1
|
Lin FV, Simmons JM, Turnbull A, Zuo Y, Conwell Y, Wang KH. Cross-Species Framework for Emotional Well-Being and Brain Aging: Lessons From Behavioral Neuroscience. JAMA Psychiatry 2025:2833240. [PMID: 40332879 DOI: 10.1001/jamapsychiatry.2025.0581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Importance Emotional well-being (EWB) is an emerging therapeutic target for managing and preventing symptoms associated with Alzheimer disease and related dementias (ADRD). However, more research is needed to establish causal inferences between brain changes, EWB, and behavioral changes observed in typical aging and ADRD. Observations This article presents a framework for using a cross-species behavioral neuroscience approach to study EWB and brain aging, adopting a well-established biobehavioral model that highlights the reciprocal roles of brain changes, EWB, and ADRD symptoms. First, the challenges and opportunities in this field are reviewed. Then, a practical solution to improve comparability between animal and human studies is proposed. Conclusions and Relevance The goal is to draw comprehensive parallels and distinctions that could enhance the understanding of the mechanisms linking brain aging, EWB, and ADRD symptomatic disturbances across different species.
Collapse
Affiliation(s)
- F Vankee Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Janine M Simmons
- Office of Behavioral and Social Sciences Research, National Institutes of Health, Bethesda, Maryland
| | - Adam Turnbull
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Yi Zuo
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz
| | - Yeates Conwell
- Department of Psychiatry, University of Rochester, Rochester, New York
| | - Kuan Hong Wang
- Department of Neuroscience, University of Rochester, Rochester, New York
| |
Collapse
|
2
|
Wong-Guerra M, Montano-Peguero Y, Ramírez-Sánchez J, Alfonso EG, Hernández-Enseñat D, Isaac YA, Padrón-Yaquis AS, da Rocha JBT, Fonseca-Fonseca LA, Núñez-Figueredo Y. Effect of JM-20 on Age-Related Cognitive Impairment in Mice. Neurochem Res 2024; 50:8. [PMID: 39546064 DOI: 10.1007/s11064-024-04254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
The decline in cognitive function associated with aging significantly impacts the well-being of elderly individuals and their families. This decline is a major recognized risk factor for neurodegenerative diseases, notably Alzheimer's disease. Animal models of aging provide a platform for evaluating drugs concerning aspects like memory and oxidative stress. JM-20 has demonstrated protective effects on short-term memory acquisition and consolidation, along with antioxidant properties and modulation of Acetylcholinesterase activity. This study assesses the potential protective JM-20 against cognitive decline and age-related memory loss. For the study, aged mice exhibiting aging-associated damage were initially selected. Experimental groups were then formed, and the effect of 8 mg/kg of JM-20 was evaluated for 40 days on aging-related behavior, such as spatial memory, novelty recognition memory, ambulatory activity, and anxiety. Subsequently, animals were sacrificed, and the hippocampal region was extracted for redox studies and to assess acetylcholinesterase activity. Results indicated that JM-20 at 8 mg/kg reversed damage to spatial working and reference memory, exhibiting performance comparable to untreated young adult animals. Furthermore, JM-20 preserved the enzymatic activity of superoxide dismutase, catalase, and total sulfhydryl levels in age-related cognitive impairment in mice, indicating a potent protective effect against oxidative events at the brain level. However, only young, healthy animals showed decreased acetylcholinesterase enzyme activity. These findings provide preclinical pharmacological evidence supporting the neuroprotective activity of JM-20, positioning it as a promising therapeutic candidate for treating memory disorders associated with aging.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Alameda, 3363, Chile
| | - Yanay Montano-Peguero
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
- Facultad de Ciencias Químicas y Farmacéuticas, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Casilla 233, Santiago, Chile
| | - Jeney Ramírez-Sánchez
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
| | - Enrique García Alfonso
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
| | - Daniela Hernández-Enseñat
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
| | - Yeniceis Alcántara Isaac
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
| | - Alejandro Saúl Padrón-Yaquis
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
| | - João Batista Teixeira da Rocha
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Luis Arturo Fonseca-Fonseca
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba.
| | - Yanier Núñez-Figueredo
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba.
| |
Collapse
|
3
|
Kumar NH, Kluever V, Barth E, Krautwurst S, Furlan M, Pelizzola M, Marz M, Fornasiero EF. Comprehensive transcriptome analysis reveals altered mRNA splicing and post-transcriptional changes in the aged mouse brain. Nucleic Acids Res 2024; 52:2865-2885. [PMID: 38471806 PMCID: PMC11014377 DOI: 10.1093/nar/gkae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/18/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
A comprehensive understanding of molecular changes during brain aging is essential to mitigate cognitive decline and delay neurodegenerative diseases. The interpretation of mRNA alterations during brain aging is influenced by the health and age of the animal cohorts studied. Here, we carefully consider these factors and provide an in-depth investigation of mRNA splicing and dynamics in the aging mouse brain, combining short- and long-read sequencing technologies with extensive bioinformatic analyses. Our findings encompass a spectrum of age-related changes, including differences in isoform usage, decreased mRNA dynamics and a module showing increased expression of neuronal genes. Notably, our results indicate a reduced abundance of mRNA isoforms leading to nonsense-mediated RNA decay and suggest a regulatory role for RNA-binding proteins, indicating that their regulation may be altered leading to the reshaping of the aged brain transcriptome. Collectively, our study highlights the importance of studying mRNA splicing events during brain aging.
Collapse
Affiliation(s)
- Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Verena Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Emanuel Barth
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Bioinformatics Core Facility, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sebastian Krautwurst
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Age Research, FLI, Beutenbergstraße 11, Jena 07743, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University, Leutragraben 1, Jena 07743, Germany
- German Center for Integrative Biodiversity Research (iDiv), Puschstraße 4, Leipzig 04103, Germany
- Michael Stifel Center Jena, Friedrich Schiller University, Ernst-Abbe-Platz 2, Jena 07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Fuerstengraben 1, Jena 07743, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
4
|
Stępnik K, Kukula-Koch W, Boguszewska-Czubara A, Gawel K. Astragaloside IV as a Memory-Enhancing Agent: In Silico Studies with In Vivo Analysis and Post Mortem ADME-Tox Profiling in Mice. Int J Mol Sci 2024; 25:4021. [PMID: 38612831 PMCID: PMC11012721 DOI: 10.3390/ijms25074021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Many people around the world suffer from neurodegenerative diseases associated with cognitive impairment. As life expectancy increases, this number is steadily rising. Therefore, it is extremely important to search for new treatment strategies and to discover new substances with potential neuroprotective and/or cognition-enhancing effects. This study focuses on investigating the potential of astragaloside IV (AIV), a triterpenoid saponin with proven acetylcholinesterase (AChE)-inhibiting activity naturally occurring in the root of Astragalus mongholicus, to attenuate memory impairment. Scopolamine (SCOP), an antagonist of muscarinic cholinergic receptors, and lipopolysaccharide (LPS), a trigger of neuroinflammation, were used to impair memory processes in the passive avoidance (PA) test in mice. This memory impairment in SCOP-treated mice was attenuated by prior intraperitoneal (ip) administration of AIV at a dose of 25 mg/kg. The attenuation of memory impairment by LPS was not observed. It can therefore be assumed that AIV does not reverse memory impairment by anti-inflammatory mechanisms, although this needs to be further verified. All doses of AIV tested did not affect baseline locomotor activity in mice. In the post mortem analysis by mass spectrometry of the body tissue of the mice, the highest content of AIV was found in the kidneys, then in the spleen and liver, and the lowest in the brain.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie–Skłodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki St., 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki St., 20-093 Lublin, Poland;
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki St., 20-093 Lublin, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 8B Jaczewskiego St., 20-090 Lublin, Poland;
| |
Collapse
|
5
|
Bratke S, Schmid S, Ulm B, Jungwirth B, Blobner M, Borgstedt L. Genotype- and sex-specific changes in vital parameters during isoflurane anesthesia in a mouse model of Alzheimer's disease. Front Med (Lausanne) 2024; 11:1342752. [PMID: 38601113 PMCID: PMC11004241 DOI: 10.3389/fmed.2024.1342752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 04/12/2024] Open
Abstract
Background The prevalence of neurodegenerative diseases is increasing as is life expectancy with Alzheimer's disease accounting for two-thirds of dementia cases globally. Whether general anesthesia and surgery worsen cognitive decline is still a matter of debate and most likely depending on the interplay of various influencing factors. In order to account for this complexity, Alzheimer's disease animal models have been developed. The Tg2576 model of Alzheimer's disease is a well-established mouse model exhibiting amyloidopathy and age-dependent sex-specific differences in Alzheimer's disease symptomology. Yet, data on anesthesia in this mouse model is scarce and a systematic comparison of vital parameters during anesthesia with wild-type animals is missing. In order to investigate the safety of general anesthesia and changes in vital parameters during general anesthesia in Tg2576 mice, we did a secondary analysis of vital parameters collected during general anesthesia in aged Tg2576 mice. Methods After governmental approval (General Administration of the Free State of Bavaria, file number: 55.2-1-54-2532-149-11) 60 mice at 10-12 months of age were exposed to isoflurane (1.6 Vol%) for 120 min, data of 58 mice was analyzed. During general anesthesia, heart rate, respiratory rate, temperature, isoflurane concentration and fraction of inspired oxygen were monitored and collected. Data were analyzed using univariate and multivariate linear mixed regression models. Results During general anesthesia, heart rate decreased in a sex-specific manner. Respiratory rate decreased and body temperature increased dependent on genotype. However, the changes were limited and all vital parameters stayed within physiological limits. Conclusion Isoflurane anesthesia in the Tg2576 mouse model is safe and does not seem to influence experimental results by interacting with vital parameters. The present study provides information on appropriate anesthesia in order to advance research on anesthesia and AD and could contribute to improving laboratory animal welfare.
Collapse
Affiliation(s)
- Sebastian Bratke
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, University of Ulm, Ulm, Germany
| | - Sebastian Schmid
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, University of Ulm, Ulm, Germany
| | - Bernhard Ulm
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, University of Ulm, Ulm, Germany
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bettina Jungwirth
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, University of Ulm, Ulm, Germany
| | - Manfred Blobner
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, University of Ulm, Ulm, Germany
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Borgstedt
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Ernyey AJ, Kassai F, Kozma K, Plangár I, Somfai Z, Miklya I, Gyertyán I. Age-related decline of various cognitive functions in well-experienced male rats treated with the putative anti-aging compound (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine ((-)BPAP). GeroScience 2024; 46:417-429. [PMID: 37306892 PMCID: PMC10828437 DOI: 10.1007/s11357-023-00821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Aging-associated cognitive disorders lack proper medication. To meet this need translation-wise, modification of the animal models is also required. In the present study, effect of the putative anti-aging compound (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine ((-)BPAP, a deprenyl derivative) on age-related cognitive decline was investigated in experienced, aged Long-Evans rats. During their lifetime, animals had acquired knowledge in various cognitive assays. Their performance in these tests was then parallel followed from the age of 27 months until their death meanwhile half of them were treated with BPAP. Cognitive performance in various tasks showed different sensitivities/resistances to age-related impairment. Pot jumping performance (motor skill-learning) started to impair first, at 21 months of age, followed by decreasing performance in five-choice serial reaction time task (attention) at 26 months. Navigation performance in Morris water maze (spatial learning) started to decline at 31 months. Performance in a cooperation task (social cognition) started to decline the latest, at 34 months. Our findings suggest that in this process, the primary factor was the level of motivation to be engaged with the task and not losing the acquired knowledge. The average lifespan of the tested rat population was 36 months. BPAP could not improve the cognitive performance; neither could it prolong lifespan. A possible reason might be that dietary restriction and lifelong cognitive engagement had beneficial effects on cognitive capabilities and lifespan creating a "ceiling effect" for further improvement. The results confirmed that experienced animals provide a translationally relevant model to study age-related cognitive decline and measure the effect of putative anti-aging compounds.
Collapse
Affiliation(s)
- Aliz Judit Ernyey
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, H-1089, Budapest, Hungary.
| | - Ferenc Kassai
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, H-1089, Budapest, Hungary
| | - Kata Kozma
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, H-1089, Budapest, Hungary
| | - Imola Plangár
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, H-1089, Budapest, Hungary
| | - Zsuzsa Somfai
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, 1089, Budapest, Hungary
| | - Ildikó Miklya
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, 1089, Budapest, Hungary
| | - István Gyertyán
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, H-1089, Budapest, Hungary
| |
Collapse
|
7
|
Greene SM, Klein PR, Alcala GA, Bustamante I, Bordas B, Johnson A, Vu V, Uhm SY, Gould GG. Aging to 24 months increased C57BL/6J mouse social sniffing and hippocampal Neto1 levels, and impaired female spatial learning. Behav Processes 2023; 211:104929. [PMID: 37586617 PMCID: PMC11441572 DOI: 10.1016/j.beproc.2023.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Understanding how natural aging impacts rodent performance in translational behavior tests is critical to teasing apart impairments due to age-related decline from neurodegenerative disorder modeling. Reduced neuropilin and tolloid-like 1 (NETO1), an accessory protein of ionotropic glutamate receptors involved in synaptic plasticity, was associated with Alzheimer's disease, yet aging effects on Neto1 remain unclear. For these reasons, our goal was to characterize how Neto1 expression corresponded with social, repetitive, and spatial learning behaviors and stress response across the C57BL/6J mouse lifespan. We measured social preferences in three-chamber tests, and motor stereotypies by marble burying. Cognitive flexibility is typically assessed in the Morris water maze (MWM), wherein C57BL/6J mice exhibit deficits with age. However, fatigue or locomotor impairment may confound interpretation of MWM performance. Therefore, we used a less arduous water T-maze (WTM) to compare spatial learning flexibility in 2, 9-15, and 24-month-old male and female mice to test the hypothesis that deficits would emerge with age. In both sexes, 9-15-month-olds made more chamber entries during social preference tests, while 2-month-olds did less social sniffing than aged mice. No age or sex differences emerged in marble burying or serum corticosterone measurements. In 24-month-olds hippocampal Neto1was increased relative to 2-month-olds, and male cognitive flexibility was strong, while spatial learning and reversal learning of 24-month-old females was impaired in WTM irrespective of Neto1 expression. The WTM is a useful alternative assessment for cognitive flexibility deficits in aged mice, and the role of hippocampal Neto1 in promoting social sniffing is of interest.
Collapse
Affiliation(s)
- Susan M Greene
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209, USA
| | - Preston R Klein
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gloria-Andrea Alcala
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209, USA
| | - Isabela Bustamante
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Trinity University, One Trinity Place, San Antonio, TX 78212, USA
| | - Blanka Bordas
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA 24016, USA
| | - Alexia Johnson
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Howard University, Washington D.C. 20059, USA
| | - Vy Vu
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - So Yeon Uhm
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Georgianna G Gould
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
8
|
Insights on the molecular mechanism of neuroprotection exerted by edible bird’s nest and its bioactive constituents. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Foster TC. Animal models for studies of alcohol effects on the trajectory of age-related cognitive decline. Alcohol 2023; 107:4-11. [PMID: 35504438 DOI: 10.1016/j.alcohol.2022.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
There is growing interest in understanding how ethanol use interacts with advancing age to influence the brain and cognition. Animal models are employed to investigate the cellular and molecular mechanisms of brain aging and age-related neurodegenerative diseases that underlie cognitive decline. However, all too often research on problems and diseases of the elderly are conducted in healthy young animals, providing little clinical relevance. The validity of animal models is discussed, and confounds due to age-related differences in anxiety, sensory-motor function, and procedural learning are highlighted in order to enhance the successful translation of preclinical results into clinical settings. The mechanism of action of ethanol on brain aging will depend on the dose, acute or chronic treatment, or withdrawal from treatment and the age examined. Due to the fact that humans experience alcohol use throughout life, important questions concern the effects of the dose and duration of ethanol treatment on the trajectory of cognitive function. Central to this research will be questions of the specificity of alcohol effects on cognitive functions and related brain regions that decline with age, as well as the interaction of alcohol with mechanisms or biomarkers of brain aging. Alternatively, moderate alcohol use may provide a source of reserve and resilience against brain aging. Longitudinal studies have the advantage of being sensitive to detecting the effects of treatment on the emergence of cognitive impairment in middle age and can minimize effects of stress/anxiety associated with the novelty of alcohol exposure and behavioral testing, which disproportionately influence aged animals. Finally, the effect of alcohol on senescent neurophysiology and biomarkers of brain aging are discussed. In particular, the interaction of age and effects of alcohol on inflammation, oxidative stress, N-methyl-d-aspartate receptor function, and the balance of excitatory and inhibitory synaptic transmission are highlighted.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
10
|
IL-17A drives cognitive aging probably via inducing neuroinflammation and theta oscillation disruption in the hippocampus. Int Immunopharmacol 2022; 108:108898. [DOI: 10.1016/j.intimp.2022.108898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
|
11
|
Kluever V, Russo B, Mandad S, Kumar NH, Alevra M, Ori A, Rizzoli SO, Urlaub H, Schneider A, Fornasiero EF. Protein lifetimes in aged brains reveal a proteostatic adaptation linking physiological aging to neurodegeneration. SCIENCE ADVANCES 2022; 8:eabn4437. [PMID: 35594347 PMCID: PMC9122331 DOI: 10.1126/sciadv.abn4437] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Aging is a prominent risk factor for neurodegenerative disorders (NDDs); however, the molecular mechanisms rendering the aged brain particularly susceptible to neurodegeneration remain unclear. Here, we aim to determine the link between physiological aging and NDDs by exploring protein turnover using metabolic labeling and quantitative pulse-SILAC proteomics. By comparing protein lifetimes between physiologically aged and young adult mice, we found that in aged brains protein lifetimes are increased by ~20% and that aging affects distinct pathways linked to NDDs. Specifically, a set of neuroprotective proteins are longer-lived in aged brains, while some mitochondrial proteins linked to neurodegeneration are shorter-lived. Strikingly, we observed a previously unknown alteration in proteostasis that correlates to parsimonious turnover of proteins with high biosynthetic costs, revealing an overall metabolic adaptation that preludes neurodegeneration. Our findings suggest that future therapeutic paradigms, aimed at addressing these metabolic adaptations, might be able to delay NDD onset.
Collapse
Affiliation(s)
- Verena Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Belisa Russo
- German Center for Neurodegenerative Diseases, DZNE Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Sunit Mandad
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mihai Alevra
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, DZNE Bonn, Venusberg Campus 1, 53127 Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|