1
|
Chen P, Wang S, Zhang H, Li J. Recent advances in nanotherapy-based treatment of epilepsy. Colloids Surf B Biointerfaces 2025; 249:114499. [PMID: 39778465 DOI: 10.1016/j.colsurfb.2025.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Epilepsy is a complex neurological disorder characterized by recurrent seizures affecting millions of people worldwide. Despite advances in drug therapy, a significant proportion of patients remain resistant to conventional antiepileptic drugs (AEDs) due to challenges such as impermeability of the blood-brain barrier (BBB), multidrug resistance, and multifaceted epileptogenesis. Nanotechnology offers promising strategies to overcome these barriers by enhancing drug delivery across the BBB, improving target specificity and minimizing systemic side effects. This review explores recent advances in different innovative strategies of nanodelivery systems for epilepsy therapy, and we will discuss the design principles, mechanisms of action and therapeutic efficacy of these nanodelivery systems. In addition, we discuss the challenges and limitations that hinder the clinical translation of nanomedicine-based therapies for epilepsy. We emphasize the need for personalized and multidisciplinary approaches as well as the importance of continued research and interdisciplinary collaboration in order to translate these innovative strategies into effective therapies. Ultimately, the use of nanotechnology has the potential to enhance seizure control, reduce the burden of epilepsy, and improve the quality of life of patients affected by this complex neurological disorder. Nanotechnology-based drug delivery systems may usher in a new era of precision medicine for epilepsy treatment.
Collapse
Affiliation(s)
- Peng Chen
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Shudong Wang
- Jinzhou Medical University, Liaoning 121001, China
| | - Heming Zhang
- Dalian Medical University, Liaoning 116044, China
| | - Jian Li
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
2
|
Wu JW, Wang BX, Shen LP, Chen YL, Du ZY, Du SQ, Lu XJ, Zhao XD. Investigating the Potential Therapeutic Targeting of the JAK-STAT Pathway in Cerebrovascular Diseases: Opportunities and Challenges. Mol Neurobiol 2025:10.1007/s12035-025-04834-4. [PMID: 40102347 DOI: 10.1007/s12035-025-04834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Cerebrovascular disease (CVD) is a significant neurological condition resulting from pathological changes in the brain's blood supply and is currently the leading cause of death and disability worldwide. The progression of CVD is closely associated with endothelial damage, plaque formation, and thrombosis, driven by long-term alterations in vascular endothelial cells, smooth muscle cells, microglia, and other immune-inflammatory cells. Among the key molecular pathways involved, the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway plays a central role. Dysregulation of the JAK-STAT pathway is implicated in the pathogenesis of CVD by influencing the aforementioned cell types and associated pathological processes. Importantly, the role of the JAK-STAT pathway varies across different types of CVD and throughout different stages of disease progression (e.g., pre-morbid, acute, and chronic phases). This review examines the composition, activation, and regulation of the JAK-STAT pathway and summarizes recent findings on its involvement in CVD. We discuss the distinct roles of JAK-STAT signaling in various CVD conditions, the potential reasons for these differences, and explore the clinical translational prospects and technical challenges of targeting the JAK-STAT pathway for therapeutic intervention in CVD.
Collapse
Affiliation(s)
- Jia-Wei Wu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Bing-Xin Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Li-Ping Shen
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
| | - Yong-Lin Chen
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Zhi-Yong Du
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Shi-Qing Du
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Xiao-Jie Lu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China.
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| | - Xu-Dong Zhao
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China.
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China.
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
3
|
Pu J, Han J, Yang J, Yu L, Wan H. Anaerobic Glycolysis and Ischemic Stroke: From Mechanisms and Signaling Pathways to Natural Product Therapy. ACS Chem Neurosci 2024; 15:3090-3105. [PMID: 39140296 DOI: 10.1021/acschemneuro.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Ischemic stroke is a serious condition that results in high rates of illness and death. Anaerobic glycolysis becomes the primary means of providing energy to the brain during periods of low oxygen levels, such as in the aftermath of an ischemic stroke. This process is essential for maintaining vital brain functions and has significant implications for recovery following a stroke. Energy supply by anaerobic glycolysis and acidosis caused by lactic acid accumulation are important pathological processes after ischemic stroke. Numerous natural products regulate glucose and lactate, which in turn modulate anaerobic glycolysis. This article focuses on the relationship between anaerobic glycolysis and ischemic stroke, as well as the associated signaling pathways and natural products that play a therapeutic role. These natural products, which can regulate anaerobic glycolysis, will provide new avenues and perspectives for the treatment of ischemic stroke in the future.
Collapse
Affiliation(s)
- Jia Pu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jin Han
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
4
|
Mohammed AR, Emam WA, Mohammed SA, Abd Elalim AA, Mansour ENA, Nasr HM, Ghamry AA, Alkhawagah SM, Fathy DSA, Elattar RS, Abish YGI, Hussein A, Zaghloul BA, Khairallah MK, Alharbi N, Seif Eldin S, Dawood AF, Sabet MA, Gamea MG, Elshishtawy Ibrahim SE, Mosa AA, Dahpy MA. LncRNA ILF3AS1, MMP3, and MMP9 as well as miRNA-212 as emerging novel biomarkers for childhood epilepsy. Front Mol Biosci 2024; 11:1434023. [PMID: 39268188 PMCID: PMC11391113 DOI: 10.3389/fmolb.2024.1434023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024] Open
Abstract
Background Globally, approximately 70 million people suffer from epilepsy. Infants constitute a significant percentage of these cases. Hence, there is a significant need for better understanding of the pathophysiology of epilepsy through laboratory and radiological methods for early detection and optimized management. Interleukin enhancer binding factor 3 antisense RNA l (ILF3AS1) is a long non-coding RNA (lncRNA) that enhances the expressions of matrix metalloproteinase 3 (MMP3) and matrix metalloproteinase 9 (MMP9), which are considered to be epileptogenic. Aim We aimed to assess the serum expressions of the lncRNAs ILF3AS1, MMP3, and MMP9 along with microRNA-212 (miRNA-212) as predictive biomarkers in children with epilepsy; we also assessed their correlations with magnetic resonance imaging (MRI) findings. Subjects and Methods Fifty children with epilepsy and fifty healthy controls were considered in this study. Serum expressions of the lncRNA ILF3AS1 and miRNA-212 were estimated by quantitative real-time polymerase chain reaction (qPCR). Serum concentrations of MMP3 and MMP9 were estimated by enzyme-linked immunosorbent assay (ELISA) in parallel with MRI findings and different baseline biochemical parameters of all the subjects. Results The results showed significantly higher levels of lncRNAs ILF3AS1, MMP3, and MMP9 as well as lower levels of miRNA-212 in children with epilepsy compared to the controls. The fold-change of miRNA-212 was a significant negative predictor (odds ratio = 0.153, p = 0.000). The receiver operating characteristic curves (Roc) showed that the areas under the curves for MMP3, MMP9, and lncRNA ILF3AS1 as well as the fold-change for miRNA-212 were 0.659, 0.738, 0.656, and 0.965, respectively. Brain lesions were detected in 15 patients (30%) with epilepsy, whereas the remaining 35 patients (70%) had normal results. Conclusion Serum levels of the lncRNA ILF3AS1 among children with epilepsy were higher than those in the control group and were associated with upregulation of both MMP3 and MMP9 as well as downregulation of miRNA-212 expressions, suggesting their predictive utility in monitoring the development of epilepsy; this also means that a treatment plan focusing on the ILF3AS1/miRNA-212/MMP3/MMP9 axis could be an effective strategy for treating epilepsy.
Collapse
Affiliation(s)
- Amena Rezk Mohammed
- Biochemistry Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Wafaa Abdelaziz Emam
- Biochemistry Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Shaymaa A Mohammed
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Alshaymaa A Abd Elalim
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | | | - Haidy Mahmoud Nasr
- Pediatrics Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Aya A Ghamry
- Medical Microbiology and Immunology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Sabah M Alkhawagah
- Medical Microbiology and Immunology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Doaa Sadek Ahmed Fathy
- Community and Occupational Medicine Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Rasha Sobhy Elattar
- Neurology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | | | - Abdullah Hussein
- Radiodiagnosis and Intervention Radiology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Boshra Ahmed Zaghloul
- Radiodiagnosis and Intervention Radiology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Marwa K Khairallah
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Norah Alharbi
- Internal Medicine Department, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Salwa Seif Eldin
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amal Fahmy Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Marwa A Sabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Marwa G Gamea
- Department of Pharmacology, Faculty of Medicine, Assiut University, Asyut, Egypt
| | | | - Aliaa A Mosa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Marwa A Dahpy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, Asyut, Egypt
- Department of Medical Biochemistry and Molecular Biology, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| |
Collapse
|
5
|
Qin L, Zhou Q, Sun Y, Pang X, Chen Z, Zheng J. Dynamic functional connectivity and gene expression correlates in temporal lobe epilepsy: insights from hidden markov models. J Transl Med 2024; 22:763. [PMID: 39143498 PMCID: PMC11323657 DOI: 10.1186/s12967-024-05580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUD Temporal lobe epilepsy (TLE) is associated with abnormal dynamic functional connectivity patterns, but the dynamic changes in brain activity at each time point remain unclear, as does the potential molecular mechanisms associated with the dynamic temporal characteristics of TLE. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired for 84 TLE patients and 35 healthy controls (HCs). The data was then used to conduct HMM analysis on rs-fMRI data from TLE patients and an HC group in order to explore the intricate temporal dynamics of brain activity in TLE patients with cognitive impairment (TLE-CI). Additionally, we aim to examine the gene expression profiles associated with the dynamic modular characteristics in TLE patients using the Allen Human Brain Atlas (AHBA) database. RESULTS Five HMM states were identified in this study. Compared with HCs, TLE and TLE-CI patients exhibited distinct changes in dynamics, including fractional occupancy, lifetimes, mean dwell time and switch rate. Furthermore, transition probability across HMM states were significantly different between TLE and TLE-CI patients (p < 0.05). The temporal reconfiguration of states in TLE and TLE-CI patients was associated with several brain networks (including the high-order default mode network (DMN), subcortical network (SCN), and cerebellum network (CN). Furthermore, a total of 1580 genes were revealed to be significantly associated with dynamic brain states of TLE, mainly enriched in neuronal signaling and synaptic function. CONCLUSIONS This study provides new insights into characterizing dynamic neural activity in TLE. The brain network dynamics defined by HMM analysis may deepen our understanding of the neurobiological underpinnings of TLE and TLE-CI, indicating a linkage between neural configuration and gene expression in TLE.
Collapse
Affiliation(s)
- Lu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qin Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yuting Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaomin Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zirong Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
6
|
Gao P, Wu Y, Yan Z. LncRNA ILF3-AS1 mediates oxidative stress and inflammation through miR-504-3p/HMGB1 axis in a cellular model of temporal lobe epilepsy. Brain Behav 2024; 14:e3615. [PMID: 39135276 PMCID: PMC11319232 DOI: 10.1002/brb3.3615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE), a prevalent neurological disorder, is associated with hippocampal oxidative stress and inflammation. A recent study reveals that the long noncoding RNA ILF3 divergent transcript (ILF3-AS1) level is elevated in the hippocampus of TLE patients; however, the functional roles of ILF3-AS1 in TLE and underlying mechanisms deserve further investigation. Hence, this study aimed to elucidate whether ILF3-AS1 is involved in the pathogenesis of TLE by regulating oxidative stress and inflammation and to explore its underlying mechanism in vitro. METHODS Human hippocampal neurons were subjected to a magnesium-free (Mg2+-free) solution to establish an in vitro model of TLE. The potential binding sites between ILF3-AS1 and miRNA were predicted by TargetScan/Starbase and confirmed by dual luciferase reporter assay. Cell viability and damage were assessed by cell counting kit-8 and lactate dehydrogenase assay kits, respectively. Levels of reactive oxygen species, malondialdehyde, and superoxide dismutase were determined by commercial kits. Levels of Interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-alpha were quantified by enzyme-linked immunosorbent assay. The expressions of gene and protein were determined by quantitative real-time polymerase chain reaction and Western blot analysis. RESULTS In Mg2+-free-treated hippocampal neurons, both ILF3-AS1 and HMGB1 were highly up-regulated, whereas miR-504-3p was down-regulated. ILF3-AS1 knockdown ameliorated Mg2+-free-induced cellular damage, oxidative stress, and inflammatory response. Bioinformatics analysis revealed that miR-504-3p was a target of ILF3-AS1 and was negatively regulated by ILF3-AS1. MiR-504-3p inhibitor blocked the protection of ILF3-AS1 knockdown against Mg2+-free-induced neuronal injury. Further analysis presented that ILF3-AS1 regulated HMGB1 expression by sponging miR-504-3p. Moreover, HMGB1 overexpression reversed the protective functions of ILF3-AS1 knockdown. CONCLUSION Our findings indicate that ILF3-AS1 contributes to Mg2+-free-induced hippocampal neuron injuries, oxidative stress, and inflammation by targeting the miR-504-3p/HMGB1 axis. These results provide a novel mechanistic understanding of ILF3-AS1 in TLE and suggest potential therapeutic targets for the treatment of epilepsy.
Collapse
Affiliation(s)
- Peipei Gao
- Department of PediatricsCangzhou Central HospitalCangzhouHebei ProvincePeople's Republic of China
| | - Ying Wu
- Department of PediatricsCangzhou Central HospitalCangzhouHebei ProvincePeople's Republic of China
| | - Zhixin Yan
- Department of PediatricsCangzhou Central HospitalCangzhouHebei ProvincePeople's Republic of China
| |
Collapse
|
7
|
Hussen BM, Abdullah SR, Mohammed AA, Rasul MF, Hussein AM, Eslami S, Glassy MC, Taheri M. Advanced strategies of targeting circular RNAs as therapeutic approaches in colorectal cancer drug resistance. Pathol Res Pract 2024; 260:155402. [PMID: 38885593 DOI: 10.1016/j.prp.2024.155402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Colorectal cancer (CRC) stands second in terms of mortality and third among the highest prevalent kinds of cancer globally. CRC prevalence is rising in moderately and poorly developed regions and is greater in economically advanced regions. Despite breakthroughs in targeted therapy, resistance to chemotherapeutics remains a significant challenge in the long-term management of CRC. Circular RNAs (circRNAs) have been involved in growing cancer therapy resistance, particularly in CRC, according to an increasing number of studies in recent years. CircRNAs are one of the novel subclasses of non-coding RNAs, previously thought of as viroid. According to studies, circRNAs have been recommended as biological markers for therapeutic targets and diagnostic and prognostic purposes. That is particularly notable given that the expression of circRNAs has been linked to the hallmarks of CRC since they are responsible for drug resistance in CRC patients; thereby, circRNAs are significant for chemotherapy failure. Moreover, knowledge concerning circRNAs remains relatively unclear despite using all these advanced techniques. Here, in this study, we will go over the most recent published work to highlight the critical roles of circRNAs in CRC development and drug resistance and highlight the main strategies to overcome drug resistance to improve clinical outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | | | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ali M Hussein
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mark C Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, CA, United States
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
8
|
Wang Q, Qin B, Yu H, Hu Y, Yu H, Zhong J, Liu J, Yao C, Zeng J, Fan J, Diao L. Advances in Circular RNA in the Pathogenesis of Epilepsy. Neuroscience 2024; 551:246-253. [PMID: 38843987 DOI: 10.1016/j.neuroscience.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Recent studies evidenced the involvement of circular RNA (circRNA) in neuroinflammation, apoptosis, and synaptic remodeling suggesting an important role for circRNA in the occurrence and development of epilepsy. This review provides an overview of circRNAs considered to be playing regulatory roles in the process of epilepsy and to be involved in multiple biological epilepsy-related processes, such as hippocampal sclerosis, inflammatory response, cell apoptosis, synaptic remodeling, and cell proliferation and differentiation. This review covers the current research status of differential expression of circRNA-mediated seizures, m6A methylation, demethylation-mediated seizures in post transcriptional circRNA modification, as well as the mechanisms of m5C- and m7G-modified circRNA. In summary, this article reviews the research progress on the relationship between circRNA in non-coding RNA and epilepsy.
Collapse
Affiliation(s)
- Qin Wang
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Baijun Qin
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, 6 Seventh Branch Road, Panxi, Jiangbei District, Chongqing 400021, China
| | - Haichun Yu
- Guangxi Technological College of Machinery and Electricity, Nanning, Guangxi 30007, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Han Yu
- Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Jie Zhong
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jinwen Liu
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Chunyuan Yao
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jiawei Zeng
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jingjing Fan
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Limei Diao
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China.
| |
Collapse
|
9
|
Yazarlou F, Lipovich L, Loeb JA. Emerging roles of long non-coding RNAs in human epilepsy. Epilepsia 2024; 65:1491-1511. [PMID: 38687769 PMCID: PMC11166529 DOI: 10.1111/epi.17937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 05/02/2024]
Abstract
Genome-scale biological studies conducted in the post-genomic era have revealed that two-thirds of human genes do not encode proteins. Most functional non-coding RNA transcripts in humans are products of long non-coding RNA (lncRNA) genes, an abundant but still poorly understood class of human genes. As a result of their fundamental and multitasking regulatory roles, lncRNAs are associated with a wide range of human diseases, including neurological disorders. Approximately 40% of lncRNAs are specifically expressed in the brain, and many of them exhibit distinct spatiotemporal patterns of expression. Comparative genomics approaches have determined that 65%-75% of human lncRNA genes are primate-specific and hence can be posited as a contributing potential cause of the higher-order complexity of primates, including human, brains relative to those of other mammals. Although lncRNAs present important mechanistic examples of epileptogenic functions, the human/primate specificity of lncRNAs questions their relevance in rodent models. Here, we present an in-depth review that supports the contention that human lncRNAs are direct contributors to the etiology and pathogenesis of human epilepsy, as a means to accelerate the integration of lncRNAs into clinical practice as potential diagnostic biomarkers and therapeutic targets. Meta-analytically, the major finding of our review is the commonality of lncRNAs in epilepsy and cancer pathogenesis through mitogen-activated protein kinase (MAPK)-related pathways. In addition, neuroinflammation may be a relevant part of the common pathophysiology of cancer and epilepsy. LncRNAs affect neuroinflammation-related signaling pathways such as nuclear factor kappa- light- chain- enhancer of activated B cells (NF-κB), Notch, and phosphatidylinositol 3- kinase/ protein kinase B (Akt) (PI3K/AKT), with the NF-κB pathway being the most common. Besides the controversy over lncRNA research in non-primate models, whether neuroinflammation is triggered by injury and/or central nervous system (CNS) toxicity during epilepsy modeling in animals or is a direct consequence of epilepsy pathophysiology needs to be considered meticulously in future studies.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, U.S.A
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People’s Republic of China
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai District, 325060, Wenzhou, Zhejiang, People’s Republic of China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 3222 Scott Hall, 540 E. Canfield St., Detroit, Michigan 48201, U.S.A
| | - Jeffrey A. Loeb
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
- University of Illinois NeuroRepository, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
| |
Collapse
|
10
|
Zhai J, Wang C, Jin L, Liu M, Chen Y. Research progress on the relationship between epilepsy and circRNA. Brain Res 2024; 1830:148823. [PMID: 38403039 DOI: 10.1016/j.brainres.2024.148823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE This review aims to provide a comprehensive summary of the latest research progress regarding the relationship between epilepsy and circular RNA (circRNA). METHODS Relevant literature from the PubMed database was meticulously searched and reviewed. The selected articles focused on investigating the association between epilepsy and circRNA, including studies on expression patterns, diagnostic markers, therapeutic targets, and functional mechanisms. RESULTS Epilepsy, characterized by recurrent seizures, is a neurological disorder. Numerous studies have demonstrated significant alterations in the expression profiles of circRNA in epileptic brain tissues, animal models, and peripheral blood samples. These differential expressions of circRNA are believed to be closely linked with the occurrence and development of epilepsy. Moreover, circRNA has shown promising potential as diagnostic markers for epilepsy, as well as prognostic indicators for predicting disease outcomes. Furthermore, circRNA has emerged as a potential therapeutic target for epilepsy treatment, offering prospects for gene therapy interventions. CONCLUSION The dysregulation of circRNA expression in epilepsy suggests its potential involvement in the pathogenesis and progression of this disorder. Identifying specific circRNA molecules associated with epilepsy may pave the way for novel diagnostic approaches and therapeutic strategies. However, further investigations are imperative to elucidate the precise functional mechanisms of circRNA in epilepsy and validate its clinical utility.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liang Jin
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mingjie Liu
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
11
|
Gao M, Dong Q, Yang Z, Zou D, Han Y, Chen Z, Xu R. Long non-coding RNA H19 regulates neurogenesis of induced neural stem cells in a mouse model of closed head injury. Neural Regen Res 2024; 19:872-880. [PMID: 37843223 PMCID: PMC10664125 DOI: 10.4103/1673-5374.382255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 10/17/2023] Open
Abstract
Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury. We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement. However, the neural regeneration efficiency of induced neural stem cells remains limited. In this study, we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells. We found that H19 was the most downregulated neurogenesis-associated lncRNA in induced neural stem cells compared with induced pluripotent stem cells. Additionally, we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons. We predicted the target genes of H19 and discovered that H19 directly interacts with miR-325-3p, which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells. Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation, and miR-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition. Furthermore, H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells. Notably, silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice. Our results reveal that H19 regulates the neurogenesis of induced neural stem cells. H19 inhibition may promote the neural differentiation of induced neural stem cells, which is closely associated with neurological recovery following closed head injury.
Collapse
Affiliation(s)
- Mou Gao
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Zhongsai Stem Cell Genetic Engineering Co., Ltd., Sanmenxia, Henan Province, China
| | - Qin Dong
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Zhijun Yang
- Zhongsai Stem Cell Genetic Engineering Co., Ltd., Sanmenxia, Henan Province, China
| | - Dan Zou
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Yajuan Han
- Zhongsai Stem Cell Genetic Engineering Co., Ltd., Sanmenxia, Henan Province, China
| | - Zhanfeng Chen
- Zhongsai Stem Cell Genetic Engineering Co., Ltd., Sanmenxia, Henan Province, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
12
|
Li S, Qiu N, Ni A, Hamblin MH, Yin KJ. Role of regulatory non-coding RNAs in traumatic brain injury. Neurochem Int 2024; 172:105643. [PMID: 38007071 PMCID: PMC10872636 DOI: 10.1016/j.neuint.2023.105643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Traumatic brain injury (TBI) is a potentially fatal health event that cannot be predicted in advance. After TBI occurs, it can have enduring consequences within both familial and social spheres. Yet, despite extensive efforts to improve medical interventions and tailor healthcare services, TBI still remains a major contributor to global disability and mortality rates. The prompt and accurate diagnosis of TBI in clinical contexts, coupled with the implementation of effective therapeutic strategies, remains an arduous challenge. However, a deeper understanding of changes in gene expression and the underlying molecular regulatory processes may alleviate this pressing issue. In recent years, the study of regulatory non-coding RNAs (ncRNAs), a diverse class of RNA molecules with regulatory functions, has been a potential game changer in TBI research. Notably, the identification of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs has revealed their potential as novel diagnostic biomarkers and therapeutic targets for TBI, owing to their ability to regulate the expression of numerous genes. In this review, we seek to provide a comprehensive overview of the functions of regulatory ncRNAs in TBI. We also summarize regulatory ncRNAs used for treatment in animal models, as well as miRNAs, lncRNAs, and circRNAs that served as biomarkers for TBI diagnosis and prognosis. Finally, we discuss future challenges and prospects in diagnosing and treating TBI patients in the clinical settings.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Na Qiu
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Andrew Ni
- Warren Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI, 02903, USA
| | - Milton H Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 1212 Webber Hall, 900 University Avenue, Riverside, CA, 92521, USA
| | - Ke-Jie Yin
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
13
|
Srinivas T, Mathias C, Oliveira-Mateos C, Guil S. Roles of lncRNAs in brain development and pathogenesis: Emerging therapeutic opportunities. Mol Ther 2023; 31:1550-1561. [PMID: 36793211 PMCID: PMC10277896 DOI: 10.1016/j.ymthe.2023.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The human genome is pervasively transcribed, producing a majority of short and long noncoding RNAs (lncRNAs) that can influence cellular programs through a variety of transcriptional and post-transcriptional regulatory mechanisms. The brain houses the richest repertoire of long noncoding transcripts, which function at every stage during central nervous system development and homeostasis. An example of functionally relevant lncRNAs is species involved in spatiotemporal organization of gene expression in different brain regions, which play roles at the nuclear level and in transport, translation, and decay of other transcripts in specific neuronal sites. Research in the field has enabled identification of the contributions of specific lncRNAs to certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders, resulting in notions of potential therapeutic strategies that target these RNAs to recover the normal phenotype. Here, we summarize the latest mechanistic findings associated with lncRNAs in the brain, focusing on their dysregulation in neurodevelopmental or neurodegenerative disorders, their use as biomarkers for central nervous system (CNS) diseases in vitro and in vivo, and their potential utility for therapeutic strategies.
Collapse
Affiliation(s)
- Tara Srinivas
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Catalonia, Spain
| | - Carolina Mathias
- Department of Genetics, Federal University of Parana, Post-graduation Program in Genetics, Curitiba, PR, Brazil; Laboratory of Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, Brazil
| | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Catalonia, Spain; Germans Trias i Pujol Health Science Research Institute, Badalona, 08916 Barcelona, Catalonia, Spain.
| |
Collapse
|
14
|
Zhang S, Zou H, Zou X, Ke J, Zheng B, Chen X, Zhou X, Wei J. Transcriptome Sequencing of CeRNA Network Constructing in Status Epilepticus Mice Treated by Low-Frequency Repetitive Transcranial Magnetic Stimulation. J Mol Neurosci 2023; 73:316-326. [PMID: 37133759 DOI: 10.1007/s12031-023-02108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/20/2023] [Indexed: 05/04/2023]
Abstract
It is shown that great progress was recently made in the treatment of repetitive transcranial magnetic stimulation (rTMS) for neurological and psychiatric diseases. This study aimed to address how rTMS exerted it therapeutic effects by regulating competitive endogenous RNAs (ceRNAs) of lncRNA-miRNA-mRNA. The distinction of lncRNA, miRNA and mRNA expression in male status epilepticus (SE) mice treated by two different ways, low-frequency rTMS (LF-rTMS) vs. sham rTMS, was analyzed by high-throughput sequencing. The Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out. Gene-Gene Cross Linkage Network was established; pivotal genes were screened out. qRT-PCR was used to verify gene-gene interactions. Our results showed that there were 1615 lncRNAs, 510 mRNAs, and 17 miRNAs differentially which were expressed between the LF-rTMS group and the sham rTMS group. The expression difference of these lncRNAs, mRNAs, and miRNAs by microarray detection were consistent with the results by qPCR. GO functional enrichment showed that immune-associated molecular mechanisms, biological processes, and GABA-A receptor activity played a role in SE mice treated with LF-rTMS. KEGG pathway enrichment analysis revealed that differentially expressed genes were correlated to T cell receptor signaling pathway, primary immune deficiency and Th17 cell differentiation signaling pathway. Gene-gene cross linkage network was established on the basis of Pearson's correlation coefficient and miRNA. In conclusion, LF-rTMS alleviates SE through regulating the GABA-A receptor activity transmission, improving immune functions, and biological processes, suggesting the underlying ceRNA molecular mechanisms of LF-rTMS treatment for epilepsy.
Collapse
Affiliation(s)
- Shaotian Zhang
- Department of Neurology, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shi Liu Gang Rd, Haizhu District, Guangzhou, Guangdong, 510315, China
| | - Huihui Zou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shi Liu Gang Rd, Haizhu District, Guangzhou, Guangdong, China
| | - Xiaopei Zou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shi Liu Gang Rd, Haizhu District, Guangzhou, Guangdong, China
| | - Jiaqia Ke
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shi Liu Gang Rd, Haizhu District, Guangzhou, Guangdong, China
| | - Bofang Zheng
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shi Liu Gang Rd, Haizhu District, Guangzhou, Guangdong, China
| | - Xinrun Chen
- Department of Clinical Medicine, The First Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, 510315, China
| | - Xianju Zhou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shi Liu Gang Rd, Haizhu District, Guangzhou, Guangdong, China
| | - Jiana Wei
- Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, No.250 East Changgang Rd, Guangzhou, 510260, China.
| |
Collapse
|
15
|
Wang X, Wang J, An Z, Yang A, Qiu M, Tan Z. CircXPO1 Promotes Glioblastoma Malignancy by Sponging miR-7-5p. Cells 2023; 12:831. [PMID: 36980172 PMCID: PMC10047377 DOI: 10.3390/cells12060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
Mounting evidence suggests that circular RNAs play important roles in the development and progression of cancers. However, their function in glioblastomas (GBM) is still unclear. By circRNA array analysis, we found that circXPO1 (hsa_circ_102737) was significantly upregulated in GBM, and qPCR analysis verified that the circXPO1 expression level was increased in both GBM tissues and cell lines. Functional studies demonstrated that the knockdown of circXPO1 in GBM cell lines repressed cell proliferation and migration; conversely, the overexpression of circXPO1 promoted the malignancy of GBM cells. In line with these findings, circXPO1 inhibition effectively suppressed gliomagenesis in the in situ transplantation model of nude mice. Through bioinformatic analyses and dual-luciferase reporter assays, we showed that circXPO1 directly bound to miR-7-5p, which acted as a tumor suppressor through the negative regulation of RAF1. In conclusion, our studies suggest that the circXPO1/miR-7-5p/RAF1 axis promotes brain tumor formation and may be a potential therapeutic target for GBM treatment.
Collapse
|
16
|
Łukasiuk K, Lasoń W. Emerging Molecular Targets for Anti-Epileptogenic and Epilepsy Modifying Drugs. Int J Mol Sci 2023; 24:ijms24032928. [PMID: 36769250 PMCID: PMC9917847 DOI: 10.3390/ijms24032928] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The pharmacological treatment of epilepsy is purely symptomatic. Despite many decades of intensive research, causal treatment of this common neurologic disorder is still unavailable. Nevertheless, it is expected that advances in modern neuroscience and molecular biology tools, as well as improved animal models may accelerate designing antiepileptogenic and epilepsy-modifying drugs. Epileptogenesis triggers a vast array of genomic, epigenomic and transcriptomic changes, which ultimately lead to morphological and functional transformation of specific neuronal circuits resulting in the occurrence of spontaneous convulsive or nonconvulsive seizures. Recent decades unraveled molecular processes and biochemical signaling pathways involved in the proepileptic transformation of brain circuits including oxidative stress, apoptosis, neuroinflammatory and neurotrophic factors. The "omics" data derived from both human and animal epileptic tissues, as well as electrophysiological, imaging and neurochemical analysis identified a plethora of possible molecular targets for drugs, which could interfere with various stages of epileptogenetic cascade, including inflammatory processes and neuroplastic changes. In this narrative review, we briefly present contemporary views on the neurobiological background of epileptogenesis and discuss the advantages and disadvantages of some more promising molecular targets for antiepileptogenic pharmacotherapy.
Collapse
Affiliation(s)
- Katarzyna Łukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Władysław Lasoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
- Correspondence:
| |
Collapse
|
17
|
Tan Z, Li W, Cheng X, Zhu Q, Zhang X. Non-Coding RNAs in the Regulation of Hippocampal Neurogenesis and Potential Treatment Targets for Related Disorders. Biomolecules 2022; 13:biom13010018. [PMID: 36671403 PMCID: PMC9855933 DOI: 10.3390/biom13010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, circRNAs, and piRNAs, do not encode proteins. Nonetheless, they have critical roles in a variety of cellular activities-such as development, neurogenesis, degeneration, and the response to injury to the nervous system-via protein translation, RNA splicing, gene activation, silencing, modifications, and editing; thus, they may serve as potential targets for disease treatment. The activity of adult neural stem cells (NSCs) in the subgranular zone of the hippocampal dentate gyrus critically influences hippocampal function, including learning, memory, and emotion. ncRNAs have been shown to be involved in the regulation of hippocampal neurogenesis, including proliferation, differentiation, and migration of NSCs and synapse formation. The interaction among ncRNAs is complex and diverse and has become a major topic within the life science. This review outlines advances in research on the roles of ncRNAs in modulating NSC bioactivity in the hippocampus and discusses their potential applications in the treatment of illnesses affecting the hippocampus.
Collapse
Affiliation(s)
- Zhengye Tan
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiang Cheng
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
- Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong 226001, China
| | - Xinhua Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Central Lab, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng 224001, China
- Correspondence:
| |
Collapse
|