1
|
Ebrahimzadeh E, Sadjadi SM, Asgarinejad M, Dehghani A, Rajabion L, Soltanian-Zadeh H. Neuroenhancement by repetitive transcranial magnetic stimulation (rTMS) on DLPFC in healthy adults. Cogn Neurodyn 2025; 19:34. [PMID: 39866659 PMCID: PMC11759757 DOI: 10.1007/s11571-024-10195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2024] [Accepted: 10/27/2024] [Indexed: 01/28/2025] Open
Abstract
The term "neuroenhancement" describes the enhancement of cognitive function associated with deficiencies resulting from a specific condition. Nevertheless, there is currently no agreed-upon definition for the term "neuroenhancement", and its meaning can change based on the specific research being discussed. As humans, our continual pursuit of expanding our capabilities, encompassing both cognitive and motor skills, has led us to explore various tools. Among these, repetitive Transcranial Magnetic Stimulation (rTMS) stands out, yet its potential remains underestimated. Historically, rTMS was predominantly employed in studies focused on rehabilitation objectives. A small amount of research has examined its use on healthy subjects with the goal of improving cognitive abilities like risk-seeking, working memory, attention, cognitive control, learning, computing speed, and decision-making. It appears that the insights gained in this domain largely stem from indirect outcomes of rehabilitation research. This review aims to scrutinize these studies, assessing the effectiveness of rTMS in enhancing cognitive skills in healthy subjects. Given that the dorsolateral prefrontal cortex (DLPFC) has become a popular focus for rTMS in treating psychiatric disorders, corresponding anatomically to Brodmann areas 9 and 46, and considering the documented success of rTMS stimulation on the DLPFC for cognitive improvement, our focus in this review article centers on the DLPFC as the focal point and region of interest. Additionally, recognizing the significance of theta burst magnetic stimulation protocols (TBS) in mimicking the natural firing patterns of the brain to modulate excitability in specific cortical areas with precision, we have incorporated Theta Burst Stimulation (TBS) wave patterns. This inclusion, mirroring brain patterns, is intended to enhance the efficacy of the rTMS method. To ascertain if brain magnetic stimulation consistently improves cognition, a thorough meta-analysis of the existing literature has been conducted. The findings indicate that, after excluding outlier studies, rTMS may improve cognition when compared to appropriate control circumstances. However, there is also a considerable degree of variation among the researches. The navigation strategy used to reach the stimulation site and the stimulation location are important factors that contribute to the variation between studies. The results of this study can provide professional athletes, firefighters, bodyguards, and therapists-among others in high-risk professions-with insightful information that can help them perform better on the job.
Collapse
Affiliation(s)
- Elias Ebrahimzadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran Ave., Tehran, Iran
| | - Seyyed Mostafa Sadjadi
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran Ave., Tehran, Iran
| | | | - Amin Dehghani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH USA
| | - Lila Rajabion
- School of Graduate Studies, SUNY Empire State College, Manhattan, NY USA
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran Ave., Tehran, Iran
| |
Collapse
|
2
|
Luo C, Tang X, Shao H, Guo F. High-frequency repetitive transcranial magnetic stimulation attenuates white matter damage and improves functional recovery in rats with ischemic stroke. Neuroscience 2025; 575:48-56. [PMID: 40239890 DOI: 10.1016/j.neuroscience.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 03/25/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Stroke is a major cause of acquired disability and the second most frequent cause of dementia, while specific therapeutic rehabilitation strategies remain limited. Repetitive transcranial magnetic stimulation(rTMS) is a well-known rehabilitation modality after cerebral ischemic injury. White matter damage is an important contributor to motor and cognitive dysfunctions after stroke. This study aimed to evaluate the effect of rTMS on white matter recovery and neurological deficits in ischemic stroke. Grip strength test and novel object recognition test were conducted to assess motor and cognitive functions after middle cerebral artery occlusion(MCAO). MRI, including Diffusion tensor imaging (DTI) and Diffusion Tensor Tractography (DTT) were performed to evaluate white matter injury in MCAO rats. Moreover, Western blotting were detected to observe related myelin damage proteins in the ischemic brain. The results revealed that 10 Hz rTMS alleviated the motor and cognitive deficits in rats after ischemic surgery. Besides, the data from DTI and DTT showing that 10 Hz rTMS ameliorated the white matter lesion of rats after cerebral ischemia. In addition, 10 Hz rTMS attenuated significant loss of the myelin sheath by enhanced myelin associated proteins levels in the ischemic brain of ischemic rats. These findings suggest that 10 Hz rTMS exerted therapeutic neuroprotective properties after ischemic stroke, in a manner that may be associated with enhancing structural repairment of the white matter, which may provide a potential therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Can Luo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoyue Shao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Guo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Song X, Fu J, Yao Y, Shu Y, Wang Z, Chen X, Ma L, Shen F, Sun X, Ma X, Zhang T, Jin R, Zeng M, Gu X. The impact of high-frequency rTMS treatment on brain activity in PSCI patients: a TMS-EEG study. Front Neurol 2025; 16:1582437. [PMID: 40438571 PMCID: PMC12116362 DOI: 10.3389/fneur.2025.1582437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/18/2025] [Indexed: 06/01/2025] Open
Abstract
Objectives This study employed Transcranial Magnetic Stimulation combined with Electroencephalography (TMS-EEG) to examine the impacts of high-frequency repetitive transcranial magnetic stimulation (rTMS) on brain activity and cognitive function in patients with post-stroke cognitive impairment (PSCI), focusing on changes in connectivity of the left dorsolateral prefrontal cortex (DLPFC) across different frequency bands. Methods Twenty subacute PSCI patients were recruited for a 20-day rTMS treatment, consisting of 10 days of sham stimulation followed by 10 days of actual stimulation. Clinical function scale data and TMS-EEG data were collected before treatment (Pre), after sham stimulation (Sham), and after rTMS treatment (TMS) to analyze transcranial magnetic stimulation evoked potentials (TEP), time-frequency, and functional connectivity. Additionally, a post hoc subgroup analysis was conducted to assess the impact of education level, time since onset, and lesion size on cognitive score improvement. Results Compared to the Pre and Sham conditions, cognitive function and daily living ability scores significantly improved post-rTMS. Although the TEP patterns in the Pre and Sham conditions were similar, rTMS enhanced the early TEP amplitude in the left DLPFC, slowed gamma oscillations, increased connectivity in the theta and alpha bands in the bilateral DLPFC, and altered the connectivity patterns between the left DLPFC and other brain regions. Changes in theta-band wPLI were significantly positively correlated with improvements in MMSE scores (r = 0.465, p = 0.039) and MoCA scores (r = 0.493, p = 0.027). Patients with higher education levels exhibited significant cognitive improvement (p = 0.039), while patients with a time since onset of 60-180 days showed a significant decline in cognitive improvement (p = 0.024). Conclusion High-frequency rTMS effectively modulated connectivity patterns between the left DLPFC and other brain regions in PSCI patients, enhancing cognitive functions. Changes in wPLI within the theta frequency band may serve as a potential biomarker for cognitive function improvement in PSCI patients. Education level and time since onset may have a certain impact on cognitive improvement in PSCI patients.
Collapse
Affiliation(s)
- Xinxin Song
- Joint Training Base of Zhejiang Chinese Medical University and Jiaxing University, Hangzhou, China
| | - Jianming Fu
- Rehabilitation Medicine Center, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yunhai Yao
- Rehabilitation Medicine Center, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yuhong Shu
- Joint Training Base of Zhejiang Chinese Medical University and Jiaxing University, Hangzhou, China
| | - Zhongli Wang
- Rehabilitation Medicine Center, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xuting Chen
- Rehabilitation Medicine Center, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Lianjie Ma
- Rehabilitation Medicine Center, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Fang Shen
- Rehabilitation Medicine Center, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaolin Sun
- Rehabilitation Medicine Center, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaoqing Ma
- Rehabilitation Medicine Center, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ting Zhang
- Rehabilitation Medicine Center, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Rujue Jin
- Rehabilitation Medicine Center, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ming Zeng
- Rehabilitation Medicine Center, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xudong Gu
- Rehabilitation Medicine Center, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
4
|
Alashram AR. Repetitive transcranial magnetic stimulation for cognitive rehabilitation in stroke survivors: A systematic review and meta-analysis of randomized controlled trials. APPLIED NEUROPSYCHOLOGY. ADULT 2025:1-15. [PMID: 40285542 DOI: 10.1080/23279095.2025.2496523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Cognitive impairments are one of the most common consequences in stroke survivors. Repetitive transcranial magnetic stimulation (rTMS) produces electromagnetic pulses transmitted through a coil over the individual's head. This review aims to examine the effects of rTMS on cognition in stroke survivors, identify who would be most likely to benefit from the therapy, define the optimal therapeutic parameters, and provide recommendations. "PubMed, Medline, Scopus, EMBASE, PEDro, and Web of Science" were searched until December 5, 2024. Comprehensive Meta-Analysis version 4 was used for quantitative analysis. The "Cochrane Collaboration tool" was employed to assess the quality of the selected studies. Thirteen studies met the eligibility criteria. In total, 608 stroke survivors (mean age 60.17 years) were involved in the present review. The meta-analysis showed a small, non-significant effect of rTMS on global cognitive function in stroke survivors (Functional independence measure-cognitive; SMD = 0.386, 95% CI: -0.331 to 1.103, p = .291), (Mini-Mental State Examination; SMD = 0.162, 95% CI: -0.405 to 0.730, p = .575), and (Montreal Cognitive Assessment; SMD = 0.204, 95% CI: -0.613 to 1.021, p = .625) with high heterogeneity (I2 = 77-85%). While some studies reported improvements in specific cognitive domains, overall findings indicate substantial variability and uncertainty. This review highlights inconclusive evidence on the effects of rTMS on various cognitive domains in patients with stroke. The frequency of rTMS and coil location are essential factors in determining outcomes. Future studies are strongly warranted.
Collapse
Affiliation(s)
- Anas R Alashram
- Department of Physiotherapy, Middle East University, Amman, Jordan
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
5
|
Zhou S, Yin D, He H, Li M, Zhang Y, Xiao J, Wang X, Li L, Yang D. Differences in symptom clusters based on multidimensional symptom experience and symptom burden in stroke patients. Sci Rep 2025; 15:11733. [PMID: 40188267 PMCID: PMC11972335 DOI: 10.1038/s41598-025-96189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
In the study of stroke symptoms, a significant unresolved issue remains: What are the similarities and differences in the use of three symptom dimensions-occurrence, severity, and distress-and symptom burden to identify symptom clusters, and which level is recommended for constructing symptom clusters? This study aimed to identify the number and types of symptom clusters in stroke patients on the basis of these dimensions and to determine the most suitable dimension for extracting symptom clusters. Data were collected from 656 stroke patients via a convenience sampling method at a tertiary-level hospital in Wuhan, China, between August 2023 and March 2024. Exploratory factor analysis was conducted to extract symptom clusters on the basis of the three dimensions of the symptom experience scale and symptom burden. Four similar symptom clusters were identified: the mood disturbance symptom cluster, the physical symptom cluster, the cognitive dysfunction symptom cluster, and the slurred speech and choking cough symptom cluster. The symptom of "fatigue" within the physical symptom cluster was not identified only in the dimension of distress (with a percentage agreement of 83.3%), whereas the symptom composition of other clusters remained consistent across all three symptom dimensions (with a percentage agreement of 100%). Moreover, all four symptom clusters exhibited high consistency in terms of both occurrence and symptom burden, regardless of whether the symptom with the highest factor loading or the overall symptom composition was considered. The use of symptom occurrence and symptom burden is recommended for identifying symptom clusters in stroke patients. Subsequently, trajectory studies of symptom clusters and symptom network analyses should be conducted on the basis of these two dimensions to establish a solid theoretical foundation for future clinical interventions and related scientific research.
Collapse
Affiliation(s)
- Siyu Zhou
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Dan Yin
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Huijuan He
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
- Hubei Shizhen Laboratory, Wuhan, Hubei, China.
| | - Mengying Li
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Yuan Zhang
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Xiao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China
| | - Xiangrong Wang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Lin Li
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Dan Yang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
6
|
Shi X, Zheng WA, Hou XL, Chen Y, Chen HF, Yao WN, Lv TY, Bai F. Differential effects of 2 and 4 weeks repetitive transcranial magnetic stimulation inducing neuroplasticity on cognitive improvement. J Alzheimers Dis 2025; 104:808-822. [PMID: 40123238 DOI: 10.1177/13872877251320124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
BackgroundRepetitive transcranial magnetic stimulation (rTMS) is an efficient intervention for alleviating cognitive symptoms in Alzheimer's disease (AD), but the optimal treatment duration for high efficacy remains unclear.ObjectiveThis study investigates the effects of 2-week and 4-week rTMS on neural network plasticity and cognitive improvement, aiming to identify the optimal treatment duration for cognitive impairment.MethodsrTMS was administered to cognitively impaired patients over 2-week and 4-week periods, exploring its effects on cognitive improvement and induced neural circuits. The study also examines the predictive value of these neural circuits for individual treatment responses.ResultsThe 4-week rTMS treatment significantly outperformed the 2-week course in improving cognitive function. Neural activity analysis identified the precuneus as a key region for episodic memory. Changes in brain regions, particularly within the default mode network (DMN), visual network (VN), and motor network (MN), were associated with cognitive improvements. Baseline functional connectivity in these regions predicted changes in general cognition (r = 0.724, p < 0.001) and episodic memory (r = 0.447, p = 0.022) after rTMS.ConclusionsExtended rTMS treatment enhances cognitive performance in cognitive impairment patients, with the 4-week course showing superior effects. Reduced connectivity in the DMN following rTMS was linked to cognitive improvements. The neural network baseline can predict patients' treatment responses.
Collapse
Affiliation(s)
- Xian Shi
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Wen-Ao Zheng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin-Le Hou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Feng Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei-Na Yao
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ting-Yu Lv
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Geriatric Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Vásquez-Carrasco E, Jamett-Oliva P, Hernandez-Martinez J, Riquelme-Hernández C, Villagrán-Silva F, Branco BHM, Sandoval C, Valdés-Badilla P. Effectiveness of Occupational Therapy Interventions on Activities of Daily Living, Cognitive Function, and Physical Function in Middle-Aged and Older People with Chronic Stroke: A Systematic Review with Meta-Analysis. J Clin Med 2025; 14:2197. [PMID: 40217648 PMCID: PMC11989866 DOI: 10.3390/jcm14072197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Occupational therapy (OT) interventions on activities of daily living (ADL), cognitive functions, and physical function in middle-aged and older people with chronic stroke. Methods: A systematic review search until November 2024 using five generic databases: PubMed/Medline, Web of Science, Scopus, ScienceDirect, and OT seeker. The PRISMA checklist, RoB 2 (Cochrane, London, UK), and GRADEpro (Evidence Prime Inc., Hamilton, CA) tools assessed the evidence's methodological quality and certainty. The protocol was registered in PROSPERO (code: CRD42024568225). Results: Of 1733 records were identified across the databases, nine studies were analyzed using the PICOS format. The meta-analysis revealed significant improvements in independent performance of activities of daily living (ADL), as measured by the Canadian Occupational Performance Measure (COPM), in favor of the experimental groups (p = 0.03). No significant differences were found for the other variables analyzed. Conclusions: Performance on ADLs improved significantly according to the COPM, whereas no significant improvements in cognitive or physical function were observed among middle-aged and older chronic stroke survivors. Individual studies highlight the potential benefits of OT interventions that combine cognitive, motor, and technological approaches, such as virtual reality and brain stimulation.
Collapse
Affiliation(s)
- Edgar Vásquez-Carrasco
- School of Occupational Therapy, Faculty of Psychology, Universidad de Talca, Talca 3465548, Chile; (E.V.-C.); (P.J.-O.)
- Centro de Investigación en Ciencias Cognitivas, Faculty of Psychology, Universidad de Talca, Talca 3465548, Chile
| | - Pía Jamett-Oliva
- School of Occupational Therapy, Faculty of Psychology, Universidad de Talca, Talca 3465548, Chile; (E.V.-C.); (P.J.-O.)
| | - Jordan Hernandez-Martinez
- Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno 5290000, Chile;
- G-IDyAF Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno 5290000, Chile
- Programa de Investigación en Deporte, Sociedad y Buen Vivir, Universidad de los Lagos, Osorno 5290000, Chile
| | | | - Francisca Villagrán-Silva
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | | | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Pablo Valdés-Badilla
- Department of Physical Activity Sciences, Faculty of Education Sciences, Universidad Católica del Maule, Talca 3530000, Chile
- Sports Coach Career, School of Education, Universidad Viña del Mar, Viña del Mar 2520000, Chile
| |
Collapse
|
8
|
Ren J, Su W, Zhou Y, Han K, Pan R, Duan X, Liu J, Lu H, Zhang P, Zhang W, Sun J, Ding M, Zhu Y, Xie W, Huang J, Zhang H, Liu H. Efficacy and safety of high-dose and personalized TBS on post-stroke cognitive impairment: A randomized controlled trial. Brain Stimul 2025; 18:249-258. [PMID: 39978727 DOI: 10.1016/j.brs.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Cognitive impairments are prevalent among stroke patients, impacting independent living. While intermittent theta burst stimulation (iTBS) shows potential for rehabilitation, the efficacy of the commonly-used doses remains unsatisfactory. OBJECTIVE To investigate the efficacy, dose-dependent effect, and safety of high-dose iTBS targeting the individualized frontoparietal cognitive network (FCN) for post-stroke cognitive recovery. METHODS In a randomized, sham-controlled, three-arm trial, patients with post-stroke cognitive impairment (PSCI) received 15 days of high-dose (3600 pulses/day), standard low-dose (1200 pulses/day) as an active control, or sham iTBS targeting the individualized FCN, alongside cognitive training. Primary outcome measured changes in global cognition via the Montreal Cognitive Assessment (MoCA). Secondary measures included MoCA response rates and score changes in the Wechsler Memory Scale, Wechsler Adult Intelligence Scale, and Mini-Mental State Examination. RESULTS Of forty-five randomized participants, forty-one (8 women; mean [SD] age, 58.63 [8.64] years) were analyzed. Personalized targeting improved focality by 33.0 % over the standard F3 target in E-field analysis. Both high-dose and standard low-dose groups showed significant improvements in MoCA. Importantly, the high-dose group demonstrated superior cognitive recovery over both the active control group (estimated difference = 2.50, p = 0.0339, 95 % CI = 0.15-4.84) and the sham control group (estimated difference = 4.29, p = 0.0001, 95 % CI = 1.99-6.60), indicating a superior effect of high-dose stimulation for cognitive recovery. Similar high-dose and dose-dependent effects were observed in other secondary outcomes, suggesting consistent effects on the memory, intelligence, and mental state. No serious adverse events occurred. CONCLUSIONS This study highlights the efficacy and safety of high-dose iTBS targeting the individualized FCN for post-stroke cognitive recovery.
Collapse
Affiliation(s)
- Jianxun Ren
- Changping Laboratory, Beijing, 102206, China
| | - Wenlong Su
- School of Rehabilitation, Capital Medical University, Beijing, 100069, China; China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, China; School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, 266000, China
| | - Ying Zhou
- Changping Laboratory, Beijing, 102206, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100091, China
| | - Kaiyue Han
- School of Rehabilitation, Capital Medical University, Beijing, 100069, China; China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, China
| | - Ruiqi Pan
- Neural Galaxy Inc., Beijing, 102206, China
| | - Xinyu Duan
- Changping Laboratory, Beijing, 102206, China
| | - Jiajie Liu
- School of Rehabilitation, Capital Medical University, Beijing, 100069, China; China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, China
| | - Haitao Lu
- School of Rehabilitation, Capital Medical University, Beijing, 100069, China; China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, China
| | - Ping Zhang
- Changping Laboratory, Beijing, 102206, China
| | - Wei Zhang
- Changping Laboratory, Beijing, 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jian Sun
- Changping Laboratory, Beijing, 102206, China
| | | | - Yafei Zhu
- Changping Laboratory, Beijing, 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wuxiang Xie
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, 100191, China
| | - Jianting Huang
- Changping Laboratory, Beijing, 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, 100069, China; China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, China; School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, 266000, China; Cheeloo College of Medicine, Shandong University, Jinan, 250100, China.
| | - Hesheng Liu
- Changping Laboratory, Beijing, 102206, China; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Godefroy O, Aarabi A, Béjot Y, Biessels GJ, Glize B, Mok VCT, de Schotten MT, Sibon I, Chabriat H, Roussel M. Are we ready to cure post-stroke cognitive impairment? Many key prerequisites can be achieved quickly and easily. Eur Stroke J 2025; 10:22-35. [PMID: 39129252 PMCID: PMC11569528 DOI: 10.1177/23969873241271651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
PURPOSE Post-stroke (PS) cognitive impairment (CI) is frequent and its devastating functional and vital consequences are well known. Despite recent guidelines, they are still largely neglected. A large number of recent studies have re-examined the epidemiology, diagnosis, imaging determinants and management of PSCI. The aim of this update is to determine whether these new data answer the questions that are essential to reducing PSCI, the unmet needs, and steps still to be taken. METHODS Literature review of stroke unit-era studies examining key steps in the management of PSCI: epidemiology and risk factors, diagnosis (cognitive profile and assessments), imaging determinants (quantitative measures, voxelwise localization, the disconnectome and associated Alzheimer's disease [AD]) and treatment (secondary prevention, symptomatic drugs, rehabilitation and noninvasive brain stimulation) of PSCI. FINDINGS (1) the prevalence of PSCI of approximately 50% is probably underestimated; (2) the sensitivity of screening tests should be improved to detect mild PSCI; (3) comprehensive assessment is now well-defined and should include apathy; (4) easily available factors can identify patients at high risk of PSCI; (5) key imaging determinants are the location and volume of the lesion and the resulting disconnection, associated AD and brain atrophy; WMH, ePVS, microhemorrhages, hemosiderosis, and cortical microinfarcts may contribute to cognitive impairment but are more likely to be markers of brain vulnerability or associated AD that reduce PS recovery; (6) remote and online assessment is a promising approach for selected patients; (7) secondary stroke prevention has not been proven to prevent PSCI; (8) symptomatic drugs are ineffective in treating PSCI and apathy; (9) in addition to cognitive rehabilitation, the benefits of training platforms and computerized training are yet to be documented; (10) the results and the magnitude of improvement of noninvasive brain stimulation, while very promising, need to be substantiated by large, high-quality, sham-controlled RCTs. DISCUSSION AND CONCLUSION These major advances pave the way for the reduction of PSCI. They include (1) the development of more sensitive screening tests applicable to all patients and (2) online remote assessment; crossvalidation of (3) clinical and (4) imaging factors to (5) identify patients at risk, as well as (6) factors that prompt a search for associated AD; (7) the inclusion of cognitive outcome as a secondary endpoint in acute and secondary stroke prevention trials; and (8) the validation of the benefit of noninvasive brain stimulation through high-quality, randomized, sham-controlled trials. Many of these objectives can be rapidly and easily attained.
Collapse
Affiliation(s)
- Olivier Godefroy
- Departments of Neurology, Amiens University Hospital, France
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France
| | - Ardalan Aarabi
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France
| | - Yannick Béjot
- Department of Neurology, Dijon University Hospital, France
- Dijon Stroke Registry, EA7460, University of Burgundy, France
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Bertrand Glize
- Department of Rehabilitation, University Hospital, Bordeaux, France
| | - Vincent CT Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Michel Thiebaut de Schotten
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodegeneratives-UMR 5293 CNRS CEA University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory Sorbonne Universities Paris, France
| | - Igor Sibon
- Department of Neurology, University Hospital, Bordeaux, France
| | - Hugues Chabriat
- Department of Neurology, Lariboisière Hospital, and INSERM NeuroDiderot UMR 1141, Paris, France
| | - Martine Roussel
- Departments of Neurology, Amiens University Hospital, France
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
10
|
Tang Q, Sun Y, Hu C, Wang Q, Jin J. Dual-Task (Cognitive Plus Sucking) Training for Stroke Patients: A Randomized Controlled Study. Percept Mot Skills 2025:315125251323418. [PMID: 39999191 DOI: 10.1177/00315125251323418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Our aim in this study was to determine the effect of applying dual-task training of cognitive rehabilitation and sucking activities for stroke patients. We selected 118 stroke patients from the Neurology Department of a class 3, grade A hospital between August 2020 and January 2022; and we randomly assigned them into either a dual-task (DT) training group or a control group. The DT training group received dual-task training of cognition combined with sucking activities based on conventional nursing guidelines; the control group received only conventional neurologic nursing procedures. After a 4-week intervention period, swallowing ability, sucking force, Swallowing Quality-of-Life Questionnaire (SWAL-QOL) scores, and Mini-Mental State Examination (MMSE) scores improved significantly for patients in both groups (p = .010, p < .001, p < .001, p < .001). And the incidence of clinical aspiration pneumonia was much lower in the DT training group than in the control group (p = .024). We concluded that short-term dual-task training of cognition combined with sucking activities effectively improved the sucking force, swallowing abilities, SWAL-QOL, and cognition functions of these stroke patients, with important implications for other stroke patients.
Collapse
Affiliation(s)
- Qiaomin Tang
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Sun
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Hu
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaoni Wang
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jingfen Jin
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Guo SJ, Wang P, Cao LZ, Li HJ. The unity/diversity framework of executive functions: behavioral and neural evidence in older adults. GeroScience 2025:10.1007/s11357-025-01542-8. [PMID: 39890745 DOI: 10.1007/s11357-025-01542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
Executive functions (EFs), encompassing inhibition, shifting, and updating as three fundamental subdomains, are typically characterized by a unity/diversity construct. However, given the dedifferentiation trend observed in aging, it remains controversial whether the construct of EFs in older adults becomes unidimensional or maintains unity/diversity. This study aims to explore and validate the construct of EFs in older adults. At the behavioral level, we conducted confirmatory factor analysis on data from 222 older adults who completed six tasks specifically targeting inhibition, shifting, and updating. One unidimensional model and six unity/diversity models of EFs were evaluated. Our results indicated that the EFs of older adults demonstrated greater congruence with the unity/diversity construct. At neural level, thirty older adults completed three thematically consistent fMRI tasks, targeting three subdomains of EFs respectively. Multivariate pattern analysis showed that rostromedial prefrontal cortex robustly showed similar neural representation across different tasks (unity). Meanwhile, the three EF domains were encoded by distinct global neural representation and the lateral prefrontal cortex play a crucial role in classification (diversity). These findings underscore the unity/diversity framework of EFs in older adults and offer important insights for designing interventions aimed at improving EFs in this population.
Collapse
Affiliation(s)
- Sheng-Ju Guo
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Wang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhi Cao
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hui-Jie Li
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Zhou C, Gao YN, Qiao Q, Yang Z, Zhou WW, Ding JJ, Xu XG, Qin YB, Zhong CC. Efficacy of repetitive transcranial magnetic stimulation in preventing postoperative delirium in elderly patients undergoing major abdominal surgery: A randomized controlled trial. Brain Stimul 2025; 18:52-60. [PMID: 39732191 DOI: 10.1016/j.brs.2024.12.1475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/06/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Postoperative delirium (POD) is a serious complication in elderly patients after major surgery, associated with high morbidity and mortality. Treatment and prevention methods are limited. Repetitive transcranial magnetic stimulation (rTMS) shows potential in enhancing cognitive function and improving consciousness. OBJECTIVE To evaluate whether early postoperative rTMS has a protective effect against POD and to explore its potential mechanisms. METHODS Patients aged 60 years or older, scheduled for major abdominal surgery, were randomly assigned to receive rTMS at 100 % RMT, 10 Hz, with 2000 pulses targeting the DLPFC after extubation in PACU, either as active rTMS(n = 61) or sham rTMS (n = 61). The primary outcome was the incidence of POD during the first 3 postoperative days. RESULTS In the modified intention-to-treat analysis of 122 patients (mean [SD] age, 70.2 [4.1] years; 53.3 % women), POD incidence was lower in the rTMS group (11.5 %) compared to the sham rTMS group (29.5 %) (relative risk, .39; 95 % CI, .18 to .86; P = .01). rTMS patients had higher BDNF (8.47 [2.68] vs. 5.76 [1.42] ng/mL; P < .001) and lower NfL (.05 [.04] vs. .06 [.04] ng/mL; P = .02) levels. Mediation analysis suggests that rTMS may reduce POD by increasing brain-derived neurotrophic factor (z = -3.72, P < .001) rather than decreasing neurofilament light (z = 1.92, P = .06). CONCLUSIONS Immediate postoperative rTMS can reduce the incidence of POD in elderly patients undergoing major abdominal surgery, probably by upregulating brain-derived neurotrophic factor levels.
Collapse
Affiliation(s)
- Can Zhou
- Department of Anesthesiology, The Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ya-Nan Gao
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qiao Qiao
- Department of Anesthesiology, The Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhi Yang
- Department of Anesthesiology, The Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Wei-Wei Zhou
- Department of Anesthesiology, The Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jing-Jing Ding
- Department of Anesthesiology, The Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xing-Guo Xu
- Department of Anesthesiology, The Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yi-Bin Qin
- Department of Anesthesiology, The Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Chao-Chao Zhong
- Department of Anesthesiology, The Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
13
|
Le HT, Honma K, Annaka H, Shunxiang S, Murakami T, Hiraoka T, Nomura T. Effectiveness of Transcranial Magnetic Stimulation on Executive Function, Attention, and Memory in Stroke Patients: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e75194. [PMID: 39759598 PMCID: PMC11700524 DOI: 10.7759/cureus.75194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Transcranial magnetic stimulation (TMS) is an effective intervention for improving cognitive impairment in patients with stroke. However, its effectiveness in the subdomains of cognition is conflicting and not clearly established. This systematic review assessed the efficacy of TMS in improving executive function, attention, and memory in this population. Seven databases, including PubMed, Scopus, Cochrane Library, Cumulated Index in Nursing and Allied Health Literature, NeuroBITE, Physiotherapy Evidence Database, and OTseeker, were searched for indexed literature until July 2024 to identify all randomized controlled trials (RCTs) of this effect in stroke patients. This systematic review was performed by Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and the Handbook of the Cochrane Library and evaluated the quality of evidence using the Risk of Bias 2 tools and grading of recommendations assessment, development, and evaluation (GRADE) systems. Meta-analyses were performed using standardized mean difference (SMD) (Hedge's g) as the effect measure, and subgroups were performed to explore potential outcomes. The research included 13 RCTs involving 496 patients with stroke. The results indicated that TMS could affect executive function (six RCTs with SMD = 0.55; 95% confidence interval, CI = 0.04-1.05) and memory (nine RCTs with SMD = 0.57; 95% CI = 0.25-0.89) in patients with stroke. However, the effectiveness of TMS on attention (five RCTs with SMD = 0.32; 95% CI = -0.1 to 0.75) was not clear. The quality of the results varied between very low and low according to the GRADE approach. In conclusion, TMS may affect executive function and memory, but not attention. The quality of the evidence for the outcomes varied from very low to low owing to heterogeneity and bias; therefore, the results should be considered with caution, and more rigorous evidence is needed.
Collapse
Affiliation(s)
- Ha T Le
- Department of Rehabilitation, Hai Duong Medical Technical University, Hai Duong, VNM
- Graduate School, Niigata University of Health and Welfare, Niigata, JPN
| | - Kenta Honma
- Department of Occupational Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, JPN
| | - Hiroki Annaka
- Department of Occupational Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, JPN
| | - Sun Shunxiang
- Graduate School, Niigata University of Health and Welfare, Niigata, JPN
| | - Tsukasa Murakami
- Department of Occupational Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, JPN
| | - Tamon Hiraoka
- Graduate School, Niigata University of Health and Welfare, Niigata, JPN
| | - Tomonori Nomura
- Department of Occupational Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, JPN
| |
Collapse
|
14
|
Zhang W, Li W, Liu X, Zhao Q, Gao M, Li Z, Lv P, Yin Y. Examining the effectiveness of motor imagery combined with non-invasive brain stimulation for upper limb recovery in stroke patients: a systematic review and meta-analysis of randomized clinical trials. J Neuroeng Rehabil 2024; 21:209. [PMID: 39616389 PMCID: PMC11607983 DOI: 10.1186/s12984-024-01491-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) are common non-invasive brain stimulation (NIBS) methods for functional recovery after stroke. Motor imagery (MI) can be used in the rehabilitation of limb motor function after stroke, but its effectiveness remains to be rigorously established. Furthermore, there is a growing interest in the combined application of NIBS with MI, yet the evidence regarding its impact on the recovery of upper limb function after stroke is inconclusive. This meta-analysis aimed to demonstrate whether combining the two is superior to NIBS alone or MI alone to provide a reference for clinical decision-making. METHODS PubMed, EMBASE, Cochrane Library, Web of Science, Science Direct, CNKI, WANFANG, and VIP databases were searched for randomized controlled trials on the effects of MI combined NIBS in motor function recovery after stroke until February 2024. The outcomes of interest were associated with body functions or structure (impairment) and activity (functional). The primary outcome was assessed with the Fugl-Meyer assessment of the upper extremity (FMA-UE) for motor function of the upper limbs and the modified Barthel Index (MBI) for the ability to perform daily living activities. For secondary outcomes, functional activity level was measured using wolf motor function test (WMFT) and action research arm test (ARAT), and cortical excitability was assessed using cortical latency of motor evoked potential (MEP-CL) and central motor conduction time (CMCT). The methodological quality of the selected studies was evaluated using the evidence‑based Cochrane Collaboration's tool. A meta-analysis was performed to calculate the mean differences (MD) or the standard mean differences (SMD) and 95% confidence intervals (CI) with random-effect models. RESULTS A total of 14 articles, including 886 patients, were reviewed in the meta-analysis. In comparison with MI or NIBS alone, the combined therapy significantly improved the motor function of the upper limbs (MD = 5.43; 95% CI 4.34-6.53; P < 0.00001) and the ability to perform activities of daily living (MD = 11.07; 95% CI 6.33-15.80; P < 0.00001). Subgroup analyses showed an interaction between the stage of stroke, the type of MI, and the type of NIBS with the effect of the combination therapy. CONCLUSION The combination of MI and NIBS may be a promising therapeutic approach to enhance upper limb motor function, functional activity, and activities of daily living after stroke. SYSTEMATIC REGISTRATION PROSPERO registration CRD42023493073.
Collapse
Affiliation(s)
- Wendong Zhang
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Weibo Li
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiaolu Liu
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, 050051, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, 050000, China
| | - Qingqing Zhao
- Shanxi Health Vocational College, Jinzhong, 030619, China
| | - Mingyu Gao
- Graduate School of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zesen Li
- Graduate School of Hebei Medical University, Shijiazhuang, 050000, China
| | - Peiyuan Lv
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, 050051, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, 050000, China
| | - Yu Yin
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, 050051, China.
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, 050000, China.
| |
Collapse
|
15
|
Hu M, Tang Z, Li H, Lei Q, Xu Q, Su J, Huang Y, Chen S, Chen H. Effects of transcranial magnetic stimulation on axonal regeneration in the corticospinal tract of female rats with spinal cord injury. J Neurosci Methods 2024; 411:110267. [PMID: 39191303 DOI: 10.1016/j.jneumeth.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND This study investigates the potential of transcranial magnetic stimulation (TMS) to enhance spinal cord axon regeneration by modulating corticospinal pathways and improving motor nerve function recovery in rats with spinal cord injury (SCI). NEW METHOD TMS is a non-invasive neuromodulation technique that generates a magnetic field to activate neurons in the brain, leading to depolarization and modulation of cortical activity. Initially utilized for brain physiology research, TMS has evolved into a diagnostic and prognostic tool in clinical settings, with increasing interest in its therapeutic applications. However, its potential for treating motor dysfunction in SCI has been underexplored. RESULTS The TMS intervention group exhibited significant improvements compared to the control group across behavioral assessments, neurophysiological measurements, pathological analysis, and immunological markers. COMPARISON WITH EXISTING METHODS Unlike most studies that focus on localized spinal cord injury or muscle treatments, this study leverages the non-invasive, painless, and highly penetrating nature of TMS to focus on the corticospinal tracts, exploring its therapeutic potential for SCI. CONCLUSIONS TMS enhances motor function recovery in rats with SCI by restoring corticospinal pathway integrity and promoting axonal regeneration. These findings highlight TMS as a promising therapeutic option for SCI patients with currently limited treatment alternatives.
Collapse
Affiliation(s)
- Mengxuan Hu
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, PR China
| | - Zewen Tang
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, PR China
| | - Huijun Li
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, PR China; Anqing Medical College, Anqing 246000, PR China
| | - Qian Lei
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, PR China
| | - Qingqin Xu
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, PR China
| | - Junhong Su
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, PR China
| | - Ying Huang
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, PR China
| | - Shi Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, PR China
| | - Hemu Chen
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
16
|
Sahu M, Ambasta RK, Das SR, Mishra MK, Shanker A, Kumar P. Harnessing Brainwave Entrainment: A Non-invasive Strategy To Alleviate Neurological Disorder Symptoms. Ageing Res Rev 2024; 101:102547. [PMID: 39419401 DOI: 10.1016/j.arr.2024.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
From 1990-2019, the burden of neurological disorders varied considerably across countries and regions. Psychiatric disorders, often emerging in early to mid-adulthood, are linked to late-life neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Individuals with conditions such as Major Depressive Disorder, Anxiety Disorder, Schizophrenia, and Bipolar Disorder face up to four times higher risk of developing neurodegenerative disorders. Contrarily, 65 % of those with neurodegenerative conditions experience severe psychiatric symptoms during their illness. Further, the limitation of medical resources continues to make this burden a significant global and local challenge. Therefore, brainwave entrainment provides therapeutic avenues for improving the symptoms of diseases. Brainwaves are rhythmic oscillations produced either spontaneously or in response to stimuli. Key brainwave patterns include gamma, beta, alpha, theta, and delta waves, yet the underlying physiological mechanisms and the brain's ability to shift between these dynamic states remain areas for further exploration. In neurological disorders, brainwaves are often disrupted, a phenomenon termed "oscillopathy". However, distinguishing these impaired oscillations from the natural variability in brainwave activity across different regions and functional states poses significant challenges. Brainwave-mediated therapeutics represents a promising research field aimed at correcting dysfunctional oscillations. Herein, we discuss a range of non-invasive techniques such as non-invasive brain stimulation (NIBS), neurologic music therapy (NMT), gamma stimulation, and somatosensory interventions using light, sound, and visual stimuli. These approaches, with their minimal side effects and cost-effectiveness, offer potential therapeutic benefits. When integrated, they may not only help in delaying disease progression but also contribute to the development of innovative medical devices for neurological care.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, and The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
17
|
Chen M, Zhao G, Peng L. Transcranial Magnetic Stimulation Applications in the Study of Executive Functions: A Review. Brain Behav 2024; 14:e70099. [PMID: 39587403 PMCID: PMC11588589 DOI: 10.1002/brb3.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 11/27/2024] Open
Abstract
PURPOSE Executive functions (EFs) are a set of advanced cognitive functions essential for human survival and behavioral regulation. Understanding neurophysiological mechanisms of EFs as well as exploring methods to enhance them are still challenging problems in cognitive neuroscience. In recent years, transcranial magnetic stimulation (TMS) has been widely used in the field of EF research and has made notable progress. This article aimed to discuss the impact of TMS technology on EF research from both basic and applied research perspectives. METHODS We searched for literature on TMS and EFs published in the last decade (2013-2023) and reviewed how TMS has been applied in the field of EF. FINDINGS We found that the combination of TMS with neuroimaging techniques was helpful in exploring the brain mechanisms of EFs and investigating the executive dysfunctions caused by other neuropsychiatric disorders. Moreover, TMS could be considered as one of the most important techniques to enhance EFs among patient populations, even healthy people, with high safety and credibility. Meanwhile, we discussed the application of TMS in the research of EFs and made suggestions for future research directions. We suggested that a multidisciplinary structure of methods such as epigenetics and endocrinology could be integrated with TMS for investigating deeper in EF domains, and a substantial number of high-quality clinical studies are required to further elucidate the effects of TMS on EFs. CONCLUSIONS TMS holds great promise for gaining insight into investigating the neural mechanisms of EFs and improving executive functions among different populations.
Collapse
Affiliation(s)
- Muyu Chen
- Department of Military Psychology, School of PsychologyArmy Medical UniversityChong‐QingChina
- Department of Medical ServicesXingcheng Sanatorium of PLA Joint Logistics Support ForceHuludaoLiaoningChina
| | - Guang Zhao
- Department of Medical ServicesXingcheng Sanatorium of PLA Joint Logistics Support ForceHuludaoLiaoningChina
| | - Li Peng
- Department of Military Psychology, School of PsychologyArmy Medical UniversityChong‐QingChina
| |
Collapse
|
18
|
Li H, Ma J, Song Z, Tao X, Xing Y, Zhang F. Effects of repetitive transcranial magnetic stimulation on cognitive function and hormone levels in early stroke patients with low thyroid hormone levels. Front Aging Neurosci 2024; 16:1460241. [PMID: 39478695 PMCID: PMC11521933 DOI: 10.3389/fnagi.2024.1460241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Background This study aimed to observe the effects of repetitive transcranial magnetic stimulation (rTMS) on cognitive function and thyroid hormone levels in early older stroke patients with low thyroid hormone levels, and to investigate the correlation between the changes in thyroid hormone levels and the improvements in cognitive function after stroke. Methods Forty older stroke patients who met the inclusion criteria were recruited and randomized into a magnetic-stimulation group (rTMS group) and a sham-stimulation group (Sham group). The rTMS group received low-frequency true stimulation and the Sham group received low-frequency sham stimulation. Patients' cognitive scores, activity of daily living(ADL) scores, and their levels of triiodothyronine (T3), free triiodothyronine (FT3), thyroxin (T4), free thyroxine (FT4), and thyroid stimulating hormone (TSH) were assessed before the intervention, after the 4-week intervention, and after an additional 4 weeks of follow-up; Repeated measurement analysis of variance was used to compare the changes of each index in the two groups at different times and the correlations between patiens' cognitive function scores and their changing hormone levels were subsequently investigated. Results Thirty-one patients were included in this study: 16 patients in rTMS group and 15 patients in the Sham group. Repeated-measures ANOVA showed that patients' T3,FT3 and TSH levels tended to increase at 4-week intervention and at the follow up (p < 0.05), and that the rTMS group had a better effect on improving T3 than the Sham group (Fgroup = 5.319, p = 0.028); The cognitive scale at different time points in both groups showed an upward trend (p < 0.05), and the MoCA, DSF, DSB scores in the rTMS group were statistically higher than those in the Sham group at the end of the 4-week intervention and at the follow-up (p < 0.05); The changes in the levels of T3 before and after 4-week intervention were positively correlated with the changes in the MoCA scores (r = 0.638, p < 0.05). And the difference in T3 level change was positively correlated with the difference in delayed recall, attention and naming score change (r = 0.562, p < 0.05; r = 0.562, p < 0.05; r = 0.531, p < 0.05); and the difference in FT3 level change was positively correlated with the visuospatial and executive function (r = 0.514, p < 0.05). Conclusion Repetitive transcranial magnetic stimulation improved cognitive function and elevated T3 levels in older patients with post-stroke cognitive dysfunction who had low thyroid hormone levels. Within the normal range, increases in T3 levels are positively correlated with changes in cognitive function.
Collapse
Affiliation(s)
- Hong Li
- Department of Rehabilitation Medicine, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Jiang Ma
- Department of Rehabilitation Medicine, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Ziqiang Song
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Xiaolin Tao
- Department of Rehabilitation Medicine, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Yan Xing
- Department of Rehabilitation Nursing, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
Yang Y, Chang W, Ding J, Xu H, Wu X, Ma L, Xu Y. Effects of different modalities of transcranial magnetic stimulation on post-stroke cognitive impairment: a network meta-analysis. Neurol Sci 2024; 45:4399-4416. [PMID: 38600332 DOI: 10.1007/s10072-024-07504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE The study aimed to evaluate, using a network meta-analysis, the effects of different transcranial magnetic stimulation (TMS) modalities on improving cognitive function after stroke. METHODS Computer searches of the Cochrane Library, PubMed, Web of Science, Embass, Google Scholar, CNKI, and Wanfang databases were conducted to collect randomized controlled clinical studies on the use of TMS to improve cognitive function in stroke patients, published from the time of database construction to November 2023. RESULTS A total of 29 studies and 2123 patients were included, comprising five interventions: high-frequency rTMS (HF-rTMS), low-frequency rTMS (LF-rTMS), intermittent theta rhythm stimulation (iTBS), sham stimulation (SS), and conventional rehabilitation therapy (CRT). A reticulated meta-analysis showed that the rankings of different TMS intervention modalities in terms of the Montreal Cognitive Assessment (MoCA) scores, Mini-Mental State Examination scores (MMSE), and Modified Barthel Index (MBI) scores were: HF-rTMS > LF-rTMS > iTBS > SS > CRT; the rankings of different TMS intervention modalities in terms of the event-related potential P300. amplitude scores were HF-rTMS > LF-rTMS > iTBS > CRT > SS; the rankings of different TMS intervention modalities in terms of the P300 latency scores were: iTBS > HF-rTMS > LF-rTMS > SS > CRT. Subgroup analyses of secondary outcome indicators showed that HF-rTMS significantly improved Rivermead Behavior Memory Test scores and Functional Independence Measurement-Cognitive scores. CONCLUSIONS High-frequency TMS stimulation has a better overall effect on improving cognitive functions and activities of daily living, such as attention and memory in stroke patients.
Collapse
Affiliation(s)
- Yulin Yang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wanpeng Chang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiangtao Ding
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongli Xu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Wu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lihong Ma
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yanwen Xu
- Ergonomics and Vocational Rehabilitation Lab, College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Rehabilitation Medicine, Wuxi , 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
20
|
Li XY, Hu R, Lou TX, Liu Y, Ding L. Global research trends in transcranial magnetic stimulation for stroke (1994-2023): promising, yet requiring further practice. Front Neurol 2024; 15:1424545. [PMID: 39268062 PMCID: PMC11390666 DOI: 10.3389/fneur.2024.1424545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background Scholars have been committed to investigating stroke rehabilitation strategies over many years. Since its invention, transcranial magnetic stimulation (TMS) has been increasingly employed in contemporary stroke rehabilitation research. Evidence has shown the significant potential of TMS in stroke research and treatment. Objective This article reviews the research conducted on the use of TMS in stroke from 1994 to 2023. This study applied bibliometric analysis to delineate the current research landscape and to anticipate future research hotspots. Method The study utilized the Web of Science Core Collection to retrieve and acquire literature data. Various software tools, including VOSviewer (version 1.6.19), CiteSpace (version 6.3.R1), Scimago Graphica (version 1.0.36), and WPS (version 11572), were used for data analysis and visualization. The review included analyses of countries, institutions, authors, journals, articles, and keywords. Results A total of 3,425 articles were collected. The top three countries in terms of publication output were the United States (953 articles), China (546 articles), and Germany (424 articles). The United States also had the highest citation counts (56,764 citations), followed by Germany (35,211 citations) and the United Kingdom (32,383 citations). The top three institutions based on the number of publications were Harvard University with 138 articles, the University of Auckland with 81 articles, and University College London with 80 articles. The most prolific authors were Abo, Masahiro with 54 articles, Fregni, Felipe with 53 articles, and Pascual-Leone, Alvaro with 50 articles. The top three journals in terms of article count were Neurorehabilitation and Neural Repair with 139 articles, Clinical Neurophysiology with 128 articles, and Frontiers in Neurology with 110 articles. The most frequently occurring keywords were stroke (1,275 occurrences), transcranial magnetic stimulation (1,119 occurrences), and rehabilitation (420 occurrences). Conclusion The application of TMS in stroke research is rapidly gaining momentum, with the USA leading in publications. Prominent institutions, such as Harvard University and University College London, show potential for collaborative research. The key areas of focus include post-stroke cognitive impairment, aphasia, and dysphagia, which are expected to remain significant hotspots in future research. Future research should involve large-scale, randomized, and controlled trials in these fields. Additionally, identifying more effective combined therapies with rTMS should be a priority.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Rong Hu
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Tian-Xiao Lou
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Yang Liu
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Ling Ding
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| |
Collapse
|
21
|
Zheng B, Chen J, Cao M, Zhang Y, Chen S, Yu H, Liang K. The effect of intermittent theta burst stimulation for cognitive dysfunction: a meta-analysis. Brain Inj 2024; 38:675-686. [PMID: 38651344 DOI: 10.1080/02699052.2024.2344087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Growing evidence suggests that cognitive dysfunction significantly impacts patients' quality of life. Intermittent theta burst stimulation (iTBS) has emerged as a potential intervention for cognitive dysfunction. However, consensus on the iTBS protocol for cognitive impairment is lacking. METHODS We conducted searches in the Cochrane Central Register of Controlled Trials, EMBASE, PubMed, Chinese National Knowledge Infrastructure, Wanfang Database and the Chongqing VIP Chinese Science and Technology Periodical Database from their inception to January 2024. Random-effects meta-analyzes were used to calculate standardized mean differences and 95% confidence intervals. The quality of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation approach. RESULTS Twelve studies involving 506 participants were included in the meta-analysis. The analysis showed a trend toward improvement of total cognitive function, activities of daily living and P300 latency compared to sham stimulation in patients with cognitive dysfunction. Subgroup analysis demonstrated that these effects were restricted to patients with post-stroke cognitive impairment but not Alzheimer's disease or Parkinson's disease. Furthermore, subthreshold stimulation also exhibited a significant improvement. CONCLUSIONS The results suggest that iTBS may improve cognitive function in patients with cognitive dysfunction, although the quality of evidence remains low. Further studies with better methodological quality should explore the effects of iTBS on cognitive function.
Collapse
Affiliation(s)
- Beisi Zheng
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianer Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Center for Rehabilitation Assessment and Therapy, Zhejiang Rehabilitation Medical Center, Hangzhou, Zhejiang, China
| | - Manting Cao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yujia Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shishi Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hong Yu
- Department of Center for Rehabilitation Assessment and Therapy, Zhejiang Rehabilitation Medical Center, Hangzhou, Zhejiang, China
| | - Kang Liang
- The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Neurorehabilitation Department, Zhejiang Rehabilitation Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Wang X, Ding Q, Li Y, Li T, Li Y, Yin J, Zhuang W. Repetitive transcranial magnetic stimulation impacts the executive function of patients with vascular cognitive impairment: a systematic review and meta-analysis. Front Neurol 2024; 15:1374395. [PMID: 38962482 PMCID: PMC11220282 DOI: 10.3389/fneur.2024.1374395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Objective Executive dysfunction is a core symptom of vascular cognitive impairment (VCI), which seriously affects patients' prognosis. This paper aims to investigate the effectiveness of rTMS on executive function in VCI. Methods The databases selected for this study included Pubmed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, China Science and Technology Journal Database (VIP), and China Biology Medicine Disc (CBM). The screening times were conducted from the time of library construction until August 23, 2023. The inclusion criteria for this meta-analysis were randomized controlled trials (RCTs) on rTMS for VCI, which include executive function scores. The primary metrics were executive subscale scores of the Cognitive Comprehensive Scale and total scores of the Executive Specificity Scale. The secondary metrics were subscale scores of the Executive Specificity Scale. The quality of each eligible study was assessed using the Cochrane Risk of Bias tool. Meta-analysis and bias analysis were performed using Stata (version 16.0) and RevMan (version 5.3). Results A total of 20 high-quality clinical RCTs with 1,049 samples were included in this paper. The findings from the primary outcomes revealed that within the rTMS group, there were significantly higher scores observed for the executive sub-item on the cognitive composite scale (SMD = 0.93, 95% CI = 0.77-1.08, p < 0.00001, I 2 = 14%) and the total score on the executive specific scale (SMD = 0.69, 95% CI = 0.44-0.94, p < 0.00001, I 2 = 0%) compared to the control group. As for the secondary outcome measures, as shown by the Trail Making Test-A (time) (MD = -35.75, 95% CI = -68.37 to -3.12, p = 0.03, I 2 = 55%), the Stroop-C card (time) (SMD = -0.46, 95% CI = -0.86 to -0.06, p = 0.02, I 2 = 0%) and the Stroop-C card (correct number) (SMD = 0.49, 95% CI = 0.04-0.94, p = 0.03, I 2 = 0%), the experimental group shorts time and enhances accuracy of executive task in comparison to the control group. Subgroup analysis of the main outcome demonstrated that intermittent theta burst stimulation (iTBS), higher frequency, lower intensity, longer duration, and combined comprehensive therapy exhibited superior efficacy. Conclusion rTMS is effective in the treatment of the executive function of VCI. The present study has some limitations, so multi-center, large-sample, objective indicators and parameters are needed to further explore in the future.Systematic review registration:https://www.crd.york.ac.uk/prospero/, CRD42023459669.
Collapse
Affiliation(s)
- Xu Wang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qixin Ding
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuefang Li
- School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Tianshu Li
- Department of Rehabilitation Medicine, The First People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Yakun Li
- Department of Rehabilitation, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jialin Yin
- Department of Rehabilitation, Henan Provincial People's Hospital, Zhengzhou, China
| | - Weisheng Zhuang
- Department of Rehabilitation, School of Rehabilitation Medicine, Henan Provincial People's Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
23
|
Sloane KL, Hamilton RH. Transcranial Direct Current Stimulation to Ameliorate Post-Stroke Cognitive Impairment. Brain Sci 2024; 14:614. [PMID: 38928614 PMCID: PMC11202055 DOI: 10.3390/brainsci14060614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Post-stroke cognitive impairment is a common and disabling condition with few effective therapeutic options. After stroke, neural reorganization and other neuroplastic processes occur in response to ischemic injury, which can result in clinical improvement through spontaneous recovery. Neuromodulation through transcranial direct current stimulation (tDCS) is a promising intervention to augment underlying neuroplasticity in order to improve cognitive function. This form of neuromodulation leverages mechanisms of neuroplasticity post-stroke to optimize neural reorganization and improve function. In this review, we summarize the current state of cognitive neurorehabilitation post-stroke, the practical features of tDCS, its uses in stroke-related cognitive impairment across cognitive domains, and special considerations for the use of tDCS in the post-stroke patient population.
Collapse
Affiliation(s)
- Kelly L. Sloane
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy H. Hamilton
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Chauhan P, Das SK, Shahanawaz SD. The Simultaneous Application of Transcranial Magnetic Stimulation and Virtual Reality to Treat Cognitive Deficits Among Stroke Patients: A Randomized Controlled Trial. Cureus 2024; 16:e62434. [PMID: 39011230 PMCID: PMC11249079 DOI: 10.7759/cureus.62434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Background and objective Integrating virtual reality (VR) and transcranial magnetic stimulation (TMS) offers a promising strategy for stroke rehabilitation, as it specifically focuses on reorganizing neural connections and activating brain activity in the cortex. The main goal is to create equitable connections between the brain's two hemispheres to enhance the execution of voluntary movements by stimulating the central executive network (CEN) to strengthen both motor and cognitive abilities. This study aims to propose a therapeutic approach that can improve cognitive recovery and overall quality of life in patients after a stroke. Methods A total of 69 participants were enrolled in the study based on certain inclusion and exclusion criteria. The patients underwent pre-assessment and were randomly allocated into three groups: Group 1 received simultaneous repetitive TMS (rTMS) and virtual reality treatment (VRT), Group 2 received rTMS combined with sham VRT, and Group 3 received sham stimulation with VRT, in a 1:1:1 ratio using opaque, sealed, and stapled envelopes (SNOSE). Post-assessment was carried out using the same measures: the National Institutes of Health Stroke Scale (NIHSS), Addenbrooke's Cognitive Test (ACE III), and Montreal Cognitive Assessment (MOCA). Statistical analysis was conducted to determine the specific outcomes. Data analysis was carried out using IBM SPSS Statistics version 29 (IBM Corp., Armonk, NY), employing student's t-test for within-group comparisons and repeated measures ANOVA for between-group comparisons. The significance level was set at 5%. Results The results demonstrated statistical significance in NIHSS scores across all treatment groups (p<0.001). Regarding cognitive outcomes, improvements were observed in memory, language, and overall cognitive performance (ACE III) within all groups (p<0.05), with significant between-group outcomes (p = 0.009, p = 0.01, p = 0.004, respectively), suggesting variations in treatment effects across cognitive domains. However, no significant differences between groups were found in terms of fluency and visuospatial skills (p = 0.49, p = 0.13), indicating no treatment effects in these domains. Conclusions Based on our findings, the combined intervention involving rTMS and VRT, compared to sham treatments, demonstrates promising outcomes in alleviating stroke severity and improving specific cognitive functions such as memory, language, and overall cognitive performance. Additionally, the combined administration offers a more effective therapy than when they are administered separately.
Collapse
Affiliation(s)
- Priya Chauhan
- Department of Physiotherapy, Amity Institute of Health Allied Sciences, Noida, IND
| | - Sanjib K Das
- Department of Physiotherapy, Amity Institute of Health Allied Sciences, Noida, IND
| | - S D Shahanawaz
- Department of Physiotherapy, College of Applied Medical Sciences, University of Hail, Hail, SAU
| |
Collapse
|
25
|
Zhang L, Gao S, Wang C, Li Y, Yuan H, Cao L, Gao C. Efficacy of repetitive transcranial magnetic stimulation in post-stroke cognitive impairment: an overview of systematic reviews. Front Neurol 2024; 15:1378731. [PMID: 38715694 PMCID: PMC11075487 DOI: 10.3389/fneur.2024.1378731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 01/03/2025] Open
Abstract
OBJECTIVE The reliability of clinical evidence depends on high-quality meta-analyses/ systematic reviews (MAs/SRs). However, there has been no assessment of the quality of MAs/SRs for repetitive transcranial magnetic stimulation (rTMS) in post-stroke cognitive impairment (PSCI), both nationally and internationally. This article seeks to use radar plotting to visually present the quality of MAs/SRs on rTMS for improving cognitive function in PSCI, aiming to offer an intuitive foundation for clinical research. METHODS Eight Chinese or English databases were systematically searched to collect comprehensive literature, and the retrieval time ranged from inception to 26 March 2024. Literature ranking was calculated using six dimensions: publication year, design type, AMSTAR-2 score, PRISMA score, publication bias, and homogeneity. Finally, radar plots were drafted to present a multivariate literature evaluation. The GRADE tool assessed the strength of evidence for the outcome indicators included in the MAs/SRs. RESULTS The 17 articles included had average scores of 12.29, 17, 9.88, 9.71, 12.88, and 12.76 for each dimension. The radar plot showed that an article published in 2023 had the highest rank and a large radar plot area, while an article published in 2021 had the lowest rank and a small radar plot area. The GRADE tool evaluation revealed that 51 pieces of evidence were of very low quality, 67 were of low quality, 12 were of moderate quality, and only one was of high quality. CONCLUSION The average rank score of literature ranged from 8.50 to 17, with higher rankings indicating greater significance in literature reference. Variations in literature quality were attributed to inadequate study planning, irregular literature search and screening, insufficient description of inclusion criteria for studies, and inadequate consideration of bias risk in the included studies. Most MAs/SRs indicated that rTMS was more effective than the control group in enhancing the global cognitive function and activities of daily living in PSCI patients. However, the overall quality of the literature was generally low and needs validation from future high-quality evidence.Systematic review registration:https://www.crd.york.ac.uk/prospero/, identifier CRD42023491280.
Collapse
Affiliation(s)
- Linli Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
- Department of Rehabilitation Medicine, Haibin People’s Hospital of Tianjin Binhai Newarea, Tianjin, China
| | - Shan Gao
- Department of Rehabilitation Medicine, Haibin People’s Hospital of Tianjin Binhai Newarea, Tianjin, China
| | - Chengshuo Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Yuanyuan Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Huateng Yuan
- Department of Rehabilitation Medicine, Haibin People’s Hospital of Tianjin Binhai Newarea, Tianjin, China
| | - Longjun Cao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Chong Gao
- Department of Rehabilitation Medicine, Haibin People’s Hospital of Tianjin Binhai Newarea, Tianjin, China
| |
Collapse
|
26
|
Chen H, Wang X, Zhang J, Xie D. Effect of high-frequency repetitive transcranial magnetic stimulation on cognitive impairment in WD patients based on inverse probability weighting of propensity scores. Front Neurosci 2024; 18:1375234. [PMID: 38660222 PMCID: PMC11039870 DOI: 10.3389/fnins.2024.1375234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Background Hepatolenticular degeneration [Wilson disease (WD)] is an autosomal recessive metabolic disease characterized by copper metabolism disorder. Cognitive impairment is a key neuropsychiatric symptom of WD. At present, there is no effective treatment for WD-related cognitive impairment. Methods In this study, high-frequency repetitive transcranial magnetic stimulation (rTMS) was used to treat WD-related cognitive impairment, and inverse probability weighting of propensity scores was used to correct for confounding factors. The Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Auditory Verbal Learning Test (AVLT), Boston Naming Test (BNT), Clock Drawing Test (CDT) and Trail Making Test (TMT) were used to evaluate overall cognition and specific cognitive domains. Results The MMSE, MoCA and CDT scores after treatment were significantly different from those before treatment (MMSE: before adjustment: OR = 1.404, 95% CI: 1.271-1.537; after adjustment: OR = 1.381, 95% CI: 1.265-1.497, p < 0.001; MoCA: before adjustment: OR = 1.306, 95% CI: 1.122-1.490; after adjustment: OR = 1.286, 95% CI: 1.104; AVLT: OR = 1.161, 95% CI: 1.074-1.248; after adjustment: OR = 1.145, 95% CI: 1.068-1.222, p < 0.05; CDT: OR = 1.524, 95% CI: 1.303-1.745; after adjustment: OR = 1.518, 95% CI: 1.294-1.742, p < 0.001). The BNT and TMT scores after adjustment were not significantly different from those before adjustment (BNT: before adjustment: OR = 1.048, 95% CI: 0.877-1.219; after adjustment: OR = 1.026, 95% CI: 0.863-1.189, p > 0.05; TMT: before adjustment: OR = 0.816, 95% CI: 1.122-1.490; after adjustment: OR = 0.791, 95% CI: 0.406-1.176, p > 0.05). Conclusion High-frequency rTMS can effectively improve cognitive impairment, especially memory and visuospatial ability, in WD patients. The incidence of side effects is low, and the safety is good.
Collapse
Affiliation(s)
- Hong Chen
- The First Clinical Mdical College of Anhui University of Chinese Medicine, Hefei, China
| | - Xie Wang
- The First Clinical Mdical College of Anhui University of Chinese Medicine, Hefei, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Daojun Xie
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
27
|
Cai M, Zhang JL, Wang XJ, Cai KR, Li SY, Du XL, Wang LY, Yang RY, Han J, Hu JY, Lyu J. Clinical application of repetitive transcranial magnetic stimulation in improving functional impairments post-stroke: review of the current evidence and potential challenges. Neurol Sci 2024; 45:1419-1428. [PMID: 38102519 DOI: 10.1007/s10072-023-07217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
In recent years, the stroke incidence has been increasing year by year, and the related sequelae after stroke, such as cognitive impairment, motor dysfunction, and post-stroke depression, seriously affect the patient's rehabilitation and daily activities. Repetitive transcranial magnetic stimulation (rTMS), as a safe, non-invasive, and effective new rehabilitation method, has been widely recognized in clinical practice. This article reviews the application and research progress of rTMS in treating different functional impairments (cognitive impairment, motor dysfunction, unilateral spatial neglect, depression) after stroke in recent years, and preliminary summarized the possible mechanisms. It has been found that the key parameters that determine the effectiveness of rTMS in improving post-stroke functional impairments include pulse number, stimulated brain areas, stimulation intensity and frequency, as well as duration. Generally, high-frequency stimulation is used to excite the ipsilateral cerebral cortex, while low-frequency stimulation is used to inhibit the contralateral cerebral cortex, thus achieving a balance of excitability between the two hemispheres. However, the specific mechanisms and the optimal stimulation mode for different functional impairments have not yet reached a consistent conclusion, and more research is needed to explore and clarify the best way to use rTMS. Furthermore, we will identify the issues and challenges in the current research, explore possible mechanisms to deepen understanding of rTMS, propose future research directions, and offer insightful insights for better clinical applications.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jia-Ling Zhang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiao-Jun Wang
- Medical Research and Education Department, Shanghai Health Rehabilitation Hospital, Shanghai, 201615, China
| | - Ke-Ren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shu-Yao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xin-Lin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li-Yan Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Ruo-Yu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jing-Yun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Jie Lyu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
28
|
Asgarinejad M, Saviz M, Sadjadi SM, Saliminia S, Kakaei A, Esmaeili P, Hammoud A, Ebrahimzadeh E, Soltanian-Zadeh H. Repetitive transcranial magnetic stimulation (rTMS) as a tool for cognitive enhancement in healthy adults: a review study. Med Biol Eng Comput 2024; 62:653-673. [PMID: 38044385 DOI: 10.1007/s11517-023-02968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
As human beings, we have always sought to expand on our abilities, including our cognitive and motor skills. One of the still-underrated tools employed to this end is repetitive transcranial magnetic stimulation (rTMS). Until recently, rTMS was almost exclusively used in studies with rehabilitation purposes. Only a small strand of literature has focused on the application of rTMS on healthy people with the aim of enhancing cognitive abilities such as decision-making, working memory, attention, source memory, cognitive control, learning, computational speed, risk-taking, and impulsive behaviors. It, therefore, seems that the findings in this particular field are the indirect results of rehabilitation research. In this review paper, we have set to investigate such studies and evaluate the rTMS effectuality in terms of how it improves the cognitive skills in healthy subjects. Furthermore, since the most common brain site used for rTMS protocols is the dorsolateral prefrontal cortex (DLPFC), we have added theta burst stimulation (TBS) wave patterns that are similar to brain patterns to increase the effectiveness of this method. The results of this study can help people who have high-risk jobs including firefighters, surgeons, and military officers with their job performance.
Collapse
Affiliation(s)
| | - Marzieh Saviz
- Faculty of Psychology and Education, University of Tehran, Tehran, Iran.
| | - Seyyed Mostafa Sadjadi
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sarah Saliminia
- Biomedical Engineering Department, School of Electrical Engineering, Payame Noor University of North Tehran, Tehran, Iran
| | - Amineh Kakaei
- Department of Clinical Psychology, School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Peyman Esmaeili
- Department of Health, Safety and Environment, Shahid Beheshti Medical University, Tehran, Iran
| | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia
| | - Elias Ebrahimzadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
29
|
Hu G, Zhang L, Sun X, Wang L, Xu Q, Li Q, Huang W, Xiao Y. Effect of high-frequency (5Hz) rTMS stimulating left DLPFC combined with galantamine on cognitive impairment after ischemic stroke and serum homocysteine and neuron-specific enolase. Front Neurol 2024; 15:1345832. [PMID: 38481943 PMCID: PMC10933098 DOI: 10.3389/fneur.2024.1345832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 01/03/2025] Open
Abstract
OBJECTIVE To investigate the efficacy of high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) combined with galantamine in patients with cognitive impairment after stroke and its effect on serum homocysteine (Hcy) and neuron-specific enolase (NSE) levels. METHODS A total of 90 patients with cognitive impairment after the first ischemic stroke were enrolled. They were randomly divided into rTMS+ cognitive rehabilitation group, Galantamine + cognitive rehabilitation group, and rTMS+ Galantamine + cognitive rehabilitation group. All groups received routine medical treatment and limb rehabilitation treatment. The rTMS stimulation site was the left dorsolateral prefrontal cortex (left DLPFC), the magnetic stimulation frequency was 5 Hz, the magnetic stimulation intensity was 80% of the motor threshold level, and 3,000 pulses were given every day. The Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Fugl-Meyer scale, and modified Barthel index, as well as rehabilitation scale and serum NSE and Hcy were evaluated before and after treatment (after 4 weeks). RESULTS After 4 weeks of treatment, the scores of MMSE, MoCa scale, Fugl-Meyer scale, and modified Barthel index in the three groups were significantly higher than those before treatment (all p < 0.05), while the serum NSE and Hcy levels of the three groups were decreased. rTMS+ Galantamine + cognitive rehabilitation group had higher scale scores, and the difference between the three groups was statistically significant compared with the other two groups (all p < 0.05). CONCLUSION Cognitive rehabilitation combined with HF-rTMS and galantamine could improve the cognitive function of patients to the greatest extent, promote the recovery of physical activity, improve the self-care ability of daily life, and effectively reduce the serum HCY and NSE levels in patients with cognitive impairment after stroke. No randomized controlled trials of similar combination treatments have been reported. The better therapeutic effect may be related to the fact that galantamine combined with repetitive transcranial magnetism can activate the brain cholinergic system more extensively, promote brain neural remodeling through long-term potentiation and inhibit local neuroinflammatory responses in brain injury.
Collapse
Affiliation(s)
| | | | - Xiuli Sun
- Department of Geriatric Rehabilitation, Shanghai Second Rehabilitation Hospital, Shanghai, China
| | - Lin Wang
- Department of Geriatric Rehabilitation, Shanghai Second Rehabilitation Hospital, Shanghai, China
| | | | | | | | | |
Collapse
|
30
|
Liu G, Xue B, Guan Y, Luo X. Effects of repetitive transcranial magnetic stimulation combined with cognitive training on cognitive function in patients with Alzheimer's disease: a systematic review and meta-analysis. Front Aging Neurosci 2024; 15:1254523. [PMID: 38332809 PMCID: PMC10851271 DOI: 10.3389/fnagi.2023.1254523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024] Open
Abstract
Purpose To evaluate the effect of repetitive transcranial magnetic stimulation (rTMS) paired with cognitive training on cognitive function in Alzheimer's Disease (AD) patients. Methods PubMed, The Cochrane Library, Embase, CINAHL Complete (EBSCO), China National Knowledge Infrastructure (CNKI) and WanFang Database were searched. The risk of bias was appraised through the Cochrane collaboration tool. A meta-analysis was conducted, including an assessment of heterogeneity. Results Ten studies comprising 408 participants were included. The addition of rTMS significantly improved overall cognition in patients compared with cognitive intervention alone (p < 0.05 for all tests). The treatment also had some continuity, with significant improvements in cognitive function within weeks after the treatment ended (p < 0.05 for all tests). Conclusion Repetitive transcranial magnetic stimulation combined with cognitive training (rTMS-CT) is a valuable technique for the cognitive rehabilitation of AD patients. It is beneficial to improve the cognitive ability of patients and restore their overall functional state. The results of the study may provide a basis for clinical providers to implement interventions that facilitate the design of more rigorous and high-quality interventions. Limitations The number of studies and sample size in our study were small. We did not explore possible interactions between rTMS and medications and mood improvement after rTMS due to inadequate data. Systematic review registration This study was registered on PROSPERO with registration number CRD42023405615.
Collapse
Affiliation(s)
- Gaotian Liu
- Wuhan University School of Nursing, Wuhan, China
| | - Bing Xue
- Wuhan University School of Nursing, Wuhan, China
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yafei Guan
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianwu Luo
- Wuhan University School of Nursing, Wuhan, China
| |
Collapse
|
31
|
Li K, Mo D, Yu Q, Feng R, Li Y. Effect of Repetitive Transcranial Magnetic Stimulation on Post-Stroke Comorbid Cognitive Impairment and Depression: A Randomized Controlled Trial. J Alzheimers Dis 2024; 101:337-352. [PMID: 39177600 DOI: 10.3233/jad-240505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Background There are currently no uniform treatments for post-stroke comorbid cognitive impairment and depression (PSCCID). Objective To verify whether repetitive transcranial magnetic stimulation (rTMS) can improve PSCCID symptoms and explore the underlying roles of resting-state functional magnetic resonance imaging (rs-fMRI). Methods Thirty PSCCID patients were randomized in a 1 : 1 ratio to receive 4 weeks of rTMS (intervention group) or sham rTMS (control group) over the left dorsolateral prefrontal cortex (DLPFC). rs-fMRI was acquired to analyze the functional plasticity of brain regions at baseline and immediately after the last intervention. Results Cognition, depression status, and neural electrophysiology were improved in both intervention and control groups after treatment (p = 0.015-0.042), and the intervention group had more significant improvement than the control group. Analysis of functional connectivities (FCs) within the default mood network (DMN) showed that the connection strength of the left temporal pole/left parahippocampal cortex and right lateral temporal cortex/right retrosplenial cortex in the intervention group were enhanced compared with its pre-intervention and that in the control group after treatment (p < 0.05), and the both FC values were positively correlated with MMSE scores (p < 0.001). The intervention group had stronger FCs within the DMN compared with the control group after treatment, and some of the enhanced FCs were correlated with the P300 latency and amplitude. Conclusions rTMS over the left DLPFC is an effective treatment for improving both cognitive impairment and depression among patients with PSCCID. The enhanced FCs within the DMN may serve as a compensatory functional recombination to promote clinical recovery.
Collapse
Affiliation(s)
- Kuide Li
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Mo
- Department of Rehabilitation Medicine, the People's Hospital of Zhongjiang, Deyang, China
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongjian Feng
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yamei Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|