1
|
Dai Y, Boussaguet N, Teulière J, Bonnefous H, Budzinski E, Lopez P, Haraoui LP, Bapteste E. Interspecific interactions and aging: Prediction of gerogenic bacteria and critical human protein targets of microbial infections. Mech Ageing Dev 2025; 226:112076. [PMID: 40419228 DOI: 10.1016/j.mad.2025.112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/20/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
Bacteria permeate every niche of the human body with major consequences on our health and senescence that have not been fully described. Here, we predict which bacteria and which bacterial proteins could interfere with proteins associated with human aging using bipartite networks showing interspecific protein interactions coupled with investigations of published experimental evidence and transcriptomic data. We introduce the term of "gerogenic" bacteria, literally bacteria that could induce some aging in their host and discuss the mechanisms by which such bacteria could serve as age-distorters of humans. Salmonella, Escherichia and Shigella appear as major candidate age-distorters, characterized by a higher experimentally demonstrated potential than other bacteria to interact with human proteins associated with human aging and human cellular senescence. Our analysis also highlights an evolutionary convergence among bacterial and viral candidate age-distorting proteins, since 14 human proteins associated with aging can be commonly targeted by bacteria and viruses in case of microbial infection. Since infections are common and Salmonella, Escherichia and Shigella are frequently found as pathogens in our microbiomes, characterizing bacterial influence on our aging and our cellular senescence through molecular hijacking could enhance the understanding of the causes of aging and suggest new anti-aging therapies.
Collapse
Affiliation(s)
- Yuping Dai
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Sorbonne Université, CNRS, IBPS, Department of Computational, Quantitative and Synthetic Biology (CQSB), UMR7238, Paris 75005, France.
| | - Ni Boussaguet
- Sorbonne Université, CNRS, IBPS, Department of Computational, Quantitative and Synthetic Biology (CQSB), UMR7238, Paris 75005, France
| | - Jérôme Teulière
- Sorbonne Université, CNRS, IBPS, Department of Computational, Quantitative and Synthetic Biology (CQSB), UMR7238, Paris 75005, France
| | - Hugo Bonnefous
- Sorbonne Université, CNRS, IBPS, Department of Computational, Quantitative and Synthetic Biology (CQSB), UMR7238, Paris 75005, France
| | - Elphège Budzinski
- Sorbonne Université, CNRS, IBPS, Department of Computational, Quantitative and Synthetic Biology (CQSB), UMR7238, Paris 75005, France
| | - Philippe Lopez
- Sorbonne Université, CNRS, IBPS, Department of Computational, Quantitative and Synthetic Biology (CQSB), UMR7238, Paris 75005, France
| | - Louis-Patrick Haraoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Bapteste
- Sorbonne Université, CNRS, IBPS, Department of Computational, Quantitative and Synthetic Biology (CQSB), UMR7238, Paris 75005, France
| |
Collapse
|
2
|
Bapteste É. The ageing virus hypothesis: Epigenetic ageing beyond the Tree of Life. Bioessays 2025; 47:e2400099. [PMID: 39400402 DOI: 10.1002/bies.202400099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
A recent thought-provoking theory argues that complex organisms using epigenetic information for their normal development and functioning must irreversibly age as a result of epigenetic signal loss. Importantly, the scope of this theory could be considerably expanded, with scientific benefits, by analyzing epigenetic ageing beyond the borders of the Tree of Life. Viruses that use epigenetic signals for their normal functioning may also age, that is, present an increasing risk of failing to complete their individual life cycle and to disappear with time. As viruses are ancient, abundant, and infect a considerable diversity of hosts, the ageing virus hypothesis, if verified, would have important consequences for many fields of the Life sciences. Uncovering ageing viruses would integrate the most abundant and biologically central entities on Earth into theories of ageing, enhance virology, gerontology, evolutionary biology, molecular ecology, genomics, and possibly medicine through the development of new therapies manipulating viral ageing.
Collapse
Affiliation(s)
- Éric Bapteste
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université Des Antilles, Paris, France
| |
Collapse
|
3
|
de Magalhães JP, Abidi Z, dos Santos GA, Avelar RA, Barardo D, Chatsirisupachai K, Clark P, De-Souza EA, Johnson EJ, Lopes I, Novoa G, Senez L, Talay A, Thornton D, To P. Human Ageing Genomic Resources: updates on key databases in ageing research. Nucleic Acids Res 2024; 52:D900-D908. [PMID: 37933854 PMCID: PMC10767973 DOI: 10.1093/nar/gkad927] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
Ageing is a complex and multifactorial process. For two decades, the Human Ageing Genomic Resources (HAGR) have aided researchers in the study of various aspects of ageing and its manipulation. Here, we present the key features and recent enhancements of these resources, focusing on its six main databases. One database, GenAge, focuses on genes related to ageing, featuring 307 genes linked to human ageing and 2205 genes associated with longevity and ageing in model organisms. AnAge focuses on ageing, longevity, and life-history across animal species, containing data on 4645 species. DrugAge includes information about 1097 longevity drugs and compounds in model organisms such as mice, rats, flies, worms and yeast. GenDR provides a list of 214 genes associated with the life-extending benefits of dietary restriction in model organisms. CellAge contains a catalogue of 866 genes associated with cellular senescence. The LongevityMap serves as a repository for genetic variants associated with human longevity, encompassing 3144 variants pertaining to 884 genes. Additionally, HAGR provides various tools as well as gene expression signatures of ageing, dietary restriction, and replicative senescence based on meta-analyses. Our databases are integrated, regularly updated, and manually curated by experts. HAGR is freely available online (https://genomics.senescence.info/).
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Zoya Abidi
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Gabriel Arantes dos Santos
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Roberto A Avelar
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Diogo Barardo
- NOVOS Labs, 100 Park Avenue, 16th Fl, New York, NY 10017, USA
| | - Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Peter Clark
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Evandro A De-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Emily J Johnson
- Computational Biology Facility, Liverpool Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Guy Novoa
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Ludovic Senez
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Angelo Talay
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Daniel Thornton
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Paul Ka Po To
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| |
Collapse
|
4
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
5
|
Bapteste E, Huneman P, Keller L, Teulière J, Lopez P, Teeling EC, Lindner AB, Baudisch A, Ludington WB, Franceschi C. Expanding evolutionary theories of ageing to better account for symbioses and interactions throughout the Web of Life. Ageing Res Rev 2023; 89:101982. [PMID: 37321383 PMCID: PMC10771319 DOI: 10.1016/j.arr.2023.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
How, when, and why organisms age are fascinating issues that can only be fully addressed by adopting an evolutionary perspective. Consistently, the main evolutionary theories of ageing, namely the Mutation Accumulation theory, the Antagonistic Pleiotropy theory, and the Disposable Soma theory, have formulated stimulating hypotheses that structure current debates on both the proximal and ultimate causes of organismal ageing. However, all these theories leave a common area of biology relatively under-explored. The Mutation Accumulation theory and the Antagonistic Pleiotropy theory were developed under the traditional framework of population genetics, and therefore are logically centred on the ageing of individuals within a population. The Disposable Soma theory, based on principles of optimising physiology, mainly explains ageing within a species. Consequently, current leading evolutionary theories of ageing do not explicitly model the countless interspecific and ecological interactions, such as symbioses and host-microbiomes associations, increasingly recognized to shape organismal evolution across the Web of Life. Moreover, the development of network modelling supporting a deeper understanding on the molecular interactions associated with ageing within and between organisms is also bringing forward new questions regarding how and why molecular pathways associated with ageing evolved. Here, we take an evolutionary perspective to examine the effects of organismal interactions on ageing across different levels of biological organisation, and consider the impact of surrounding and nested systems on organismal ageing. We also apply this perspective to suggest open issues with potential to expand the standard evolutionary theories of ageing.
Collapse
Affiliation(s)
- Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France.
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (CNRS/ Université Paris I Sorbonne), Paris, France
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Ariel B Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), Paris, France
| | - Annette Baudisch
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
| | - William B Ludington
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Medicine of Aging, Lobachevsky University, Nizhny Novgorod 603950, Russia
| |
Collapse
|
6
|
Teulière J, Bernard C, Bonnefous H, Martens J, Lopez P, Bapteste E. Interactomics: Dozens of Viruses, Co-evolving With Humans, Including the Influenza A Virus, may Actively Distort Human Aging. Mol Biol Evol 2023; 40:msad012. [PMID: 36649176 PMCID: PMC9897028 DOI: 10.1093/molbev/msad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Hugo Bonnefous
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Johannes Martens
- Sciences, Normes, Démocratie (SND), Sorbonne Université, CNRS, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
7
|
Li Y, Wang C, Peng M. Aging Immune System and Its Correlation With Liability to Severe Lung Complications. Front Public Health 2021; 9:735151. [PMID: 34888279 PMCID: PMC8650611 DOI: 10.3389/fpubh.2021.735151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Aging is considered to be a decline in physical and physiological events that extensively affect the body's immunity, and is linked with deterioration in both innate and adaptive immune responses. The immune system exhibits profound age-associated variations, known as immunosenescence, comprising a significantly low production of B and T lymphocytes in bone marrow and thymus, a decreased function of mature lymphocytes in secondary lymphoid tissues, a decrease in the synthesis of fresh naïve T cells, and reduced activation of T cells. Elderly individuals face a greater risk for many diseases particularly respiratory diseases due to their poor response to immune challenges as vigorously as the young. The current review explored the aging immune system, highlight the mortality rates of severe lung complications, such as pneumonia, COVID-19, asthma, COPD, lung cancer, IPF, and acute lung injury, and their correlation with aging immunity. This study can be helpful in better understanding the pathophysiology of aging, immune responses, and developing new approaches to improve the average age of the elderly population.
Collapse
Affiliation(s)
- Yongtao Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chengfei Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meilian Peng
- Department of Maternity, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
8
|
Nunn AVW, Guy GW, Botchway SW, Bell JD. SARS-CoV-2 and EBV; the cost of a second mitochondrial "whammy"? Immun Ageing 2021; 18:40. [PMID: 34717676 PMCID: PMC8556816 DOI: 10.1186/s12979-021-00252-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022]
Abstract
We, and others, have suggested that as the SARS-CoV-2 virus may modulate mitochondrial function, good mitochondrial reserve and health could be key in determining disease severity when exposed to this virus, as the immune system itself is dependent on this organelle's function. With the recent publication of a paper showing that long COVID could be associated with the reactivation of the Epstein Barr Virus, which is well known to manipulate mitochondria, we suggest that this could represent a second mitochondrial "whammy" that might support the mitochondrial hypothesis underlying COVID-19 severity and potentially, the occurrence of longer-term symptoms. As mitochondrial function declines with age, this could be an important factor in why older populations are more susceptible. Key factors which ensure optimal mitochondrial health are generally those that ensure healthy ageing, such as a good lifestyle with plenty of physical activity. The ability of viruses to manipulate mitochondrial function is well described, and it is now also thought that for evolutionary reasons, they also manipulate the ageing process. Given that slowing the ageing process could well be linked to better economic outcomes, the link between mitochondrial health, economics, COVID-19 and other viruses, as well as lifestyle, needs to be considered.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, W1W 6UW, London, UK.
| | | | - Stanley W Botchway
- Department of Biological and Medical Sciences, UKRI, STFC, Central Laser Facility, Oxford Brookes University, OX1 10QX, Oxford, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, W1W 6UW, London, UK
| |
Collapse
|