1
|
Harris A, Burnham K, Pradhyumnan R, Jaishankar A, Häkkinen L, Góngora-Rosero RE, Piazza Y, Andl CD, Andl T. Human-Specific Organization of Proliferation and Stemness in Squamous Epithelia: A Comparative Study to Elucidate Differences in Stem Cell Organization. Int J Mol Sci 2025; 26:3144. [PMID: 40243939 PMCID: PMC11989042 DOI: 10.3390/ijms26073144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The mechanisms that influence human longevity are complex and operate on cellular, tissue, and organismal levels. To better understand the tissue-level mechanisms, we compared the organization of cell proliferation, differentiation, and cytoprotective protein expression in the squamous epithelium of the esophagus between mammals with varying lifespans. Humans are the only species with a quiescent basal stem cell layer that is distinctly physically separated from parabasal transit-amplifying cells. In addition to these stark differences in the organization of proliferation, human squamous epithelial stem cells express DNA repair-related markers, such as MECP2 and XPC, which are absent or low in mouse basal cells. Furthermore, we investigated whether the transition from basal to suprabasal is different between species. In humans, the parabasal cells seem to originate from cells detaching from the basement membrane, and these can already begin to proliferate while delaminating. In most other species, delaminating cells have been rare or their proliferation rate is different from that of their human counterparts, indicating an alternative mode of how stem cells maintain the tissue. In humans, the combination of an elevated cytoprotective signature and novel tissue organization may enhance resistance to aging and prevent cancer. Our results point to enhanced cellular cytoprotection and a tissue architecture which separates stemness and proliferation. These are both potential factors contributing to the increased fitness of human squamous epithelia to support longevity by suppressing tumorigenesis. However, the organization of canine oral mucosa shows some similarities to that of human tissue and may provide a useful model to understand the relationship between tissue architecture, gene expression regulation, tumor suppression, and longevity.
Collapse
Affiliation(s)
- Ashlee Harris
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Kaylee Burnham
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Ram Pradhyumnan
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Arthi Jaishankar
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Rafael E. Góngora-Rosero
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Yelena Piazza
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Claudia D. Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| |
Collapse
|
2
|
Oshi M, Gandhi S, Wu R, Asaoka M, Yan L, Yamada A, Yamamoto S, Narui K, Chishima T, Ishikawa T, Endo I, Takabe K. Development of a novel BRCAness score that predicts response to PARP inhibitors. Biomark Res 2022; 10:80. [PMID: 36371386 PMCID: PMC9652967 DOI: 10.1186/s40364-022-00427-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND BRCAness is a characteristic feature of homologous recombination deficiency (HRD) mimicking BRCA gene mutation in breast cancer. We hypothesized that a measure to quantify BRCAness that causes synthetic lethality in BRCA mutated tumors will identify responders to PARP inhibitors. METHODS A total of 6753 breast cancer patients from 3 large independent cohorts were analyzed. A score was generated by transcriptomic profiling using gene set variation analysis algorithm on 34 BRCA1-mutation related genes selected by high AUC levels in ROC curve between BRCA1 mutation and wildtype breast cancer. RESULTS The score was significantly associated with BRCA1 mutation, high mutation load and intratumoral heterogeneity as expected, as well as with high HRD, DNA repair and MKi67 expression regardless of BRCA mutations. High BRCAness tumors enriched not only DNA repair, but also all five Hallmark cell proliferation-related gene sets. High BRCAness tumors were significantly associated with higher cytolytic activity and with higher anti-cancerous immune cell infiltration. Not only did the breast cancer cell lines with BRCA-mutation show high score, but even the other cells in human breast cancer tumor microenvironment were contributing to the score. The BRCAness score was the highest in triple-negative breast cancer consistently in all 3 cohorts. BRCAness was associated with response to chemotherapy and correlated strongly with response to PARP inhibitor in both triple-negative and ER-positive/HER2-negative breast cancer. CONCLUSIONS We established a novel BRCAness score using BRCA-mutation-related gene expressions and found that it associates with DNA repair and predicts response to PARP inhibitors regardless of BRCA mutation.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004 Japan
| | - Shipra Gandhi
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402 Japan
| | - Mariko Asaoka
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402 Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004 Japan
| | - Shinya Yamamoto
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa Japan
| | - Kazutaka Narui
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa Japan
| | - Takashi Chishima
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004 Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402 Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004 Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004 Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8520 Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295 Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263 USA
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263 USA
| |
Collapse
|
3
|
Smetana J, Vallova V, Wayhelova M, Hladilkova E, Filkova H, Horinova V, Broz P, Mikulasova A, Gaillyova R, Kuglík P. Case Report: Contiguous Xq22.3 Deletion Associated with ATS-ID Syndrome: From Genotype to Further Delineation of the Phenotype. Front Genet 2021; 12:750110. [PMID: 34777475 PMCID: PMC8585740 DOI: 10.3389/fgene.2021.750110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Alport syndrome with intellectual disability (ATS-ID, AMME complex; OMIM #300194) is an X-linked contiguous gene deletion syndrome associated with an Xq22.3 locus mainly characterized by hematuria, renal failure, hearing loss/deafness, neurodevelopmental disorder (NDD), midface retrusion, and elliptocytosis. It is thought that ATS-ID is caused by the loss of function of COL4A5 (ATS) and FACL4 (ACSL4) genes through the interstitial (micro)deletion of chromosomal band Xq22.3. We report detailed phenotypic description and results from genome-wide screening of a Czech family with diagnosis ATS-ID (proband, maternal uncle, and two female carriers). Female carriers showed mild clinical features of microscopic hematuria only, while affected males displayed several novel clinical features associated with ATS-ID. Utilization of whole-exome sequencing discovered the presence of approximately 3 Mb of deletion in the Xq23 area, which affected 19 genes from TSC22D3 to CHRDL1. We compared the clinical phenotype with previously reported three ATS-ID families worldwide and correlated their clinical manifestations with the incidence of genes in both telomeric and centromeric regions of the deleted chromosomal area. In addition to previously described phenotypes associated with aberrations in AMMECR1 and FACL4, we identified two genes, members of tripartite motif family MID2 and subunit of the proteasome PA700/19S complex (PSMD10), respectively, as prime candidate genes responsible for additional clinical features observed in our patients with ATS-ID. Overall, our findings further improve the knowledge about the clinical impact of Xq23 deletions and bring novel information about phenotype/genotype association of this chromosomal aberration.
Collapse
Affiliation(s)
- Jan Smetana
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech
| | - Vladimira Vallova
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech.,Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | - Marketa Wayhelova
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech.,Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | - Eva Hladilkova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | - Hana Filkova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | | | - Petr Broz
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University Prague and Faculty Hospital Motol, Prague, Czech
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Renata Gaillyova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | - Petr Kuglík
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech.,Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| |
Collapse
|
4
|
De S, Campbell C, Venkitaraman AR, Esposito A. Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage. Cell Rep 2021; 30:2083-2093.e5. [PMID: 32075732 PMCID: PMC7029415 DOI: 10.1016/j.celrep.2020.01.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
Cell-autonomous changes in p53 expression govern the duration and outcome of cell-cycle arrest at the G2 checkpoint for DNA damage. Here, we report that mitogen-activated protein kinase (MAPK) signaling integrates extracellular cues with p53 dynamics to determine cell fate at the G2 checkpoint. Optogenetic tools and quantitative cell biochemistry reveal transient oscillations in MAPK activity dependent on ataxia-telangiectasia-mutated kinase after DNA damage. MAPK inhibition alters p53 dynamics and p53-dependent gene expression after checkpoint enforcement, prolonging G2 arrest. In contrast, sustained MAPK signaling induces the phosphorylation of CDC25C, and consequently, the accumulation of pro-mitotic kinases, thereby relaxing checkpoint stringency and permitting cells to evade prolonged G2 arrest and senescence induction. We propose a model in which this MAPK-mediated mechanism integrates extracellular cues with cell-autonomous p53-mediated signals, to safeguard genomic integrity during tissue proliferation. Early steps in oncogene-driven carcinogenesis may imbalance this tumor-suppressive mechanism to trigger genome instability. DNA damage elicits opposing pro-survival and pro-arrest responses via MAPK and p53 MAPK pulsations modulate p53-dependent transcription to determine cell fate MAPK/p53 signal dynamics control the stringency of the G2 DNA damage checkpoint MAPK/p53 integrate extracellular and intracellular cues to protect genome integrity
Collapse
Affiliation(s)
- Siddharth De
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Callum Campbell
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| | - Alessandro Esposito
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
5
|
Interaction of Deubiquitinase 2A-DUB/MYSM1 with DNA Repair and Replication Factors. Int J Mol Sci 2020; 21:ijms21113762. [PMID: 32466590 PMCID: PMC7312997 DOI: 10.3390/ijms21113762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023] Open
Abstract
The deubiquitination of histone H2A on lysine 119 by 2A-DUB/MYSM1, BAP1, USP16, and other enzymes is required for key cellular processes, including transcriptional activation, apoptosis, and cell cycle control, during normal hematopoiesis and tissue development, and in tumor cells. Based on our finding that MYSM1 colocalizes with γH2AX foci in human peripheral blood mononuclear cells, leukemia cells, and melanoma cells upon induction of DNA double-strand breaks with topoisomerase inhibitor etoposide, we applied a mass spectrometry-based proteomics approach to identify novel 2A-DUB/MYSM1 interaction partners in DNA-damage responses. Differential display of MYSM1 binding proteins significantly enriched after exposure of 293T cells to etoposide revealed an interacting network of proteins involved in DNA damage and replication, including factors associated with poor melanoma outcome. In the context of increased DNA-damage in a variety of cell types in Mysm1-deficient mice, in bone marrow cells upon aging and in UV-exposed Mysm1-deficient skin, our current mass spectrometry data provide additional evidence for an interaction between MYSM1 and key DNA replication and repair factors, and indicate a potential function of 2A-DUB/MYSM1 in DNA repair processes.
Collapse
|
6
|
Lu M, Chen W, Zhuang W, Zhan X. Label-free quantitative identification of abnormally ubiquitinated proteins as useful biomarkers for human lung squamous cell carcinomas. EPMA J 2020; 11:73-94. [PMID: 32140187 PMCID: PMC7028901 DOI: 10.1007/s13167-019-00197-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ubiquitination is an important molecular event in lung squamous cell carcinoma (LSCC), which currently is mainly studied in nonsmall cell lung carcinoma cell models but lacking of ubiquitination studies on LSCC tissues. Here, we presented the ubiquitinated protein profiles of LSCC tissues to explore ubiquitination-involved molecular network alterations and identify abnormally ubiquitinated proteins as useful biomarkers for predictive, preventive, and personalized medicine (PPPM) in LSCC. METHODS Anti-ubiquitin antibody-based enrichment coupled with LC-MS/MS was used to identify differentially ubiquitinated proteins (DUPs) between LSCC and control tissues, followed by integrative omics analyses to identify abnormally ubiquitinated protein biomarkers for LSCC. RESULTS Totally, 400 DUPs with 654 ubiquitination sites were identified,, and motifs A-X (1/2/3)-K* were prone to be ubiquitinated in LSCC tissues. Those DUPs were involved in multiple molecular network systems, including the ubiquitin-proteasome system (UPS), cell metabolism, cell adhesion, and signal transduction. Totally, 44 hub molecules were revealed by protein-protein interaction network analysis, followed by survival analysis in TCGA database (494 LSCC patients and 20,530 genes) to obtain 18 prognosis-related mRNAs, of which the highly expressed mRNAs VIM and IGF1R were correlated with poorer prognosis, while the highly expressed mRNA ABCC1 was correlated with better prognosis. VIM-encoded protein vimentin and ABCC1-encoded protein MRP1 were increased in LSCC, which were all associated with poor prognosis. Proteasome-inhibited experiments demonstrated that vimentin and MRP1 were degraded through UPS. Quantitative ubiquitinomics found ubiquitination level was decreased in vimentin and increased in MRP1 in LSCC. These findings showed that the increased vimentin in LSCC might be derived from its decreased ubiquitination level and that the increased MRP1 in LSCC might be derived from its protein synthesis > degradation. GSEA and co-expression gene analyses revealed that VIM and MRP1 were involved in multiple crucial biological processes and pathways. Further, TRIM2 and NEDD4L were predicted as E3 ligases to regulate ubiquitination of vimentin and MRP1, respectively. CONCLUSION These findings revealed ubiquitinomic variations and molecular network alterations in LSCC, which is in combination with multiomics analysis to identify ubiquitination-related biomarkers for in-depth insight into the molecular mechanism and therapeutic targets and for prediction, diagnosis, and prognostic assessment of LSCC.
Collapse
Affiliation(s)
- Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Wei Chen
- Shanghai Applied Protein Technology, Shanghai, 200233 People’s Republic of China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- Department of Oncology, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|
7
|
Abstract
Prostatic adenocarcinoma (PCa) remains a significant health concern. Although localized PCa can be effectively treated, disseminated disease remains uniformly fatal. PCa is reliant on androgen receptor (AR); as such, first-line therapy for metastatic PCa entails suppression of AR signaling. Although initially effective, recurrent tumors reactivate AR function, leading to a lethal stage of disease termed castration-resistant PCa (CRPC). Recent findings implicate AR signaling in control of DNA repair and show that alterations in DNA damage repair pathways are strongly associated with disease progression and poor outcome. This review will address the DNA repair alterations observed in the clinical setting, explore the anticipated molecular and cellular consequence of DNA repair dysfunction, and consider clinical strategies for targeting tumors with altered DNA repair.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania,19107.,The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania,19107.,Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
8
|
Torgovnick A, Schiavi A, Shaik A, Kassahun H, Maglioni S, Rea SL, Johnson TE, Reinhardt HC, Honnen S, Schumacher B, Nilsen H, Ventura N. BRCA1 and BARD1 mediate apoptotic resistance but not longevity upon mitochondrial stress in Caenorhabditis elegans. EMBO Rep 2018; 19:embr.201845856. [PMID: 30366941 DOI: 10.15252/embr.201845856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 02/05/2023] Open
Abstract
Interventions that promote healthy aging are typically associated with increased stress resistance. Paradoxically, reducing the activity of core biological processes such as mitochondrial or insulin metabolism promotes the expression of adaptive responses, which in turn increase animal longevity and resistance to stress. In this study, we investigated the relation between the extended Caenorhabditis elegans lifespan elicited by reduction in mitochondrial functionality and resistance to genotoxic stress. We find that reducing mitochondrial activity during development confers germline resistance to DNA damage-induced cell cycle arrest and apoptosis in a cell-non-autonomous manner. We identified the C. elegans homologs of the BRCA1/BARD1 tumor suppressor genes, brc-1/brd-1, as mediators of the anti-apoptotic effect but dispensable for lifespan extension upon mitochondrial stress. Unexpectedly, while reduced mitochondrial activity only in the soma was not sufficient to promote longevity, its reduction only in the germline or in germline-less strains still prolonged lifespan. Thus, in animals with partial reduction in mitochondrial functionality, the mechanisms activated during development to safeguard the germline against genotoxic stress are uncoupled from those required for somatic robustness and animal longevity.
Collapse
Affiliation(s)
- Alessandro Torgovnick
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.,Clinic I of Internal Medicine, Center for Integrated Oncology, Center for Molecular Medicine and the CECAD Research Center, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Genome Stability in Aging and Disease, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Alfonso Schiavi
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Anjumara Shaik
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Henok Kassahun
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway.,Akershus University, Akershus, Norway
| | - Silvia Maglioni
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Shane L Rea
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Thomas E Johnson
- Institute for Behavioral Genetics & Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Hans C Reinhardt
- Clinic I of Internal Medicine, Center for Integrated Oncology, Center for Molecular Medicine and the CECAD Research Center, University of Cologne, Cologne, Germany
| | - Sebastian Honnen
- Medical Faculty, Institute of Toxicology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Björn Schumacher
- Medical Faculty, Institute for Genome Stability in Aging and Disease, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway.,Akershus University, Akershus, Norway
| | - Natascia Ventura
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany .,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
Fang CL, Lin CC, Chen HK, Hseu YC, Hung ST, Sun DP, Uen YH, Lin KY. Ubiquitin-specific protease 3 overexpression promotes gastric carcinogenesis and is predictive of poor patient prognosis. Cancer Sci 2018; 109:3438-3449. [PMID: 30168892 PMCID: PMC6215897 DOI: 10.1111/cas.13789] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/31/2022] Open
Abstract
Although gastric cancer (GC) is one of the most common cancers, knowledge of its development and carcinogenesis is limited. To date, expression of ubiquitin-specific protease 3 (USP3) in all types of cancer, including GC, is still unknown. The present study explored the involvement of USP3 in the carcinogenesis and prognosis of GC. We measured USP3 expression in normal and GC tissues and cell lines. Correlations between USP3 protein level and clinicopathological parameters, as well as the significance of USP3 protein level for disease-free survival were assessed. Small hairpin RNA technology and transfection were used to investigate the effect of USP3 manipulation on cell proliferation and spreading. Moreover, xenograft proliferation and metastasis were used to explore the influence of USP3 on tumor growth and metastasis in animals. An increase in USP3 expression was observed in GC cells and tissues. The overexpression of USP3 was significantly correlated with several clinicopathological parameters and poor disease-free survival. Multivariate Cox regression analysis showed that the overexpression of USP3 was an independent prognostic biomarker. Silencing of USP3 suppressed GC cell proliferation and spreading in vitro as well as xenograft proliferation and metastasis in vivo; however, opposite results were obtained when USP3 was overexpressed. Further studies showed that USP3 influenced cell proliferation and spreading by regulating the cell cycle control- and epithelial-mesenchymal transition-related molecules. This study suggests that USP3 overexpression can be a useful biomarker for predicting the outcomes of GC patients and that USP3 targeting represents a potential modality for treating GC.
Collapse
Affiliation(s)
- Chia-Lang Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chan Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Han-Kun Chen
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Shih-Ting Hung
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ding-Ping Sun
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan.,Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yih-Huei Uen
- Department of Surgery, Asia University Hospital, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Department of Surgery, Tainan Municipal An-Nan Hospital, Tainan, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
10
|
Waraky A, Lin Y, Warsito D, Haglund F, Aleem E, Larsson O. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage. J Biol Chem 2017; 292:18227-18239. [PMID: 28924044 DOI: 10.1074/jbc.m117.781492] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases (e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT.
Collapse
Affiliation(s)
- Ahmed Waraky
- From the Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | - Yingbo Lin
- From the Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | - Dudi Warsito
- From the Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | - Felix Haglund
- From the Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | - Eiman Aleem
- From the Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | - Olle Larsson
- From the Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm SE-171 76, Sweden
| |
Collapse
|
11
|
Wang P, Ma D, Wang J, Fang Q, Gao R, Wu W, Cao L, Hu X, Zhao J, Li Y. INPP4B-mediated DNA repair pathway confers resistance to chemotherapy in acute myeloid leukemia. Tumour Biol 2016; 37:12513-12523. [PMID: 27342972 DOI: 10.1007/s13277-016-5111-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022] Open
Abstract
INPP4B has been recently shown to be a poor prognostic marker and confer chemo- or radio-resistance in AML cells, whereas, the underlying mechanisms remain unclear. Herein, we aimed to explore the possible mechanisms mediated the resistance to chemotherapy in AML. We found that INPP4B-mediated resistance to genotoxic drug, cytarabine, was accompanied by lower p-H2AX accumulation in KG-1 cells, and INPP4B knockdown evidently sensitized KG-1 cells to cytarabine, meanwhile, p-H2AX expression was increased dramatically. Then, we observed that INPP4B knockdown inhibited the loss of p-H2AX expression after cytarabine removal in INPP4B-silenced KG-1 cells, whereas, in control KG-1 cells, the expression of p-H2AX was reduced in a time-dependent manner. Next, INPP4B knockdown can significantly downregulate ATM expression and subsequently inhibit the activation of ATM downstream targets of p-ATM, p-BRCA1, p-ATR, and p-RAD51. Furthermore, nuclear localization of p65 was inhibited after INPP4B knockdown, and reactivation of p65 can rescue the INPP4B knockdown-induced inhibition of ATM, p-ATM, p-BRCA1, p-ATR, and p-RAD51. Finally, INPP4B expression was positively correlated with ATM expression in AML cells, both INPP4B knockdown and KU55933 can significantly sensitize primary myeloid leukemic cells to cytarabine treatment.Collectively, these data suggest that enhanced ATM-dependent DNA repair is involved in resistance to chemotherapy in INPP4Bhigh AML, which could be mediated by p65 nuclear translocation, combination chemotherapy with INPP4B or DNA repair pathway inhibition represents a promising strategy in INPP4Bhigh AML.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,Department of Pharmacy, Affiliated BaiYun Hospital of Guizhou Medical University, Guiyang, 550014, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China. .,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China. .,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Qin Fang
- Department of Pharmacy, Affiliated BaiYun Hospital of Guizhou Medical University, Guiyang, 550014, China.,Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Rui Gao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Weibing Wu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Lu Cao
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xiuying Hu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jiangyuan Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
12
|
Schiewer MJ, Knudsen KE. Linking DNA Damage and Hormone Signaling Pathways in Cancer. Trends Endocrinol Metab 2016; 27:216-225. [PMID: 26944914 PMCID: PMC4808434 DOI: 10.1016/j.tem.2016.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Abstract
DNA damage response and repair (DDR) is a tightly controlled process that serves as a barrier to tumorigenesis. Consequently, DDR is frequently altered in human malignancy, and can be exploited for therapeutic gain either through molecularly targeted therapies or as a consequence of therapeutic agents that induce genotoxic stress. In select tumor types, steroid hormones and cognate receptors serve as major drivers of tumor development/progression, and as such are frequently targets of therapeutic intervention. Recent evidence suggests that the existence of crosstalk mechanisms linking the DDR machinery and hormone signaling pathways cooperate to influence both cancer progression and therapeutic response. These underlying mechanisms and their implications for cancer management will be discussed.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Cancer Biology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA
| | - Karen E Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Cancer Biology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Urology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Radiation Oncology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA.
| |
Collapse
|
13
|
Comparative cellular biogerontology: Where do we stand? Exp Gerontol 2015; 71:109-17. [PMID: 26343259 DOI: 10.1016/j.exger.2015.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 02/06/2023]
Abstract
Due to the extreme variation in life spans among species, using a comparative approach to address fundamental questions about the aging process has much to offer. For example, maximum life span can vary by as much as several orders of magnitude among taxa. In recent years, using primary cell lines cultured from species with disparate life spans and aging rates has gained considerable momentum as a means to dissect the mechanisms underlying the variation in aging rates among animals. In this review, we reiterate the strengths of comparative cellular biogerontology, as well as provide a survey of the current state of the field. By and large this work sprang from early studies using cell lines derived from long-lived mutant mice. Specifically, they suggested that an enhanced resistance to cellular stress was strongly associated with increased longevity of select laboratory models. Since then, we and others have shown that the degree of stress resistance and species longevity is also correlated among cell lines derived from free-living populations of both mammals and birds, and more recent studies have begun to reveal the biochemical and physiological underpinnings to these differences. The continued study of cultured cell lines from vertebrates with disparate life spans is likely to provide considerable insight toward unifying mechanisms of longevity assurance.
Collapse
|