1
|
Wang L, Wang LX, Li MY, Zhang R, Zhou GH. Clinical characterization of CCT2 and its role in autophagy regulation during age-related macular degeneration. Sci Rep 2025; 15:16849. [PMID: 40374738 DOI: 10.1038/s41598-025-01907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 05/09/2025] [Indexed: 05/18/2025] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly, and the role of chaperonin containing TCP1 subunit 2 (CCT2) remains unclear. This study aims to elucidate the mechanistic link between CCT2 and AMD, contributing to improved understanding and potential therapeutic strategies. Retinal and RPE-Choroid transcriptome array data from 130 AMD patients and 121 normal donors (GSE29801 dataset) were reanalyzed to assess CCT2 expression across different AMD subtypes, age groups, and genders. Single-sample gene set enrichment analysis was performed to explore correlations with autophagy-related genes and other established AMD causes. Additionally, CCT2 expression was validated in sodium iodate (NaIO₃)-induced 661 W cells (photoreceptor-like cells) using quantitative real-time PCR (qRT-PCR). CCT2 was significantly enriched in advanced AMD retinas compared to intermediate stages in retina (both macular and extramacular) and early stages in extramacular retina (p < 0.05). NaIO3-treated 661 W cells exhibited a similar expression trend, confirming transcriptomic findings. CCT2 is significantly upregulated in advanced AMD and may contribute to drusen degradation. It shows potential as both a biomarker and an independent diagnostic indicator, particularly for advanced-stage AMD.
Collapse
Affiliation(s)
- Lin Wang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Ling-Xiao Wang
- Department of Colorectal and Anal Surgery, Shanxi Provincial People's Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, 030001, China
| | - Mu-Ye Li
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Rong Zhang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Guo-Hong Zhou
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China.
| |
Collapse
|
2
|
Zhang Y, Xu X. Effects of miR-21/NLRP3 on Blue Light-Induced Retinal Neurodegeneration in Mice. Curr Eye Res 2025; 50:295-303. [PMID: 39660500 DOI: 10.1080/02713683.2024.2419684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024]
Abstract
PURPOSE Age-related macular degeneration (AMD) is a chronic retinal disease that can lead to blindness. While the NLR family pyrin domain containing 3 (NLRP3) inflammasome is implicated in AMD, the specific roles of miR-21 and NLRP3 in AMD-related inflammation remain unclear. Therefore, this study aimed to investigate the roles of miR-21 and NLRP3 in blue light-induced neurodegeneration in the mouse retina. METHODS A mouse model of retinal light damage was established through three months of blue light exposure (BLE). The experimental groups comprised the Control (Ctrl), BLE, BLE + miR-nc, and BLE + miR-21 inhibitor groups. The microRNAs were administered via intravitreal injections once per week. After successful modeling, changes in visual function and retinal morphology were investigated by using electroretinography and hematoxylin and eosin staining, respectively. Photoreceptor apoptosis was assessed using the TdT-mediated dUTP nick-end labeling assay. Immunofluorescence was used to detect and locate microglia and NLRP3 expression in the mouse retina. The expression of miR-21, NLRP3, and downstream factors in the retinas of each group was measured using qRT-PCR and western blotting. RESULTS In the BLE and BLE + miR-nc groups, there was a decrease in visual function and retinal thickness, an increase in retinal ganglion cell injury and photoreceptor cell apoptosis, and elevated microglia activity in the retina, as evidenced by their migration to the outer retinal layer. In addition, the expression of miR-21, NLRP3, and downstream factors was increased in the BLE and BLE + miR-nc groups compared to that in the control group. However, intravitreal injection of the miR-21 inhibitor reduced miR-21 expression in the retina and significantly inhibited the activation of the NLRP3 inflammasome, effectively alleviating retinal photodamage caused by BLE. CONCLUSIONS This study indicates that miR-21 may mitigate blue-light-induced retinal neurodegeneration by reducing the activation of the NLRP3 inflammasome in the mouse retina.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ophthalmology, Changzhou First People's Hospital, Changzhou, China
| | - Xingzhao Xu
- Department of Ophthalmology, Changzhou First People's Hospital, Changzhou, China
| |
Collapse
|
3
|
Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis 2025:AD.2024.0922. [PMID: 39812546 DOI: 10.14336/ad.2024.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature. A comprehensive understanding of these processes may lead to innovative treatment strategies that could significantly improve the management of age-related vascular diseases. Emerging therapeutic approaches, including cytokine inhibitors, senolytics, and specialized pro-resolving mediators, aim to counteract inflammaging and restore vascular health. This review seeks to provide an in-depth exploration of the molecular pathways underlying vascular inflammaging and highlight potential therapeutic interventions.
Collapse
|
4
|
Pei H, He Z, Du R, Yang Y, Wu S, Li W, Sheng J, Han C. Polypeptide-PNP2 in Corn Cervi Pantotrichum Ameliorates Cognitive Impairment in Alzheimer's Disease Mice by Inhibiting Microglial Cell Activation. Mol Neurobiol 2025; 62:583-590. [PMID: 38884701 DOI: 10.1007/s12035-024-04300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
We isolated a polypeptide PNP2 from Corn Cervi Pantotrichum and investigated its effect and mechanism on cognitive impairment in Alzheimer's disease (AD) mice. Morris water maze was used to assess the degree of cognitive impairment in mice. Histopathological changes were detected by H&E staining; the expressions of inflammatory cytokines were assayed by ELISA. Western blotting was employed to detect the protein expressions. PNP2 could improve cognitive impairment, central inflammatory response, and NLRP3 signaling in AD mice. In vitro experiments revealed that PNP2 could suppress the inflammatory response of microglial cells and reduce the activation of NLRP3 in microglial cells, while MCC950 could antagonize the effects of PNP2. Polypeptide component PNP2 in Corn Cervi Pantotrichum can ameliorate central nervous inflammation and cognitive impairment in AD mice by suppressing NLRP3 signaling.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zhongmie He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yi Yang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Shasha Wu
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenyan Li
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jian Sheng
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Chenyang Han
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
5
|
Li M, Xu Q, Fan Q, Li H, Zhang Y, Jiang F, Qu Y. Small molecule SIRT1 activators counteract oxidative stress-induced inflammasome activation and nucleolar stress in retinal degeneration. Int Immunopharmacol 2024; 142:113167. [PMID: 39303543 DOI: 10.1016/j.intimp.2024.113167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The nicotinamide adenosine dinucleotide-dependent deacetylase Sirtuin 1 (SIRT1) has been identified as a protective factor that inhibits the activation of nucleotide-binding and oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome. However, whether pharmacological SIRT1 activators can protect retinal pigment epithelial (RPE) cells against oxidative and inflammatory injuries related to age-related macular degeneration remains to be explored. METHODS Two small molecule specific SIRT1 activators (SRT2104 and CAY10602) were tested, with resveratrol being used as a positive control. Mouse models with sodium iodate-induced retinal degeneration were constructed. ARPE-19 cells in culture were used for in vitro experiments. The effects of SIRT1 activators on H2O2-induced ARPE-19 cell injury were determined by reactive oxygen species quantification, western blotting, flow cytometry and immunofluorescence staining. In vivo, the severity of retinal damage was assessed using flash electroretinography and histopathological analysis. RESULTS In vitro, SRT2104, CAY10602 and resveratrol significantly attenuated H2O2-induced cell death, nucleolar stress response, and reactive oxygen species accumulation. In H2O2-stimulated cells, SIRT1 activators reduced the level of NLRP3, inhibited the activation of caspase-1, and decreased the production of interleukin (IL)-1β and IL-18. The inhibitory effects of SIRT1 activators on caspase-1 activation and IL-1β production were blunted by SIRT1 gene silencing. In vivo, treatment with SRT2104 or CAY10602 in mice with sodium iodate-induced retinal degeneration markedly improved the retinal functions and reduced the loss of RPE cells. CONCLUSION Our study suggests that small molecule SIRT1 activators are effective for protection of RPE cells against oxidative stress-induced NLRP3 inflammasome activation, highlighting potential applications in the treatment of macular degeneration associated RPE dysfunctions.
Collapse
Affiliation(s)
- Mengyao Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Qian Xu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Qian Fan
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Haiming Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Yu Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Fan Jiang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China.
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China.
| |
Collapse
|
6
|
Hu J, Yao Y, Ge T, Wang S, Liu S, Zhu Q, Song X, Jia R, Zhuang A. Ultra-processed foods consumption and risk of age-related eye diseases: a prospective cohort study with UK biobank. Eur J Nutr 2024; 63:3175-3186. [PMID: 39302424 DOI: 10.1007/s00394-024-03498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/05/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Consumption of ultra-processed foods (UPF) has been associated with increased risks of various age-related diseases. However, the potential association between UPF consumption and age-related eye diseases (AREDs) remains unclear. We aim to assess the associations between consumption of UPF and risk of AREDs including age-related macular degeneration (AMD), cataract and glaucoma. METHODS We included 156,232 individuals aged 50 or older, who were free from AREDs from UK biobank study. Dietary intake data were collected using 24-h dietary assessments. UPF is defined according to the NOVA classification, and all participants are divided into four quartiles based on the weight proportion (%) of UPF. During a median of 10 years of follow-up. Cox proportional hazards were used to estimate the association between the proportion of UPF in the diet and the subsequent risk of various AREDs. RESULTS After adjusting for multiple variables, individuals in the highest quartiles for UPF consumption exhibited an increased risk of AMD (hazard ratio (HR): 1.28; 95% confidence interval (CI): 1.01-1.63; p = 0.03), cataract (HR: 1.10; 95% CI: 1.01-1.20; p = 0.04), and glaucoma (HR: 1.27; 95% CI: 0.98-1.63; p = 0.06) compared to those in the lowest quartiles. Moreover, a 10% increase in the weight of UPF in diet was associated with an 8% higher risk of AMD (HR: 1.08; 95% CI: 1.01-1.15; p = 0.03), a 3% higher risk of cataract (HR: 1.03; 95% CI: 1.00-1.06; p = 0.04), and a 7% higher risk of glaucoma (HR: 1.07; 95% CI: 1.00-1.15; p = 0.05). CONCLUSION Our results suggest that a higher proportion of UPF in the diet was significantly link with an elevated risk of AMD and cataract. While additional research is necessary to validate these findings in diverse populations and settings, these results offer initial evidence to endorse public health initiatives that encourage limiting consumption of UPF.
Collapse
Affiliation(s)
- Jianping Hu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yiran Yao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tongxin Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shaoyun Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shuyu Liu
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Qiuyi Zhu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xin Song
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
7
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
8
|
Ortega AJ, Daniel S, Renwick M, Kambhampati P, Thompson KN, Collier GE, Baker EL, Zaki H, Hulleman JD. Genetic removal of Nlrp3 protects against sporadic and R345W Efemp1-induced basal laminar deposit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618289. [PMID: 39464028 PMCID: PMC11507711 DOI: 10.1101/2024.10.14.618289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic, unresolved inflammation has long been speculated to serve as an initiating and propagating factor in numerous neurodegenerative diseases, including a leading cause of irreversible blindness in the elderly, age-related macular degeneration (AMD). Intracellular multiprotein complexes called inflammasomes in combination with activated caspases facilitate production of pro-inflammatory cytokines such as interleukin 1 beta. Specifically, the nucleotide-binding oligomerization (NOD)-like receptor protein 3 (NLRP3) has received heightened attention due to the wide range of stimuli to which it can respond and its potential involvement in AMD. In this study, we directly tested the role of Nlrp3 and its downstream effector, caspase 1 (Casp1) in mediating early AMD-like pathology (i.e., basal laminar deposits [BLamDs]) in wild-type (WT) mice and the Malattia Leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD) mouse model (p.R345W mutation in Efemp1). Compared to aged-matched controls, R345W+/+ knockin mice demonstrated increased Muller cell gliosis, subretinal Iba-1+ microglial cells, higher Nlrp3 immunoreactivity in the retina, as well as significant transcriptional upregulation of complement component 3, Nlrp3, pro-Il1b, pro-caspase-1, and tissue inhibitor of matrix metalloproteinase 3 in the retinal pigmented epithelium (RPE)/choroid. These findings were accompanied by an age-related increase in BLamD formation in the R345W+/+ mice. Genetic elimination of either Nlrp3 or Casp1 significantly reduced both the size and coverage of BLamDs in the R345W+/+ background, highlighting an important and underappreciated pathway that could affect ML/DHRD onset and progression. Moreover, Nlrp3 knockout reduced spontaneous, idiopathic BLamDs in WT mice, suggesting translatability of our findings not only to rare inherited retinal dystrophies, but also potentially to AMD itself.
Collapse
Affiliation(s)
- Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Marian Renwick
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Pravallika Kambhampati
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Krista N. Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Emily L. Baker
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Hasan Zaki
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
9
|
Dimalanta L, Pithadia K, Shenkute NT, Strelow B, Zhang Z, Ulrich J, Zhang AY, Fleischman D. Disease Associations among Patients Afflicted with Both Glaucoma and Age-Related Macular Degeneration. J Clin Med 2024; 13:5941. [PMID: 39408001 PMCID: PMC11478099 DOI: 10.3390/jcm13195941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: This study investigates whether there is an increased propensity to systemic conditions in patients with both age-related macular degeneration (AMD) and glaucoma in order to provide greater insight into patients' overall health and response to physiologic stress. Methods: A large retrospective dataset review was conducted between April 2004 and June 2018, distinguishing four groups based on international classification of diseases (ICD) codes: glaucoma only, AMD only, glaucoma and AMD, and cataracts only (as an age-matched control). The systemic disease prevalence of each group was calculated, and a Friedman analysis was used to compare the prevalence between the groups. Results: This study identified 5243 patients with glaucoma only, 6726 with AMD only, 402 with combined disease, and 25,450 with cataracts only. Age and racial distributions varied between groups in a predictable manner. Two conditions, heart failure (HF) and dementia, had a statistically higher prevalence in patients with both glaucoma and AMD compared to those with glaucoma alone (HF p = 0.036, dementia p = 0.024) and cataracts alone (HF p = 0.003, dementia p = 0.036). There was no significant difference observed in terms of ethnicity and gender among the different disease groups (p > 0.05). Conclusions: Both AMD and glaucoma individually portend a higher rate of comorbidities than age-matched controls. Patients with concomitant AMD and glaucoma demonstrate a uniquely higher prevalence of heart failure and dementia than those with either disease alone. The underlying association and pathologic mechanisms warrant further investigation to improve the overall health management and prognostication for these individuals.
Collapse
Affiliation(s)
- Lauren Dimalanta
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Kishan Pithadia
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nathan T Shenkute
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Bryan Strelow
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Zhidong Zhang
- College of Education and P-16 Integration, University of Texas-Rio Grande Valley, Brownsville, TX 78539, USA
| | - Jan Ulrich
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Alice Y Zhang
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - David Fleischman
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
10
|
Ahmed CM, Johnson HM, Lewin AS. Corneal application of SOCS1/3 peptides for the treatment of eye diseases mediated by inflammation and oxidative stress. Front Immunol 2024; 15:1416181. [PMID: 39104531 PMCID: PMC11298391 DOI: 10.3389/fimmu.2024.1416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Several blinding diseases affecting the retina and optic nerve are exacerbated by or caused by dysregulated inflammation and oxidative stress. These diseases include uveitis, age related macular degeneration, diabetic retinopathy and glaucoma. Consequently, despite their divergent symptoms, treatments that reduce oxidative stress and suppress inflammation may be therapeutic. The production of inflammatory cytokines and their activities are regulated by a class of proteins termed Suppressors of Cytokine Signaling (SOCS). SOCS1 and SOCS3 are known to dampen signaling via pathways employing Janus kinases and signal transducer and activator of transcription proteins (JAK/STAT), Toll-like Receptors (TLR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen activated kinase (MAPK) and NLR family pyrin domain containing 3 (NLRP3). We have developed cell-penetrating peptides from the kinase inhibitory region of the SOCS1 and SOCS3 (denoted as R9-SOCS1-KIR and R9-SOCS3-KIR) and tested them in retinal pigment epithelium (RPE) cells and in macrophage cell lines. SOCS-KIR peptides exhibited anti-inflammatory, anti-oxidant and anti-angiogenic properties. In cell culture, both Th1 and Th17 cells were suppressed together with the inhibition of other inflammatory markers. We also observed a decrease in oxidants and a simultaneous rise in neuroprotective and anti-oxidant effectors. In addition, treatment prevented the loss of gap junction proteins and the ensuing drop in transepithelial electrical resistance in RPE cells. When tested in mouse models by eye drop instillation, they showed protection against autoimmune uveitis, as a prophylactic as well as a therapeutic. Mice with endotoxin-induced uveitis were protected by eye drop administration as well. R9-SOCS3-KIR was particularly effective against the pathways acting through STAT3, e.g. IL-6 and VEGF-A mediated responses that lead to macular degeneration. Eye drop administration of R9-SOCS3-KIR stimulated production of antioxidant effectors and reduced clinical symptoms in mouse model of oxidative stress that replicates the RPE injury occurring in AMD. Because these peptides suppress multiple pathogenic stimuli and because they can be delivered topically to the cornea, they are attractive candidates for therapeutics for uveitis, macular degeneration, diabetic retinopathy and glaucoma.
Collapse
Affiliation(s)
- Chulbul M. Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Sun Y, Li F, Liu Y, Qiao D, Yao X, Liu GS, Li D, Xiao C, Wang T, Chi W. Targeting inflammasomes and pyroptosis in retinal diseases-molecular mechanisms and future perspectives. Prog Retin Eye Res 2024; 101:101263. [PMID: 38657834 DOI: 10.1016/j.preteyeres.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Retinal diseases encompass various conditions associated with sight-threatening immune responses and are leading causes of blindness worldwide. These diseases include age-related macular degeneration, diabetic retinopathy, glaucoma and uveitis. Emerging evidence underscores the vital role of the innate immune response in retinal diseases, beyond the previously emphasized T-cell-driven processes of the adaptive immune system. In particular, pyroptosis, a newly discovered programmed cell death process involving inflammasome formation, has been implicated in the loss of membrane integrity and the release of inflammatory cytokines. Several disease-relevant animal models have provided evidence that the formation of inflammasomes and the induction of pyroptosis in innate immune cells contribute to inflammation in various retinal diseases. In this review article, we summarize current knowledge about the innate immune system and pyroptosis in retinal diseases. We also provide insights into translational targeting approaches, including novel drugs countering pyroptosis, to improve the diagnosis and treatment of retinal diseases.
Collapse
Affiliation(s)
- Yimeng Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Fan Li
- Eye Center, Zhongshan City People's Hospital, Zhongshan, 528403, China
| | - Yunfei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Dijie Qiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xinyu Yao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dequan Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tao Wang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangming District, Shenzhen, 518132, China; School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao You'anMen Street, Beijing, 100069, China
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
12
|
Maran JJ, Mugisho OO. NLRP3 inflammasome plays a vital role in the pathogenesis of age-related diseases in the eye and brain. Neural Regen Res 2024; 19:1425-1426. [PMID: 38051879 PMCID: PMC10883518 DOI: 10.4103/1673-5374.387991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 12/07/2023] Open
Affiliation(s)
- Jack Jonathan Maran
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
13
|
Chen P, Wang Y, Xie J, Lei J, Zhou B. Methylated urolithin A, mitigates cognitive impairment by inhibiting NLRP3 inflammasome and ameliorating mitochondrial dysfunction in aging mice. Neuropharmacology 2024; 252:109950. [PMID: 38636727 DOI: 10.1016/j.neuropharm.2024.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Effective therapeutic interventions for elderly patients are lacking, despite advances in pharmacotherapy. Methylated urolithin A (mUro A), a modified ellagitannin (ET)-derived metabolite, exhibits anti-inflammatory, antioxidative, and anti-apoptotic effects. Current research has primarily investigated the neuroprotective effects of mUroA in aging mice and explored the underlying mechanisms. Our study used an in vivo aging model induced by d-galactose (D-gal) to show that mUro A notably improved learning and memory, prevented synaptic impairments by enhancing synaptic protein expression and increasing EPSCs, and reduced oxidative damage in aging mice. mUro A alleviated the activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome, leading to reduced glial cell activity and neuroinflammation in both accelerated aging and naturally senescent mouse models. Moreover, mUroA enhanced the activity of TCA cycle enzymes (PDH, CS, and OGDH), decreased 8-OHdG levels, and raised ATP and NAD+ levels within the mitochondria. At the molecular level, mUro A decreased phosphorylated p53 levels and increased the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), thus enhancing mitochondrial function. In conclusion, mUro A alleviates cognitive impairment in aging mice by suppressing neuroinflammation through NLRP3 inflammasome inhibition and restoring mitochondrial function via the p53-PGC-1α pathway. This suggests its potential therapeutic agent for brain aging and aging-related diseases.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435099, PR China
| | - Jing Xie
- Department of Pharmacy, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| |
Collapse
|
14
|
Sutton SS, Magagnoli J, Cummings TH, Hardin JW, Ambati J. Alzheimer Disease Treatment With Acetylcholinesterase Inhibitors and Incident Age-Related Macular Degeneration. JAMA Ophthalmol 2024; 142:108-114. [PMID: 38175625 PMCID: PMC10767642 DOI: 10.1001/jamaophthalmol.2023.6014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Importance Age-related macular degeneration (AMD) is a serious and common ophthalmologic disorder that is hypothesized to result, in part, from inflammatory reactions in the macula. Alzheimer disease (AD) treatment, acetylcholinesterase inhibitors (AChEIs), have anti-inflammatory effects and it remains unclear if they modify the risk of AMD. Objective To investigate the association between AChEI medications and the incidence of AMD. Design, Setting, and Participants This propensity score-matched retrospective cohort study took place at health care facilities within the US Department of Veterans Affairs (VA) health care system from January 2000 through September 2023. Participants included patients diagnosed with AD between ages 55 and 80 years with no preexisting diagnosis of AMD in the VA database. Exposure AChEIs prescription dispensed as pharmacologic treatments for AD. Main Outcomes and Measure The first diagnosis of AMD. Results A total of 21 823 veterans with AD (mean [SD] age, 72.3 [6.1] years; 21 313 male participants [97.7%] and 510 female participants [2.3%]) were included. Propensity score-matched Cox model reveals each additional year of AChEI treatment was associated with a 6% lower hazard of AMD (hazard ratio, 0.94; 95% CI, (0.89-0.99). Conclusions and Relevance This observational study reports a small reduction in the risk of AMD among veterans with AD receiving AChEIs. Randomized clinical trials would be needed to determine if there is a cause-and-effect relationship and further research is required to validate these findings across diverse populations.
Collapse
Affiliation(s)
- S. Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - Tammy H. Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - James W. Hardin
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville
- Department of Pathology, University of Virginia School of Medicine, Charlottesville
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
15
|
Teng M, Wang J, Su X, Tian Y, Ye X, Zhang Y. Causal associations between circulating inflammatory cytokines and blinding eye diseases: a bidirectional Mendelian randomization analysis. Front Aging Neurosci 2024; 16:1324651. [PMID: 38327497 PMCID: PMC10848324 DOI: 10.3389/fnagi.2024.1324651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Background Previous studies have explored the associations between circulating inflammatory cytokines and blinding eye diseases, including glaucoma, cataract and macular degeneration. However, the causality of these associations remains controversial. This study employs a bidirectional Mendelian randomization (MR) study to investigate the causal relationships between 41 circulating inflammatory cytokines and these blinding eye diseases. Methods Summary data for glaucoma, cataract, macular degeneration and 41 circulating inflammatory cytokines were publicly available. The inverse variance weighted (IVW) method was employed as the main analysis method. Additionally, various sensitivity tests, including MR-Egger regression, weighted median, weight mode, Cochran's Q test, MR pleiotropy Residual Sum and Outlier test, and leave-one-out test, were conducted to evaluate sensitivity and stability of results. Results The IVW analysis identified six circulating inflammatory cytokines causally associated with the risk of blinding eye diseases: Monokine induced by interferon-gamma (MIG) for glaucoma, interleukin-1 receptor antagonist (IL-1ra), IL-6, IL-10, and platelet derived growth factor BB (PDGFbb) for cataract, and MIG and hepatocyte growth factor (HGF) for macular degeneration. However, it is noteworthy that none of these associations remained significant after Bonferroni correction (p < 0.0004). Reverse MR analyses indicated that cataract may lead to a decrease in vascular endothelial growth factor (VEGF) levels (OR: 3.326 × 10-04, 95% CI: 5.198 × 10-07 - 2.129 × 10-01, p = 0.0151). Conclusion This study highlights the potential roles of specific inflammatory cytokines in the development of glaucoma, cataract and macular degeneration. Moreover, it suggests that VEGF is likely to be involved in cataract development downstream. These findings offer insights for early prevention and novel therapeutic strategies for these blinding eye diseases.
Collapse
Affiliation(s)
- Menghao Teng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiachen Wang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaochen Su
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ye Tian
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaomin Ye
- School of Electronic Information and Artiffcial Intelligence, Shaanxi University of Science and Technology, Xi'an, China
| | - Yingang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Provenzano F, Torazza C, Bonifacino T, Bonanno G, Milanese M. The Key Role of Astrocytes in Amyotrophic Lateral Sclerosis and Their Commitment to Glutamate Excitotoxicity. Int J Mol Sci 2023; 24:15430. [PMID: 37895110 PMCID: PMC10607805 DOI: 10.3390/ijms242015430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the last two decades, there has been increasing evidence supporting non-neuronal cells as active contributors to neurodegenerative disorders. Among glial cells, astrocytes play a pivotal role in driving amyotrophic lateral sclerosis (ALS) progression, leading the scientific community to focus on the "astrocytic signature" in ALS. Here, we summarized the main pathological mechanisms characterizing astrocyte contribution to MN damage and ALS progression, such as neuroinflammation, mitochondrial dysfunction, oxidative stress, energy metabolism impairment, miRNAs and extracellular vesicles contribution, autophagy dysfunction, protein misfolding, and altered neurotrophic factor release. Since glutamate excitotoxicity is one of the most relevant ALS features, we focused on the specific contribution of ALS astrocytes in this aspect, highlighting the known or potential molecular mechanisms by which astrocytes participate in increasing the extracellular glutamate level in ALS and, conversely, undergo the toxic effect of the excessive glutamate. In this scenario, astrocytes can behave as "producers" and "targets" of the high extracellular glutamate levels, going through changes that can affect themselves and, in turn, the neuronal and non-neuronal surrounding cells, thus actively impacting the ALS course. Moreover, this review aims to point out knowledge gaps that deserve further investigation.
Collapse
Affiliation(s)
- Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
17
|
Erb C, Reinehr S, Theiss C, Dick HB, Joachim SC. HSP27 induced glaucomatous damage in mice of young and advanced age. Front Cell Neurosci 2023; 17:1257297. [PMID: 37744880 PMCID: PMC10513106 DOI: 10.3389/fncel.2023.1257297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Age-related diseases such as glaucoma, a leading cause of blindness, are having an upward trend due to an aging society. In glaucoma, some patients display altered antibody profiles and increased antibody titers, for example against heat shock protein 27 (HSP27). An intravitreal injection of HSP27 leads to glaucoma-like damage in rats. We now aimed to investigate if aged mice are more prone to this damage than younger ones. Methods We intravitreally injected HSP27 into young (1-2 months) and aged (7-8 months) mice to compare glaucomatous damage. Respective age-matched controls received PBS. Not injected eyes served as naive controls. Results Optical coherence tomography 4 weeks after injection showed no changes in retinal thickness in all groups at both ages. Cell counts and RT-qPCR revealed a significant reduction in RGC numbers in HSP27 mice at both ages. Comparing aged and young HSP27 mice, no differences in Rbpms and Pou4f1 (RGCs) expression was detected, while the Tubb3 expression (neuronal cells) was significantly upregulated in aged HSP27 animals. Neither microglia/macrophages nor (resident) microglia counts revealed significant differences in HSP27 mice at both ages. Nevertheless, increased relative Iba1 and Tmem119 expression was detected in young and aged HSP27 mice. Aged HSP27 mice displayed a significantly lower Iba1 expression than young ones, whereas Cd68 levels were upregulated. A larger GFAP+ area and an upregulation of GFAP expression in HSP27 animals of both ages indicated a macrogliosis. Also, elevated Il1b and Nos2 expression levels were observed in young and aged HSP27 mice. However, only Il1b levels were upregulated when comparing 7-8 months to 1-2 months old animals. A larger HSP25+ area was seen in aged HSP27 animals, while Hspb2 expression levels were downregulated in both HSP27 groups. The aged HSP27 group displayed an upregulated Hspb2 expression compared to young mice. Furthermore, a higher optic nerve degeneration score was noted in young and aged HSP27 groups. Discussion These findings indicate that an intravitreal injection of HSP27 led to RGC loss accompanied by inflammation. Age-dependent effects (7-8 months vs. 1-2 months) were not very prominent. The results suggest a potential role of extracellular HSP27 in the development of glaucoma.
Collapse
Affiliation(s)
- Clivia Erb
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, Germany
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|