect of the lncPrep + 96kb 2.2 kb transcript on granulosa cells through the overexpression and knockdown of lncPrep + 96kb 2.2 kb. We found that lncPrep + 96kb 2.2 kb inhibited aromatase expression and estradiol production. Endothelial differentiation-related factor 1 (EDF1) is an evolutionarily conserved transcriptional coactivator. We found that EDF1 knockdown inhibited aromatase expression and estradiol production. The RNA immunoprecipitation results also showed that lncPrep + 96kb 2.2 kb can bind to EDF1 and that overexpression of lncPrep + 96kb 2.2 kb induced the translocation of EDF1 from the nucleus to the cytoplasm. The CatRAPID signature revealed that the 1,979–2,077 and 603–690 nucleotide positions in lncPrep + 96kb 2.2 kb were potential binding sites for EDF1. We found that mutating the 1,979–2,077 site rescued the effects of lncPrep + 96kb 2.2 kb on aromatase expression and estradiol production. In conclusion, we are the first to report that specific expression of lncPrep + 96kb 2.2 kb in granulosa cells inhibits the production of estradiol by influencing the localization of EDF1 in granulosa cells. The 1,979–2,077 site of lncPrep + 96kb 2.2 kb contributes to the ability to bind to EDF1.
Collapse
Affiliation(s)
- Fen Feng
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang, China
| | - Jing Wang
- Department of Microbiology, College of Medicine, Nanchang University, Nanchang, China
| | - Riqiang Bao
- Joint Program of Nanchang University and Queen Mary University of London, College of Medicine, Nanchang University, Nanchang, China
| | - Long Li
- Joint Program of Nanchang University and Queen Mary University of London, College of Medicine, Nanchang University, Nanchang, China
| | - Xiating Tong
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang, China
| | - Suo Han
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang, China
| | - Hongdan Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang, China
| | - Weihui Wen
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang, China
| | - Li Xiao
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Yang C, Yang W, Wong Y, Wang K, Teng Y, Chang M, Liao K, Nian F, Chao C, Tsai J, Hwang W, Lin M, Tzeng T, Wang P, Campbell M, Chen L, Tsai T, Chang P, Kung H. Muscle atrophy-related myotube-derived exosomal microRNA in neuronal dysfunction: Targeting both coding and long noncoding RNAs. Aging Cell 2020; 19:e13107. [PMID: 32233025 PMCID: PMC7253071 DOI: 10.1111/acel.13107] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 12/27/2022] Open
Abstract
In mammals, microRNAs can be actively secreted from cells to blood. miR‐29b‐3p has been shown to play a pivotal role in muscle atrophy, but its role in intercellular communication is largely unknown. Here, we showed that miR‐29b‐3p was upregulated in normal and premature aging mouse muscle and plasma. miR‐29b‐3p was also upregulated in the blood of aging individuals, and circulating levels of miR‐29b‐3p were negatively correlated with relative appendicular skeletal muscle. Consistently, miR‐29b‐3p was observed in exosomes isolated from long‐term differentiated atrophic C2C12 cells. When C2C12‐derived miR‐29b‐3p‐containing exosomes were uptaken by neuronal SH‐SY5Y cells, increased miR‐29b‐3p levels in recipient cells were observed. Moreover, miR‐29b‐3p overexpression led to downregulation of neuronal‐related genes and inhibition of neuronal differentiation. Interestingly, we identified HIF1α‐AS2 as a novel c‐FOS targeting lncRNA that is induced by miR‐29b‐3p through down‐modulation of c‐FOS and is required for miR‐29b‐3p‐mediated neuronal differentiation inhibition. Our results suggest that atrophy‐associated circulating miR‐29b‐3p may mediate distal communication between muscle cells and neurons.
Collapse
Affiliation(s)
- Chia‐Pei Yang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Wan‐Shan Yang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Yu‐Hui Wong
- Brain Research Center National Yang‐Ming University Taipei Taiwan
| | - Kai‐Hsuan Wang
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
| | - Yuan‐Chi Teng
- Program in Molecular Medicine School of Life Sciences National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Department of Life Sciences Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan
| | - Ming‐Hsuan Chang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Ko‐Hsun Liao
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Fang‐Shin Nian
- Institute of Brain Science National Yang‐Ming University Taipei Taiwan
- Program in Molecular Medicine National Yang‐Ming University and Academia Sinica Taipei Taiwan
| | - Chuan‐Chuan Chao
- The Ph.D. Program for Cancer Molecular Biology and Drug Discovery College of Medical Science and Technology Taipei Medical University Taipei Taiwan
| | - Jin‐Wu Tsai
- Institute of Brain Science National Yang‐Ming University Taipei Taiwan
| | - Wei‐Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine National Yang‐Ming University Taipei Taiwan
| | - Ming‐Wei Lin
- Institute of Public Health National Yang‐Ming University Taipei Taiwan
| | - Tsai‐Yu Tzeng
- Cancer Progression Research Center National Yang‐Ming University Taipei Taiwan
| | - Pei‐Ning Wang
- Brain Research Center National Yang‐Ming University Taipei Taiwan
- Department of Neurology Neurological InstituteTaipei Veterans General Hospital Taipei Taiwan
- Aging and Health Research Center National Yang‐Ming University Taipei Taiwan
| | - Mel Campbell
- UC Davis Comprehensive Cancer CenterUniversity of California Davis CA USA
| | - Liang‐Kung Chen
- Aging and Health Research Center National Yang‐Ming University Taipei Taiwan
- Department of Geriatric Medicine School of Medicine National Yang Ming University Taipei Taiwan
- Center for Geriatrics and Gerontology Taipei Veterans General Hospital Taipei Taiwan
| | - Ting‐Fen Tsai
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
- Program in Molecular Medicine School of Life Sciences National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Department of Life Sciences Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan
- Aging and Health Research Center National Yang‐Ming University Taipei Taiwan
| | - Pei‐Ching Chang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
- Cancer Progression Research Center National Yang‐Ming University Taipei Taiwan
| | - Hsing‐Jien Kung
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
- The Ph.D. Program for Cancer Molecular Biology and Drug Discovery College of Medical Science and Technology Taipei Medical University Taipei Taiwan
- UC Davis Comprehensive Cancer CenterUniversity of California Davis CA USA
| |
Collapse
|
24
|
Valkov N, Das S. Y RNAs: Biogenesis, Function and Implications for the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:327-342. [PMID: 32285422 DOI: 10.1007/978-981-15-1671-9_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, progress in the field of high-throughput sequencing technology and its application to a wide variety of biological specimens has greatly advanced the discovery and cataloging of a diverse set of non-coding RNAs (ncRNAs) that have been found to have unexpected biological functions. Y RNAs are an emerging class of highly conserved, small ncRNAs. There is a growing number of reports in the literature demonstrating that Y RNAs and their fragments are not just random degradation products but are themselves bioactive molecules. This review will outline what is currently known about Y RNA including biogenesis, structure and functional roles. In addition, we will provide an overview of studies reporting the presence and functions attributed to Y RNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Nedyalka Valkov
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saumya Das
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Veras MA, McCann MR, Tenn NA, Séguin CA. Transcriptional profiling of the murine intervertebral disc and age-associated changes in the nucleus pulposus. Connect Tissue Res 2020; 61:63-81. [PMID: 31597481 DOI: 10.1080/03008207.2019.1665034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: The intervertebral disc (IVD) is composed of cell types whose subtle phenotypic differences allow for the formation of distinct tissues. The role of the nucleus pulposus (NP) in the initiation and progression of IVD degeneration is well established; however, the genes and pathways associated with NP degeneration are poorly characterized.Materials and Methods: Using a genetic strategy for IVD lineage-specific fluorescent reporter expression to isolate cells, gene expression and bioinformatic analysis was conducted on the murine NP at 2.5, 6, and 21 months-of-age and the annulus fibrosus (AF) at 2.5 and 6 months-of-age. A subset of differentially regulated genes was validated by qRT-PCR.Results: Transcriptome analysis identified distinct profiles of NP and AF gene expression that were remarkably consistent at 2.5 and 6 months-of-age. Prg4, Cilp, Ibsp and Comp were increased >50-fold in the AF relative to NP. The most highly enriched NP genes included Dsc3 and Cdh6, members of the cadherin superfamily, and microRNAs mir218-1 and mir490. Changes in the NP between 2.5 and 6 months-of-age were associated with up-regulation of molecular functions linked to laminin and Bmp receptor binding (including up-regulation of Bmp5 & 7), with the most up-regulated genes being Mir703, Shh, and Sfrp5. NP degeneration was associated with molecular functions linked to alpha-actinin binding (including up-regulation of Ttn & Myot) and cytoskeletal protein binding, with the overall most up-regulated genes being Rnu3a, Snora2b and Mir669h.Conclusions: This study provided insight into the phenotypes of NP and AF cells, and identified candidate pathways that may regulate degeneration.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Matthew R McCann
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Neil A Tenn
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| |
Collapse
|
26
|
Dhahbi J, Nunez Lopez YO, Schneider A, Victoria B, Saccon T, Bharat K, McClatchey T, Atamna H, Scierski W, Golusinski P, Golusinski W, Masternak MM. Profiling of tRNA Halves and YRNA Fragments in Serum and Tissue From Oral Squamous Cell Carcinoma Patients Identify Key Role of 5' tRNA-Val-CAC-2-1 Half. Front Oncol 2019; 9:959. [PMID: 31616639 PMCID: PMC6775249 DOI: 10.3389/fonc.2019.00959] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of head and neck cancer and, as indicated by The Oral Cancer Foundation, kills at an alarming rate of roughly one person per hour. With this study, we aimed at better understanding disease mechanisms and identifying minimally invasive disease biomarkers by profiling novel small non-coding RNAs (specifically, tRNA halves and YRNA fragments) in both serum and tumor tissue from humans. Small RNA-Sequencing identified multiple 5' tRNA halves and 5' YRNA fragments that displayed significant differential expression levels in circulation and/or tumor tissue, as compared to control counterparts. In addition, by implementing a modification of weighted gene coexpression network analysis, we identified an upregulated genetic module comprised of 5' tRNA halves and miRNAs (miRNAs were described in previous study using the same samples) with significant association with the cancer trait. By consequently implementing miRNA-overtargeting network analysis, the biological function of the module (and by "guilt by association," the function of the 5' tRNA-Val-CAC-2-1 half) was found to involve the transcriptional targeting of specific genes involved in the negative regulation of the G1/S transition of the mitotic cell cycle. These findings suggest that 5' tRNA-Val-CAC-2-1 half (reduced in serum of OSCC patients and elevated in the tumor tissue) could potentially serve as an OSCC circulating biomarker and/or target for novel anticancer therapies. To our knowledge, this is the first time that the specific molecular function of a 5'-tRNA half is specifically pinpointed in OSCC.
Collapse
Affiliation(s)
- Joseph Dhahbi
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA, United States
| | - Yury O. Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, United States
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Tatiana Saccon
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Krish Bharat
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA, United States
| | - Thaddeus McClatchey
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA, United States
| | - Hani Atamna
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA, United States
| | - Wojciech Scierski
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Golusinski
- Department of Otolaryngology and Maxillofacial Surgery, University of Zielona Gora, Zielona Gora, Poland
- Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznań, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznań, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznań, Poland
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
- Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznań, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznań, Poland
| |
Collapse
|
27
|
Zhang K, Han Y, Hu Z, Zhang Z, Shao S, Yao Q, Zheng L, Wang J, Han X, Zhang Y, Chen T, Yao Z, Han T, Hong W. SCARNA10, a nuclear-retained long non-coding RNA, promotes liver fibrosis and serves as a potential biomarker. Am J Cancer Res 2019; 9:3622-3638. [PMID: 31281502 PMCID: PMC6587170 DOI: 10.7150/thno.32935] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in numerous biological functions and pathological processes. However, the clinical significance of lncRNAs and their functions in liver fibrosis remain largely unclear. Methods: The transcript of lncRNA SCARNA10 in serum and liver samples from patients with advanced hepatic fibrosis, liver tissues from two fibrosis mouse models, and cultured hepatic stellate cells (HSCs) was determined by real-time RT-PCR. The effects of lentivirus-mediated knockdown or over-expression of SCARNA10 in liver fibrosis were examined in vitro and in vivo. Moreover, the effects and mechanisms of down-regulation or over-expression of SCARNA10 on the expression of the genes involved in TGFβ pathway were determined. Results: It was found lncRNA ENSMUST00000158992, named as Scarna10, was remarkably up-regulated in mouse fibrotic livers according to the microarray data. We observed that the transcript of SCARNA10 was increased in the serum and liver from patients with advanced hepatic fibrosis. Furthermore, we found that SCARNA10 promoted liver fibrosis both in vitro and in vivo through inducing hepatocytes (HCs) apoptosis and HSCs activation. Mechanistically, RNA immunoprecipitation (RIP) assays demonstrated that SCARNA10 physically associated with polycomb repressive complex 2 (PRC2). Additionally, our results demonstrated that SCARNA10 functioned as a novel positive regulator of TGFβ signaling in hepatic fibrogenesis by inhibiting the binding of PRC2 to the promoters of the genes associated with ECM and TGFβ pathway, thus promoting the transcription of these genes. Conclusions: Our study identified a crucial role of SCARNA10 in liver fibrosis, providing a proof of this molecule as a potential diagnostic marker and a possible therapeutic target against liver fibrosis.
Collapse
|
28
|
Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, Seo AY, Chung JH, Jung YS, Im E, Lee J, Kim ND, Choi YJ, Im DS, Yu BP. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis 2019; 10:367-382. [PMID: 31011483 PMCID: PMC6457053 DOI: 10.14336/ad.2018.0324] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/24/2018] [Indexed: 12/13/2022] Open
Abstract
Age-associated chronic inflammation is characterized by unresolved and uncontrolled inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have been made in inflammation research. A more comprehensive view of age-related inflammation, that has a scope beyond the conventional view, is therefore required. In this review, we discuss newly emerging data on multi-phase inflammatory networks and proinflammatory pathways as they relate to aging. We describe the age-related upregulation of nuclear factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, inflammasome, and lipid accumulation. The later sections of this review present our expanded view of age-related senescent inflammation, a process we term "senoinflammation", that we propose here as a novel concept. As described in the discussion, senoinflammation provides a schema highlighting the important and ever-increasing roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, which support the senoinflammation concept. It is hoped that this new concept of senoinflammation opens wider and deeper avenues for basic inflammation research and provides new insights into the anti-inflammatory therapeutic strategies targeting the multiple proinflammatory pathways and mediators and mediators that underlie the pathophysiological aging process.
Collapse
Affiliation(s)
- Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Eun Kyeong Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
- Pathological and Analytical Center, Korea Institute of Toxicology, Daejeon 34114, Korea.
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Sangwoon Chung
- Department of Internal Medicine, Pulmonary, Allergy, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea.
| | - Arnold Y. Seo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Jae Heun Chung
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| | - Young Suk Jung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Eunok Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Jaewon Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Nam Deuk Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea.
| | - Dong Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA.
| |
Collapse
|
29
|
Circulating small non-coding RNAs associated with age, sex, smoking, body mass and physical activity. Sci Rep 2018; 8:17650. [PMID: 30518766 PMCID: PMC6281647 DOI: 10.1038/s41598-018-35974-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022] Open
Abstract
Small non-coding RNAs (sncRNA) are regulators of cell functions and circulating sncRNAs from the majority of RNA classes are potential non-invasive biomarkers. Understanding how common traits influence ncRNA expression is essential for assessing their biomarker potential. In this study, we identify associations between sncRNA expression and common traits (sex, age, self-reported smoking, body mass, self-reported physical activity). We used RNAseq data from 526 serum samples from the Janus Serum Bank and traits from health examination surveys. Ageing showed the strongest association with sncRNA expression, both in terms of statistical significance and number of RNAs, regardless of RNA class. piRNAs were abundant in the serum samples and they were associated to sex. Interestingly, smoking cessation generally restored RNA expression to non-smoking levels, although for some sncRNAs smoking-related expression levels persisted. Pathway analysis suggests that smoking-related sncRNAs target the cholinergic synapses and may therefore potentially play a role in smoking addiction. Our results show that common traits influence circulating sncRNA expression. It is clear that sncRNA biomarker analyses should be adjusted for age and sex. In addition, for specific sncRNAs, analyses should also be adjusted for body mass, smoking, physical activity and technical factors.
Collapse
|
30
|
Han Y, Zhang K, Hong Y, Wang J, Liu Q, Zhang Z, Xia H, Tang Y, Li T, Li L, Xue Y, Hong W. miR‐342‐3p promotes osteogenic differentiation via targetingATF3. FEBS Lett 2018; 592:4051-4065. [PMID: 30381822 DOI: 10.1002/1873-3468.13282] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yawei Han
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
- Department of Orthopaedics Surgery Tianjin Medical University General Hospital Tianjin Medical University China
| | - Kun Zhang
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Yuheng Hong
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
- School of Medical Imaging Tianjin Medical University China
| | - Jingzhao Wang
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Qi Liu
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Zhen Zhang
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Han Xia
- Department of Orthopaedics Surgery Tianjin Medical University General Hospital Tianjin Medical University China
| | - Yutao Tang
- Department of Orthopaedics Surgery Tianjin Medical University General Hospital Tianjin Medical University China
| | - Tengshuai Li
- Department of Orthopaedics Surgery Tianjin Medical University General Hospital Tianjin Medical University China
| | - Liandong Li
- Department of Orthopaedics Surgery Tianjin Medical University General Hospital Tianjin Medical University China
| | - Yuan Xue
- Department of Orthopaedics Surgery Tianjin Medical University General Hospital Tianjin Medical University China
| | - Wei Hong
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| |
Collapse
|
31
|
Abstract
SIGNIFICANCE Platelets are anucleate blood cells that are involved in hemostasis and thrombosis. Although no longer able to generate ribonucleic acid (RNA) de novo, platelets contain messenger RNA (mRNA), YRNA fragments, and premature microRNAs (miRNAs) that they inherit from megakaryocytes. Recent Advances: Novel sequencing techniques have helped identify the unexpectedly large number of RNA species present in platelets. Throughout their life time, platelets can process the pre-existing pool of premature miRNA to give the fully functional miRNA that can regulate platelet protein expression and function. CRITICAL ISSUES Platelets make a major contribution to the circulating miRNA pool but platelet activation can have major consequences on Dicer levels and thus miRNA maturation, which has implications for studies that are focused on screening-stored platelets. FUTURE DIRECTIONS It will be important to determine the importance of platelets as donors for miRNA-containing microvesicles that can be taken up and processed by other (particularly vascular) cells, thus contributing to homeostasis as well as disease progression. Antioxid. Redox Signal. 29, 902-921.
Collapse
Affiliation(s)
- Amro Elgheznawy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
32
|
Song J, Wang HL, Song KH, Ding ZW, Wang HL, Ma XS, Lu FZ, Xia XL, Wang YW, Fei-Zou, Jiang JY. CircularRNA_104670 plays a critical role in intervertebral disc degeneration by functioning as a ceRNA. Exp Mol Med 2018; 50:1-12. [PMID: 30089772 PMCID: PMC6082839 DOI: 10.1038/s12276-018-0125-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
This study was carried out to explore the roles of circular RNAs (circRNAs) in nucleus pulposus (NP) tissues in intervertebral disc degeneration (IDD). Differentially expressed circRNAs in IDD and normal NP tissues were identified based on the results of microarray analysis. Bioinformatics techniques were employed to predict the direct interactions of selected circRNAs, microRNAs (miR), and mRNAs. CircRNA_104670 was selected as the target circRNA due to its large multiplier expression in IDD tissues. After luciferase reporter and EGFP/RFP reporter assays, we confirmed that circRNA_104670 directly bound to miR-17-3p, while MMP-2 was the direct target of miR-17-3p. The receiver-operating characteristic (ROC) curve showed that circRNA_104670 and miR-17-3p had good diagnostic significance for IDD (AUC circRNA_104670 = 0.96; AUC miRNA-17-3p = 0.91). A significant correlation was detected between the Pfirrmann grade and expression of circRNA_104670 (r = 0.63; p = 0.00) and miR-17-3p (r = −0.62; p = 0.00). Flow-cytometric analysis and the MTT assay showed that interfering with circRNA_104670 using small interfering RNA (siRNA) inhibited NP cell apoptosis (p < 0.01), and this inhibition was reduced by interfering with miR-17-3p. Interfering with circRNA_104670 suppressed MMP-2 expression and increased extracellular matrix (ECM) formation, which were also reduced by interfering with miR-17-3p. Finally, an MRI evaluation showed that circRNA_104670 inhibition mice had a lower IDD grade compared with control mice (p < 0.01), whereas circRNA_104670 and miRNA-17-3p inhibition mice had a higher IDD grade compared with circRNA_104670 inhibition mice (p < 0.05). CircRNA_104670 is highly expressed in the NP tissues of IDD and acts as a ceRNA during NP degradation. ‘RNA sponges’ may provoke lower back pain by soaking up regulatory RNAs that normally protect the protein infrastructure surrounding cells in intervertebral discs. Many people suffer from lower back pain arising from disc degeneration (IDD). A team led by Fei-Zou and Jian-Yuan Jiang at Fudan University, Shanghai, China set out to identify molecular mechanisms that might contribute to IDD. They focused on circular RNAs, non-protein coding RNAs that have been linked to a variety of diseases. The researchers learned that IDD is associated with strongly elevated expression of a circular RNA that acts as an ‘RNA sponge’, binding to and thereby inactivating other RNA molecules. This inactivation ultimately results in the excessive production of an enzyme that can damage the protein matrix that supports cells within spinal discs, potentially setting up the conditions for IDD.
Collapse
Affiliation(s)
- Jian Song
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Hong-Li Wang
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Ke-Han Song
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Zhi-Wen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Hai-Lian Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Xiao-Sheng Ma
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Fei-Zhou Lu
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Xin-Lei Xia
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Ying-Wei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Fei-Zou
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040.
| | - Jian-Yuan Jiang
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040.
| |
Collapse
|
33
|
Pös O, Biró O, Szemes T, Nagy B. Circulating cell-free nucleic acids: characteristics and applications. Eur J Hum Genet 2018; 26:937-945. [PMID: 29681621 PMCID: PMC6018748 DOI: 10.1038/s41431-018-0132-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/07/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy is becoming a very popular sample obtaining procedure, replacing the invasive sampling methods for the diagnostic protocols. The advantages of this method include the possibility to isolate cell-free nucleic acids (cfNAs) for diagnostic or screening purposes. A comprehensive review combining all current and perspective applications of cell-free nucleic acids is missing. Published articles are dealing with one type of cfNAs, or discuss them from the perspective of single disorder. We collected here all known types of cfNAs which are known to be present in biological fluids and could be involved in further studies to find out the exact biological role of them in normal physiological and pathological conditions. Beyond doubt, cfNAs will have a tremendous effect in future screening, diagnosis, prognosis, follow-up and treatment of cardiovascular diseases, cancer, diabetes and other diseases.
Collapse
Affiliation(s)
- Ondrej Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Orsolya Biró
- Genetic Laboratory, 1st Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
34
|
Rubio M, Bustamante M, Hernandez-Ferrer C, Fernandez-Orth D, Pantano L, Sarria Y, Piqué-Borras M, Vellve K, Agramunt S, Carreras R, Estivill X, Gonzalez JR, Mayor A. Circulating miRNAs, isomiRs and small RNA clusters in human plasma and breast milk. PLoS One 2018; 13:e0193527. [PMID: 29505615 PMCID: PMC5837101 DOI: 10.1371/journal.pone.0193527] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/13/2018] [Indexed: 01/29/2023] Open
Abstract
Circulating small RNAs, including miRNAs but also isomiRs and other RNA species, have the potential to be used as non-invasive biomarkers for communicable and non-communicable diseases. This study aims to characterize and compare small RNA profiles in human biofluids. For this purpose, RNA was extracted from plasma and breast milk samples from 15 healthy postpartum mothers. Small RNA libraries were prepared with the NEBNext® small RNA library preparation kit and sequenced in an Illumina HiSeq2000 platform. miRNAs, isomiRs and clusters of small RNAs were annotated using seqBuster/seqCluster framework in 5 plasma and 10 milk samples that passed the initial quality control. The RNA yield was 81 ng/mL [standard deviation (SD): 41] and 3985 ng/mL (SD: 3767) for plasma and breast milk, respectively. Mean number of good quality reads was 4.04 million (M) (40.01% of the reads) in plasma and 12.5M (89.6%) in breast milk. One thousand one hundred eighty two miRNAs, 12,084 isomiRs and 1,053 small RNA clusters that included piwi-interfering RNAs (piRNAs), tRNAs, small nucleolar RNAs (snoRNA) and small nuclear RNAs (snRNAs) were detected. Samples grouped by biofluid, with 308 miRNAs, 1,790 isomiRs and 778 small RNA clusters differentially detected. In summary, plasma and milk showed a different small RNA profile. In both, miRNAs, piRNAs, tRNAs, snRNAs, and snoRNAs were identified, confirming the presence of non-miRNA species in plasma, and describing them for the first time in milk.
Collapse
Affiliation(s)
- Mercedes Rubio
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Carles Hernandez-Ferrer
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Dietmar Fernandez-Orth
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Lorena Pantano
- Harvard TH Chan School of Public Health, Boston, MA, United States of America
| | - Yaris Sarria
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Maria Piqué-Borras
- Laboratory of Childhood Leukemia, Department of Biomedicine, University of Basel and Basel University Children's Hospital, Hebelestrasse, Basel, Switzerland
| | - Kilian Vellve
- Obstetrics and Gynaecology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Silvia Agramunt
- Obstetrics and Gynaecology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Ramon Carreras
- Obstetrics and Gynaecology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Estivill
- Genetics of Child and Woman's Health Group, Research Department, Sidra Medical and Research Center, Doha, Qatar
- Genetics Unit, Dexeus Woman's Health, Barcelona, Spain
| | - Juan R. Gonzalez
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
- * E-mail: (JRG); (AM)
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
- * E-mail: (JRG); (AM)
| |
Collapse
|
35
|
Hearn J, Chow FWN, Barton H, Tung M, Wilson PJ, Blaxter M, Buck A, Little TJ. Daphnia magna microRNAs respond to nutritional stress and ageing but are not transgenerational. Mol Ecol 2018; 27:1402-1412. [PMID: 29420841 DOI: 10.1111/mec.14525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Maternal effects, where the performance of offspring is determined by the condition of their mother, are widespread and may in some cases be adaptive. The crustacean Daphnia magna shows strong maternal effects: offspring size at birth and other proxies for fitness are altered when their mothers are older or when mothers have experienced dietary restriction. The mechanisms for this transgenerational transmission of maternal experience are unknown, but could include changes in epigenetic patterning. MicroRNAs (miRNAs) are regulators of gene expression that have been shown to play roles in intergenerational information transfer, and here, we test whether miRNAs are involved in D. magna maternal effects. We found that miRNAs were differentially expressed in mothers of different ages or nutritional state. We then examined miRNA expression in their eggs, their adult daughters and great granddaughters, which did not experience any treatments. The maternal (treatment) generation exhibited differential expression of miRNAs, as did their eggs, but this was reduced in adult daughters and lost by great granddaughters. Thus, miRNAs are a component of maternal provisioning, but do not appear to be the cause of transgenerational responses under these experimental conditions. MicroRNAs may act in tandem with egg provisioning (e.g., with carbohydrates or fats), and possibly other small RNAs or epigenetic modifications.
Collapse
Affiliation(s)
- Jack Hearn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Franklin Wang-Ngai Chow
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Harriet Barton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Matthew Tung
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Philip J Wilson
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tom J Little
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
36
|
Masternak MM, Darcy J, Victoria B, Bartke A. Dwarf Mice and Aging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 155:69-83. [DOI: 10.1016/bs.pmbts.2017.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
The involvement of serum exosomal miR-500-3p and miR-770-3p in aging: modulation by calorie restriction. Oncotarget 2017; 9:5578-5587. [PMID: 29464019 PMCID: PMC5814159 DOI: 10.18632/oncotarget.23651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown a role for miRNAs in aging and age-related diseases, and the modulation of miRNA expression by diet attracts attention as a new therapeutic strategy. Here, we focused on identifying specific exosomal miRNAs derived from serum of aged rats and the effect of short-term calorie restriction (CR) on their expression. Exosomes from serum of young (7-month), old (22-month), and old-CR Sprague Dawley rats were isolated and characterized by transmission electron microscopy analyses, dynamic light scattering measurements, and Western blotting. A total of 12 significantly expressed miRNAs in serum exosomes of young and old rats were identified by next generation sequencing. After analysis of qRT-PCR, we found that miR-500-3p and miR-770-3p expression was significantly upregulated by aging and downregulated by CR. Furthermore, receiver operating characteristic (ROC) curve revealed that the selected miRNAs represented high accuracy in discriminating old rats from young rats. Finally, PANTHER analysis predicted selected miRNAs targets genes involved in Wnt/chemokines and cytokines -related inflammatory signaling pathway and function as transcription factor. In conclusion, our results suggest that the expression of serum exosomal miR-500-3p and miR-770-3p was significantly increased with aging, whereas these were decreased by CR, and age-/CR-modulated exosomal miR-500-3p and miR-770-3p could potentially be used as informative biomarkers candidates for aging.
Collapse
|
38
|
Shi H, Chen J, Li Y, Li G, Zhong R, Du D, Meng R, Kong W, Lu M. Identification of a six microRNA signature as a novel potential prognostic biomarker in patients with head and neck squamous cell carcinoma. Oncotarget 2017; 7:21579-90. [PMID: 26933913 PMCID: PMC5008307 DOI: 10.18632/oncotarget.7781] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/20/2016] [Indexed: 12/26/2022] Open
Abstract
The 5-year survival rate of patients with head and neck squamous cell carcinoma (HNSCC) was only 40%-50%. To investigate the prognostic and predictive value of specific mircoRNAs (miRNAs) in HNSCC. We identified 19 miRNAs associated with over survival (OS) of patients with HNSCC in different clinical classes between 492 HNSCC tissues and 44 normal tissues from The Cancer Genome Atlas (TCGA) dataset. A signature of six miRNAs was identified by the supervised principal component method in the training set. The AUC of the ROC curve for the six microRNA signature predicting 5-year survival was 0.737 (95%CI, 0.627-0.825) in the testing set and 0.708 (95%CI, 0.616-0.785) in the total dataset. In the multivariate Cox regression analysis, patients with high-risk scores had shorter OS (HR, 2.380, 95%CI, 1.361-4.303) than patients with low-risk scores in the total dataset. Therefore, these results provided a new prospect for prognostic biomarker of HNSCC.
Collapse
Affiliation(s)
- Hao Shi
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Chen
- Department of Head and Neck Surgery, Hubei Cancer Hospital, and Hubei Key Laboratory of Medical Information Analysis & Tumor Diagnosis and Treatment, Wuhan, Hubei, China
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guojun Li
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dandan Du
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruiwei Meng
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meixia Lu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
39
|
Victoria B, Nunez Lopez YO, Masternak MM. MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol 2017; 455:131-147. [PMID: 28062199 PMCID: PMC5724961 DOI: 10.1016/j.mce.2016.12.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/10/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
Abstract
Aging, the natural process of growing older, is characterized by a progressive deterioration of physiological homeostasis at the cellular, tissue, and organismal level. Metabolically, the aging process is characterized by extensive changes in body composition, multi-tissue/multi-organ insulin resistance, and physiological declines in multiple signaling pathways including growth hormone, insulin/insulin-like growth factor 1, and sex steroids regulation. With this review, we intend to consolidate published information about microRNAs that regulate critical metabolic processes relevant to aging. In certain occasions we uncover relationships likely relevant to aging, which has not been directly described before, such as the miR-451/AMPK axis. We have also included a provocative section highlighting the potential role in aging of a new designation of miRNAs, namely fecal miRNAs, recently discovered to regulate intestinal microbiota in mammals.
Collapse
Affiliation(s)
- Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA.
| | - Yury O Nunez Lopez
- Translational Research Institute for Metabolism & Diabetes. Florida Hospital, 301 East Princeton St, Orlando, FL 32804, USA.
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866, Poznan, Poland.
| |
Collapse
|
40
|
Angelini F, Pagano F, Bordin A, Picchio V, De Falco E, Chimenti I. Getting Old through the Blood: Circulating Molecules in Aging and Senescence of Cardiovascular Regenerative Cells. Front Cardiovasc Med 2017; 4:62. [PMID: 29057227 PMCID: PMC5635266 DOI: 10.3389/fcvm.2017.00062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Global aging is a hallmark of our century. The natural multifactorial process resulting in aging involves structural and functional changes, affecting molecules, cells, and tissues. As the western population is getting older, we are witnessing an increase in the burden of cardiovascular events, some of which are known to be directly linked to cellular senescence and dysfunction. In this review, we will focus on the description of a few circulating molecules, which have been correlated to life span, aging, and cardiovascular homeostasis. We will review the current literature concerning the circulating levels and related signaling pathways of selected proteins (insulin-like growth factor 1, growth and differentiation factor-11, and PAI-1) and microRNAs of interest (miR-34a, miR-146a, miR-21), whose bloodstream levels have been associated to aging in different organisms. In particular, we will also discuss their potential role in the biology and senescence of cardiovascular regenerative cell types, such as endothelial progenitor cells, mesenchymal stromal cells, and cardiac progenitor cells.
Collapse
Affiliation(s)
- Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| |
Collapse
|
41
|
Margolis LM, Lessard SJ, Ezzyat Y, Fielding RA, Rivas DA. Circulating MicroRNA Are Predictive of Aging and Acute Adaptive Response to Resistance Exercise in Men. J Gerontol A Biol Sci Med Sci 2017; 72:1319-1326. [PMID: 27927764 DOI: 10.1093/gerona/glw243] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Circulating microRNA (c-miRNA) have the potential to function as novel noninvasive markers of the underlying physiological state of skeletal muscle. This investigation sought to determine the influence of aging on c-miRNA expression at rest and following resistance exercise in male volunteers (Young: n = 9; Older: n = 9). Primary findings were that fasting c-miRNA expression profiles were significantly predictive of aging, with miR-19b-3p, miR-206, and miR-486 distinguishing between age groups. Following resistance exercise, principal component analysis revealed a divergent response in expression of 10 c-miRNA, where expression profiles were upregulated in younger and downregulated in older participants. Using Ingenuity Pathway Analysis to test c-miRNA-to-mRNA interactions in skeletal muscle, it was found that response of c-miRNA to exercise was indicative of an anabolic response in younger but not older participants. These findings were corroborated with a positive association observed with the phosphorylation status of p-AktSer473 and p-S6K1Thr389 and expression of miR-19a-3p, miR-19b-3p, miR-20a-5p, miR-26b-5p, miR-143-3p, and miR-195-5p. These important findings provide compelling evidence that dysregulation of c-miRNA expression with aging may not only serve as a predictive marker, but also reflect underlying molecular mechanisms resulting in age-associated declines in skeletal muscle mass, increased fat mass, and "anabolic resistance."
Collapse
Affiliation(s)
- Lee M Margolis
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Sarah J Lessard
- Section of Clinical Research, Joslin Diabetes Center.,Brigham and Women's Hospital.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yassine Ezzyat
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Roger A Fielding
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Donato A Rivas
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| |
Collapse
|
42
|
Lee EK, Chung KW, Kim YR, Ha S, Kim SD, Kim DH, Jung KJ, Lee B, Im E, Yu BP, Chung HY. Small RNAs induce the activation of the pro-inflammatory TLR7 signaling pathway in aged rat kidney. Aging Cell 2017; 16:1026-1034. [PMID: 28665028 PMCID: PMC5595700 DOI: 10.1111/acel.12629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
We have recently reported that TLR-related genes, including TLR7, are upregulated during aging. However, the role of TLR7 and its endogenous ligand in inflammation related to aging is not well defined. Here, we established that small RNAs trigger age-related renal inflammation via TLR7 signaling pathway. We first investigated the expression changes of nine different TLRs in kidney of 6-month-old young rats and 20-month-old aged rats. The results revealed that the expression of TLR7 was the highest among nine TLRs in kidney of old rats compared to the young aged rats. Next, to assess the role of cellular RNA as a TLR7 ligand, we treated a renal tubular epithelial cell line with total RNA isolated from the kidney of young and old rats. The results showed that RNA isolated from old rats showed higher expression of TLR7, IL1β, and TNFα compared to that from young rats. Furthermore, RNA isolated from old rats induced IKKα/β/JNK/NF-κB activation. To identify RNA that activates TLR7, we isolated small and large RNAs from old rat kidney and found that small RNAs increased TLR7 expression in cells. Finally, to investigate the local inflammatory response by small RNA, C57B/L6 mice were intraperitoneally injected with small RNAs isolated from young and old rats; thereby, RNA isolated from old rats induced higher inflammatory responses. Our study demonstrates that renal small RNAs from aged rats induce pro-inflammatory processes via the activation of the TLR7/IKKα/β/JNK/NF-κB signaling pathway, and highlights its causative role as a possible therapeutic target in age-related chronic renal inflammation.
Collapse
Affiliation(s)
- Eun Kyeong Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| | - Ye Ra Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| | - Sugyeong Ha
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| | - Sung Dae Kim
- Research Center; Dongnam Institute of Radiological & Medical Sciences; Busan Korea
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| | - Kyung Jin Jung
- Pathological and Analytical Center; Korea Institute of Toxicology; 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Korea
| | - Bonggi Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
- Korean Medicine (KM)-Application Center; Korea Institute of Oriental Medicine (KIOM); Daegu 41062 Korea
| | - Eunok Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| | - Byung Pal Yu
- Department of Physiology; The University of Texas Health Science Center at San Antonio; San Antonio TX 78229-3900 USA
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| |
Collapse
|
43
|
Schneider A, Dhahbi JM, Atamna H, Clark JP, Colman RJ, Anderson RM. Caloric restriction impacts plasma microRNAs in rhesus monkeys. Aging Cell 2017; 16:1200-1203. [PMID: 28677323 PMCID: PMC5595684 DOI: 10.1111/acel.12636] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 01/20/2023] Open
Abstract
Caloric restriction (CR) is one of the most robust interventions shown to delay aging in diverse species, including rhesus monkeys (Macaca mulatta). Identification of factors involved in CR brings a promise of translatability to human health and aging. Here, we show that CR induced a profound change in abundance of circulating microRNAs (miRNAs) linked to growth and insulin signaling pathway, suggesting that miRNAs are involved in CR's mechanisms of action in primates. Deep sequencing of plasma RNA extracts enriched for short species revealed a total of 243 unique species of miRNAs including 47 novel species. Approximately 70% of the plasma miRNAs detected were conserved between rhesus monkeys and humans. CR induced or repressed 24 known and 10 novel miRNA species. Regression analysis revealed correlations between bodyweight, adiposity, and insulin sensitivity for 10 of the CR-regulated known miRNAs. Sequence alignment and target identification for these 10 miRNAs identify a role in signaling downstream of the insulin receptor. The highly abundant miR-125a-5p correlated positively with adiposity and negatively with insulin sensitivity and was negatively regulated by CR. Putative target pathways of CR-associated miRNAs were highly enriched for growth and insulin signaling that have previously been implicated in delayed aging. Clustering analysis further pointed to CR-induced miRNA regulation of ribosomal, mitochondrial, and spliceosomal pathways. These data are consistent with a model where CR recruits miRNA-based homeostatic mechanisms to coordinate a program of delayed aging.
Collapse
Affiliation(s)
- Augusto Schneider
- Faculdade de NutriçãoUniversidade Federal de PelotasPelotas‐RS96010‐610Brazil
- College of MedicineBurnett School of Biomedical SciencesUniversity of Central FloridaOrlandoFL32827USA
| | - Joseph M. Dhahbi
- College of MedicineCalifornia University of Science and MedicineColtonCA92324USA
| | - Hani Atamna
- College of MedicineCalifornia University of Science and MedicineColtonCA92324USA
| | - Josef P. Clark
- Department of MedicineUniversity of WisconsinMadisonWI53705USA
| | | | - Rozalyn M. Anderson
- Department of MedicineUniversity of WisconsinMadisonWI53705USA
- GRECCWilliam S. Middleton Memorial Veterans HospitalMadisonWI53705USA
| |
Collapse
|
44
|
Mjelle R, Sellæg K, Sætrom P, Thommesen L, Sjursen W, Hofsli E. Identification of metastasis-associated microRNAs in serum from rectal cancer patients. Oncotarget 2017; 8:90077-90089. [PMID: 29163812 PMCID: PMC5685733 DOI: 10.18632/oncotarget.21412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are promising prognostic and diagnostic biomarkers due to their high stability in blood. Here we investigate the expression of miRNAs and other noncoding (nc) RNAs in serum of rectal cancer patients. Serum from 96 rectal cancer patients was profiled using small RNA sequencing and expression of small RNAs was correlated with the clinicopathological characteristics of the patients. Multiple classes of RNAs were detected, including miRNAs and fragments of tRNAs, snoRNAs, long ncRNAs, and other classes of RNAs. Several miRNAs, miRNA variants (isomiRs) and other ncRNAs were differentially expressed between Stage IV and Stage I-III rectal cancer patients, including several members of the miR-320 family. Furthermore, we show that high expression of miR-320d as well as one tRNA fragment is associated with poor survival. We also show that several miRNAs and isomiRs are differentially expressed between patients receiving preoperative chemoradiotherapy and patients who did not receive any treatment before serum collection. In summary, our study shows that the expression of miRNAs and other small ncRNAs in serum may be used to predict distant metastasis and survival in rectal cancer.
Collapse
Affiliation(s)
- Robin Mjelle
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway
| | - Kjersti Sellæg
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway.,Department of Computer Science, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Liv Thommesen
- Department of Biomedical Science, Norwegian University of Science and Technology, 7030 Trondheim Norway
| | - Wenche Sjursen
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway.,Department of Medical Genetics, St. Olavs Hospital, Norwegian University of Science and Technology, 7030 Trondheim Norway
| | - Eva Hofsli
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway.,The Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
45
|
The Combination of Physical Exercise with Muscle-Directed Antioxidants to Counteract Sarcopenia: A Biomedical Rationale for Pleiotropic Treatment with Creatine and Coenzyme Q10. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7083049. [PMID: 29123615 PMCID: PMC5632475 DOI: 10.1155/2017/7083049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
Abstract
Sarcopenia represents an increasing public health risk due to the rapid aging of the world's population. It is characterized by both low muscle mass and function and is associated with mobility disorders, increased risk of falls and fractures, loss of independence, disabilities, and increased risk of death. Despite the urgency of the problem, the development of treatments for sarcopenia has lagged. Increased reactive oxygen species (ROS) production and decreased antioxidant (AO) defences seem to be important factors contributing to muscle impairment. Studies have been conducted to verify whether physical exercise and/or AOs could prevent and/or delay sarcopenia through a normalization of the etiologically relevant ROS imbalance. Despite the strong rationale, the results obtained were contradictory, particularly with regard to the effects of the tested AOs. A possible explanation might be that not all the agents included in the general heading of "AOs" could fulfill the requisites to counteract the complex series of events causing/accelerating sarcopenia: the combination of the muscle-directed antioxidants creatine and coenzyme Q10 with physical exercise as a biomedical rationale for pleiotropic prevention and/or treatment of sarcopenia is discussed.
Collapse
|
46
|
Olivieri F, Capri M, Bonafè M, Morsiani C, Jung HJ, Spazzafumo L, Viña J, Suh Y. Circulating miRNAs and miRNA shuttles as biomarkers: Perspective trajectories of healthy and unhealthy aging. Mech Ageing Dev 2017; 165:162-170. [PMID: 27986629 PMCID: PMC5481482 DOI: 10.1016/j.mad.2016.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Human aging is a lifelong process characterized by a continuous trade-off between pro-and anti-inflammatory responses, where the best-adapted and/or remodeled genetic/epigenetic profile may develop a longevity phenotype. Centenarians and their offspring represent such a phenotype and their comparison to patients with age-related diseases (ARDs) is expected to maximize the chance to unravel the genetic makeup that better associates with healthy aging trajectories. Seemingly, such comparison is expected to allow the discovery of new biomarkers of longevity together with risk factor for the most common ARDs. MicroRNAs (miRNAs) and their shuttles (extracellular vesicles in particular) are currently conceived as those endowed with the strongest ability to provide information about the trajectories of healthy and unhealthy aging. We review the available data on miRNAs in aging and underpin the evidence suggesting that circulating miRNAs (and cognate shuttles), especially those involved in the regulation of inflammation (inflamma-miRs) may constitute biomarkers capable of reliably depicting healthy and unhealthy aging trajectories.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Miriam Capri
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Via S. Giacomo, 12, Bologna, Italy; CIG, Interdepartmental Center "L. Galvani", Alma Mater Studiorum, Pzza Porta S. Donato, 1, Bologna, Italy.
| | - Massimiliano Bonafè
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Via S. Giacomo, 12, Bologna, Italy
| | - Cristina Morsiani
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Via S. Giacomo, 12, Bologna, Italy; CIG, Interdepartmental Center "L. Galvani", Alma Mater Studiorum, Pzza Porta S. Donato, 1, Bologna, Italy
| | - Hwa Jin Jung
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Liana Spazzafumo
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Jose Viña
- Department of Physiology, Faculty of Medicine, University of Valencia. INCLIVA Avda, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
47
|
Margolis LM, Dawson-Hughes B, Rivas DA, Ezzyat Y, Fielding RA, Ceglia L. Effects of Potassium Bicarbonate Supplements on Circulating microRNA Expression. J Endocr Soc 2017; 1:1015-1026. [PMID: 29264553 PMCID: PMC5686674 DOI: 10.1210/js.2017-00106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/08/2017] [Indexed: 01/31/2023] Open
Abstract
Several studies suggest that neutralizing acid load in the diet with alkali had favorable effects on intermediate markers of musculoskeletal health. We examined whether alkali supplementation with potassium bicarbonate [(KHCO3); 81 mmol/d; n = 12] vs placebo (n = 12) for 84 days altered serum microRNAs, potential biomarkers associated with innumerable biological processes including bone and muscle metabolism. Serum microRNAs, urinary net acid excretion (UNAE), urinary N-telopeptide (UNTX), urinary calcium (UCa), urinary nitrogen (UN), glomerular filtration rate, serum procollagen type 1 amino-terminal propeptide (P1NP), serum insulin-like growth factor-1 (IGF-1), and its serum binding protein IGFBP3 were measured at baseline and day 84. Baseline characteristics and measurements were similar in the two treatment groups. Eighty-four-day changes in UNAE differed by group (KHCO3, -47 ± 9 mmol; placebo, -5 ± 5 mmol; P < 0.01). KHCO3 significantly reduced UNTX, UCa, and serum P1NP but did not affect UN, serum IGF-1, or IGFBP3 levels compared with placebo over 84 days. Fold change in serum circulating microRNA (c-miR)-133b differed significantly by group (KHCO3, 2.26 ± 0.85; placebo, -1.23 ± 0.69; P < 0.01); there was a similar trend in c-miR-21-5p. Fold changes in c-miR-133b and c-miR-21-5p were inversely associated with changes in UNAE and UNTX; fold change in c-miR-21-5p was inversely associated with change in UCa, with a similar trend with c-miR-133b. In summary, reducing renal acid load with KHCO3 was associated with increased expressions of c-miR-133b and c-miR-21-5p. Furthermore, increases in c-miRNA-133b and c-miR-21-5p were inversely associated with bone resorption markers UNTX and UCa consistent with potential beneficial effects on bone in older adults. However, the broader significance of c-miRNAs as musculoskeletal biomarkers is still under investigation, and larger studies are needed to verify these preliminary results.
Collapse
Affiliation(s)
- Lee M Margolis
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, Jean Mayer Human Nutrition Research Center on Aging, US Department of Agriculture, Tufts University, Boston, Massachusetts 02111
| | - Bess Dawson-Hughes
- Bone Metabolism Laboratory, Jean Mayer Human Nutrition Research Center on Aging, US Department of Agriculture, Tufts University, Boston, Massachusetts 02111
| | - Donato A Rivas
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, Jean Mayer Human Nutrition Research Center on Aging, US Department of Agriculture, Tufts University, Boston, Massachusetts 02111
| | - Yassine Ezzyat
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, Jean Mayer Human Nutrition Research Center on Aging, US Department of Agriculture, Tufts University, Boston, Massachusetts 02111
| | - Roger A Fielding
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, Jean Mayer Human Nutrition Research Center on Aging, US Department of Agriculture, Tufts University, Boston, Massachusetts 02111
| | - Lisa Ceglia
- Bone Metabolism Laboratory, Jean Mayer Human Nutrition Research Center on Aging, US Department of Agriculture, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
48
|
Abstract
Individuals of the same age may not age at the same rate. Quantitative biomarkers of aging are valuable tools to measure physiological age, assess the extent of ‘healthy aging’, and potentially predict health span and life span for an individual. Given the complex nature of the aging process, the biomarkers of aging are multilayered and multifaceted. Here, we review the phenotypic and molecular biomarkers of aging. Identifying and using biomarkers of aging to improve human health, prevent age-associated diseases, and extend healthy life span are now facilitated by the fast-growing capacity of multilevel cross-sectional and longitudinal data acquisition, storage, and analysis, particularly for data related to general human populations. Combined with artificial intelligence and machine learning techniques, reliable panels of biomarkers of aging will have tremendous potential to improve human health in aging societies.
Collapse
Affiliation(s)
- Xian Xia
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiyang Chen
- School of Information, Qilu University of Technology, Jinan, China
| | - Joseph McDermott
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Dong Jackie Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
49
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
50
|
RNY (YRNA)-derived small RNAs regulate cell death and inflammation in monocytes/macrophages. Cell Death Dis 2017; 8:e2530. [PMID: 28055017 PMCID: PMC5386355 DOI: 10.1038/cddis.2016.429] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 01/01/2023]
Abstract
The recent discovery of new classes of small RNAs has opened unknown territories to explore new regulations of physiopathological events. We have recently demonstrated that RNY (or Y RNA)-derived small RNAs (referred to as s-RNYs) are an independent class of clinical biomarkers to detect coronary artery lesions and are associated with atherosclerosis burden. Here, we have studied the role of s-RNYs in human and mouse monocytes/macrophages and have shown that in lipid-laden monocytes/macrophages s-RNY expression is timely correlated to the activation of both NF-κB and caspase 3-dependent cell death pathways. Loss- or gain-of-function experiments demonstrated that s-RNYs activate caspase 3 and NF-κB signaling pathways ultimately promoting cell death and inflammatory responses. As, in atherosclerosis, Ro60-associated s-RNYs generated by apoptotic macrophages are released in the blood of patients, we have investigated the extracellular function of the s-RNY/Ro60 complex. Our data demonstrated that s-RNY/Ro60 complex induces caspase 3-dependent cell death and NF-κB-dependent inflammation, when added to the medium of cultured monocytes/macrophages. Finally, we have shown that s-RNY function is mediated by Toll-like receptor 7 (TLR7). Indeed using chloroquine, which disrupts signaling of endosome-localized TLRs 3, 7, 8 and 9 or the more specific TLR7/9 antagonist, the phosphorothioated oligonucleotide IRS954, we blocked the effect of either intracellular or extracellular s-RNYs. These results position s-RNYs as relevant novel functional molecules that impacts on macrophage physiopathology, indicating their potential role as mediators of inflammatory diseases, such as atherosclerosis.
Collapse
|