1
|
Yang B, Li Z, Li P, Liu Y, Ding X, Feng E. Piezo1 in microglial cells: Implications for neuroinflammation and tumorigenesis. Channels (Austin) 2025; 19:2492161. [PMID: 40223276 PMCID: PMC12005408 DOI: 10.1080/19336950.2025.2492161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
Microglia, the central nervous system (CNS) resident immune cells, are pivotal in regulating neurodevelopment, maintaining neural homeostasis, and mediating neuroinflammatory responses. Recent research has highlighted the importance of mechanotransduction, the process by which cells convert mechanical stimuli into biochemical signals, in regulating microglial activity. Among the various mechanosensitive channels, Piezo1 has emerged as a key player in microglia, influencing their behavior under both physiological and pathological conditions. This review focuses on the expression and role of Piezo1 in microglial cells, particularly in the context of neuroinflammation and tumorigenesis. We explore how Piezo1 mediates microglial responses to mechanical changes within the CNS, such as alterations in tissue stiffness and fluid shear stress, which are common in conditions like multiple sclerosis, Alzheimer's disease, cerebral ischemia, and gliomas. The review also discusses the potential of targeting Piezo1 for therapeutic intervention, given its involvement in the modulation of microglial activity and its impact on disease progression. This review integrates findings from recent studies to provide a comprehensive overview of Piezo1's mechanistic pathways in microglial function. These insights illuminate new possibilities for developing targeted therapies addressing CNS disorders with neuroinflammation and pathological tissue mechanics.
Collapse
Affiliation(s)
- Bo Yang
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Li
- Department of Neonatology, Children’s Medical Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Peiliang Li
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuhan Liu
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinghuan Ding
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Enshan Feng
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Zeng Z, Chen E, Xue J. Emerging roles of mechanically activated ion channels in autoimmune disease. Autoimmun Rev 2025; 24:103813. [PMID: 40194731 DOI: 10.1016/j.autrev.2025.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Mechanically activated (MA) ion channels have rapidly gained prominence as vital conduits bridging aberrant mechanical cues in tissues with the dysregulated immune responses at the core of autoimmune diseases. Once regarded as peripheral players in inflammation, these channels, exemplified by PIEZO1, TRPV4, and specific K2P family members, now play a central role in modulating T-cell effector functions, B- cell activation and the activity of macrophages and dendritic cells. Their gating is intimately tied to physical distortions such as increased tissue stiffness, osmotic imbalances, or fluid shear, triggering a cascade of ionic fluxes that elevate proinflammatory signaling and drive tissue-destructive loops. Recognition of these channels as central mediators of mechanical stress-induced inflammation responses in autoimmune pathogenesis is rapidly expanding. In parallel, the emerging therapeutic strategies aim to restrain overactive mechanosensors or selectively harness them in affected tissues. Small molecules, peptide blockers, and gene-targeting approaches show preclinical promise, although off-target effects and the broader homeostatic roles of these channels warrant caution. This review explores how integrating mechanobiological concepts with established immunological paradigms enables a more detailed understanding of autoimmune pathogenesis. By elucidating how mechanical forces potentiate or dampen pathological immunity, we propose innovative strategies that exploit mechanosensitivity to recalibrate immune responses across a spectrum of autoimmune conditions.
Collapse
Affiliation(s)
- Zhiru Zeng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Engeng Chen
- Department of Zhejiang Provincial Key Laboratory of Biotherapy, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
3
|
Černe U, Horvat A, Sanjković E, Kozoderc N, Kreft M, Zorec R, Scholz N, Vardjan N. Ca 2+ excitability of glia to neuromodulator octopamine in Drosophila living brain is greater than that of neurons. Acta Physiol (Oxf) 2025; 241:e14270. [PMID: 39801347 PMCID: PMC11726276 DOI: 10.1111/apha.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/13/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
AIM Octopamine in the Drosophila brain has a neuromodulatory role similar to that of noradrenaline in mammals. After release from Tdc2 neurons, octopamine/tyramine may trigger intracellular Ca2+ signaling via adrenoceptor-like receptors on neural cells, modulating neurotransmission. Octopamine/tyramine receptors are expressed in neurons and glia, but how each of these cell types responds to octopamine remains elusive. This study aimed to characterize Ca2+ responses of neurons and astrocytes to neuromodulatory octopamine signals. METHODS We expressed Ca2+ indicator jGCaMP7b in specific cell type in adult Drosophila brains and performed intracellular Ca2+ imaging in the brain optic lobes upon bath application of octopamine by confocal microscopy. RESULTS Octopamine-stimulated Ca2+ responses in neurons were different from those of glial cells. The amplitude of octopamine-mediated Ca2+ signals in neurons was 3.4-fold greater than in astrocytes. However, astrocytes were more sensitive to octopamine; the median effective concentration that triggered Ca2+ responses was nearly 6-fold lower in astrocytes than in neurons. In both cell types, Ca2+ transients are shaped by Gq and Gs protein-coupled octopamine/tyramine receptors. Our snRNA-seq database screening uncovered differential expression patterns of these receptors between brain cell types, which may explain the difference in Ca2+ signaling. CONCLUSION In the brain optic lobes, astrocytes, not neurons, appear to be the sole responders to low concentration octopamine signals, and therefore likely drive synaptic plasticity and visual processing. Given the interconnectivity of the optic lobes with other brain regions, octopaminergic signals acting through the optic lobe astrocytes may also influence higher-order brain functions including learning and memory.
Collapse
Grants
- P40 OD018537 NIH HHS
- Deutsche Forschungsgemeinschaft (FOR 2149, 265903901/P01; CRC 1423, 421152132/B06)
- Slovenian Research and Innovation Agency (P3-0310, J3-2523, J3-50104, MR+ 2019, I0-0034, I0-0022: MRIC-Carl Zeiss Reference Centre for Laser Confocal Microscopy)
- European Cooperation in Science and Technology (COST) action CA18133 (European Research Network on Signal Transduction (ERNEST))
- European Cooperation in Science and Technology (COST) action CA18133 (European Research Network on Signal Transduction (ERNEST))
- Slovenian Research and Innovation Agency (P3‐0310, J3‐2523, J3‐50104, MR+ 2019, I0‐0034, I0‐0022: MRIC‐Carl Zeiss Reference Centre for Laser Confocal Microscopy)
- Deutsche Forschungsgemeinschaft (FOR 2149, 265903901/P01; CRC 1423, 421152132/B06)
Collapse
Affiliation(s)
- Urška Černe
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
- Laboratory of Cell Engineering, Celica BiomedicalLjubljanaSlovenia
| | - Anemari Horvat
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
- Laboratory of Cell Engineering, Celica BiomedicalLjubljanaSlovenia
| | - Ena Sanjković
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
| | - Nika Kozoderc
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
- Laboratory of Cell Engineering, Celica BiomedicalLjubljanaSlovenia
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
- Laboratory of Cell Engineering, Celica BiomedicalLjubljanaSlovenia
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of BiochemistryLeipzig UniversityLeipzigGermany
| | - Nina Vardjan
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
- Laboratory of Cell Engineering, Celica BiomedicalLjubljanaSlovenia
| |
Collapse
|
4
|
Zhang X, Liu X, Li Q, Li C, Li X, Qian J, Li J, Li X. GsMTx-4 combined with exercise improves skeletal muscle structure and motor function in rats with spinal cord injury. PLoS One 2025; 20:e0317683. [PMID: 39841686 PMCID: PMC11753701 DOI: 10.1371/journal.pone.0317683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Motor dysfunction and muscle atrophy are typical symptoms of patients with spinal cord injury (SCI). Exercise training is a conventional physical therapy after SCI, but exercise intervention alone may have limited efficacy in reducing secondary injury and promoting nerve regeneration and functional remodeling. Our previous research found that intramedullary pressure after SCI is one of the key factors affecting functional prognosis. It has been reported that GsMTx-4, a specific blocker of the mechanosensitive ion channels Piezo1, can protect the integrity of the neuromuscular junction and promote nerve regeneration, and thus has the potential as a therapeutic agent for SCI. In this study, we observed the combined and separate therapeutic effect of GsMTx-4 and exercise on the structure of the soleus muscle and motor function in rats with SCI. At 42 days post-injury, compared with SCI rats, the Basso-Beattie-Bresnahan score (P = 0.0007) and Gait Symmetry (P = 0.0002) were significantly improved after combination therapy. On histology of rat soleus muscle, compared with SCI rats, the combined treatment significantly increased the wet weight ratio, muscle fiber cross-sectional area and acetylcholinesterase (all P<0.0001). On histology of rat spinal tissue, compared with SCI rats, the combined treatment significantly increased neuron counts and BDNF levels, and significantly reduced the percentage of TUNEL-positive cells (all P<0.0001). On physiology of rat soleus muscle, compared with SCI rats, the combined treatment increased the succinate dehydrogenase expression (P<0.0001), while the expression of α-glycerophosphate dehydrogenase (P<0.0001) and GDF8 protein (P = 0.0008) decreased. Results indicate the combination therapy effectively improves histopathology of spinal cord and soleus muscle in SCI rats, enhancing motor function. This study was conducted on animal models, it offers insights for SCI treatment, advancing understanding of lower limb muscle pathology post-SCI. Further research is needed for clinical validation in the future.
Collapse
Affiliation(s)
- Xin Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xinyu Liu
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Qianxi Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Chenyu Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xinyan Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jinghua Qian
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xuemei Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
5
|
Catalán V, Gómez-Ambrosi J, Ramírez B, Unamuno X, Becerril S, Rodríguez A, Baixauli J, Reina G, Sancho A, Silva C, Cienfuegos JA, Frühbeck G. Increased expression levels of PIEZO1 in visceral adipose tissue in obesity and type 2 diabetes are triggered by mechanical forces and are associated with inflammation. Mol Med 2024; 30:255. [PMID: 39707172 DOI: 10.1186/s10020-024-01008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND PIEZO1 has emerged as a mechanoreceptor linked with adipogenesis, adipose tissue (AT) inflammation and insulin resistance. We aimed to determine the impact of obesity and obesity-associated type 2 diabetes (T2D) as well as mechanical compression forces on the expression of PIEZO1 in visceral AT (VAT) and its relation with inflammation. METHODS Blood and VAT samples were obtained from 100 volunteers. Static compression studies in VAT explants were performed to study the PIEZO1 response. The effect of bariatric surgery on the expression of Piezo1 was assessed in a rat model of diet-induced obesity. RESULTS Obesity and obesity-associated T2D increased (P < 0.01) gene expression levels of PIEZO1 in VAT mainly due to adipocytes. SWELL1 and key markers of inflammation (NLRP3, NLRP6, IL1B, IL18 and IL8) were also upregulated in VAT in obesity and T2D being significantly associated (P < 0.01) with PIEZO1 levels. We further showed that the static compression of VAT explants promoted an upregulation of PIEZO1 (P < 0.01) and SWELL1 (P < 0.01) expression levels together with a strong increase in the expression and release of key inflammatory mediators. The treatment of THP-1-derived macrophages with the secretome of adipocytes from patients with obesity upregulated (P < 0.001) PIEZO1 levels. Rats undergoing bariatric surgery exhibited decreased (P < 0.01) expression levels of Piezo1 in the epididymal AT. CONCLUSIONS Static compression triggered an upregulation of PIEZO1 in VAT explants together with a strong inflammation. In addition, the increased expression of PIEZO1 in VAT in obesity and obesity-associated T2D, primarily attributable to adipocytes, is closely associated with SWELL1 and inflammatory markers.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gabriel Reina
- Department of Microbiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ana Sancho
- Biomedical Engineering and Science Department, University of Navarra, TECNUN School of Engineering, San Sebastián, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier A Cienfuegos
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
6
|
Ryu Y, Wague A, Liu X, Feeley BT, Ferguson AR, Morioka K. Cellular signaling pathways in the nervous system activated by various mechanical and electromagnetic stimuli. Front Mol Neurosci 2024; 17:1427070. [PMID: 39430293 PMCID: PMC11486767 DOI: 10.3389/fnmol.2024.1427070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
Mechanical stimuli, such as stretch, shear stress, or compression, activate a range of biomolecular responses through cellular mechanotransduction. In the nervous system, studies on mechanical stress have highlighted key pathophysiological mechanisms underlying traumatic injury and neurodegenerative diseases. However, the biomolecular pathways triggered by mechanical stimuli in the nervous system has not been fully explored, especially compared to other body systems. This gap in knowledge may be due to the wide variety of methods and definitions used in research. Additionally, as mechanical stimulation techniques such as ultrasound and electromagnetic stimulation are increasingly utilized in psychological and neurorehabilitation treatments, it is vital to understand the underlying biological mechanisms in order to develop accurate pathophysiological models and enhance therapeutic interventions. This review aims to summarize the cellular signaling pathways activated by various mechanical and electromagnetic stimuli with a particular focus on the mammalian nervous system. Furthermore, we briefly discuss potential cellular mechanosensors involved in these processes.
Collapse
Affiliation(s)
- Youngjae Ryu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Aboubacar Wague
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Brian T. Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Adam R. Ferguson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States
| | - Kazuhito Morioka
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- Zuckerberg San Francisco General Hospital and Trauma CenterOrthopaedic Trauma Institute, , San Francisco, CA, United States
| |
Collapse
|
7
|
Jiang D, Zhao J, Zheng J, Zhao Y, Le M, Qin D, Huang Q, Huang J, Zhao Q, Wang L, Dong X. LOX-mediated ECM mechanical stress induces Piezo1 activation in hypoxic-ischemic brain damage and identification of novel inhibitor of LOX. Redox Biol 2024; 76:103346. [PMID: 39260063 PMCID: PMC11414707 DOI: 10.1016/j.redox.2024.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) poses a significant challenge in neonatal medicine, often resulting in profound and lasting neurological deficits. Current therapeutic strategies for hypoxia-ischemia brain damage (HIBD) remain limited. Ferroptosis has been reported to play a crucial role in HIE and serves as a potential therapeutic target. However, the mechanisms underlying ferroptosis in HIBD remain largely unclear. In this study, we found that elevated lysyl oxidase (LOX) expression correlates closely with the severity of HIE, suggesting LOX as a potential biomarker for HIE. LOX expression levels and enzymatic activity were significantly increased in HI-induced neuronal models both in vitro and in vivo. Notably, we discovered that HI-induced brain tissue injury results in increased stiffness and observed a selective upregulation of the mechanosensitive ion channel Piezo1 in both brain tissue of HIBD and primary cortex neurons. Mechanistically, LOX increases its catalytic substrates, the Collagen I/III components, promoting extracellular matrix (ECM) remodeling and possibly mediating ECM cross-linking, which leads to increased stiffness at the site of injury and subsequent activation of the Piezo1 channel. Piezo1 senses these stiffness stimuli and then induces neuronal ferroptosis in a GPX4-dependent manner. Pharmacological inhibition of LOX or Piezo1 ameliorated brain neuronal ferroptosis and improved learning and memory impairments. Furthermore, we identified traumatic acid (TA) as a novel LOX inhibitor that effectively suppresses LOX enzymatic activity, mitigating neuronal ferroptosis and promoting synaptic plasticity. In conclusion, our findings elucidate a critical role for LOX-mediated ECM mechanical stress-induced Piezo1 activation in regulating ferroptotic cell death in HIBD. This mechanistic insight provides a basis for developing targeted therapies aimed at ameliorating neurological outcomes in neonates affected by HIBD.
Collapse
Affiliation(s)
- Dongya Jiang
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingmin Zhao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, China
| | - Meini Le
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dani Qin
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Qiong Huang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyu Huang
- Department of Cardiology, Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University
| | - Qingshun Zhao
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Long Wang
- Department of Cardiology, Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University.
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Xing H, Liu H, Chang Z, Zhang J. Research progress on the immunological functions of Piezo1 a receptor molecule that responds to mechanical force. Int Immunopharmacol 2024; 139:112684. [PMID: 39008939 DOI: 10.1016/j.intimp.2024.112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
The human immune system is capable of defending against, monitoring, and self-stabilizing various immune cells. Differentiation, proliferation, and development of these cells are regulated by biochemical signals. Moreover, biophysical signals, such as mechanical forces, have been found to affect immune cell function, thus introducing a new area of immunological research. Piezo1, a mechanically sensitive ion channel, was awarded the Nobel Prize for Physiology and Medicine in 2021. This channel is present on the surface of many cells, and when stimulated by mechanical force, it controls calcium (Ca2+) inside the cells, leading to changes in downstream signals and thus regulating cell functions. Piezo1 is also expressed in various innate and adaptive immune cells and plays a major role in the immune function. In this review, we will explore the physiological functions and regulatory mechanisms of Piezo1 and its impact on innate and adaptive immunity. This may offer new insights into diagnostics and therapeutics for the prevention and treatment of diseases and surgical infections.
Collapse
Affiliation(s)
- Hao Xing
- Department of Orthopaedics, The 960th Hospital of PLA, Jinan 250031, China
| | - Huan Liu
- Department of Orthopaedics, The 960th Hospital of PLA, Jinan 250031, China; The Second Medical University of Shandong, Weifang, Shandong 261000, China
| | - Zhengqi Chang
- Department of Orthopaedics, The 960th Hospital of PLA, Jinan 250031, China.
| | - Ji Zhang
- Department of Immunology, Basic Medical College, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
9
|
Sun Z, Zhang X, So KF, Jiang W, Chiu K. Targeting Microglia in Alzheimer's Disease: Pathogenesis and Potential Therapeutic Strategies. Biomolecules 2024; 14:833. [PMID: 39062547 PMCID: PMC11274940 DOI: 10.3390/biom14070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia, as resident macrophages in the central nervous system, play a multifunctional role in the pathogenesis of Alzheimer's disease (AD). Their clustering around amyloid-β (Aβ) deposits is a core pathological feature of AD. Recent advances in single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) have revealed dynamic changes in microglial phenotypes over time and across different brain regions during aging and AD progression. As AD advances, microglia primarily exhibit impaired phagocytosis of Aβ and tau, along with the release of pro-inflammatory cytokines that damage synapses and neurons. Targeting microglia has emerged as a potential therapeutic approach for AD. Treatment strategies involving microglia can be broadly categorized into two aspects: (1) enhancing microglial function: This involves augmenting their phagocytic ability against Aβ and cellular debris and (2) mitigating neuroinflammation: Strategies include inhibiting TNF-α signaling to reduce the neuroinflammatory response triggered by microglia. Clinical trials exploring microglia-related approaches for AD treatment have garnered attention. Additionally, natural products show promise in enhancing beneficial effects and suppressing inflammatory responses. Clarifying microglial dynamics, understanding their roles, and exploring novel therapeutic approaches will advance our fight against AD.
Collapse
Affiliation(s)
- Zhongqing Sun
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xin Zhang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kwok-Fai So
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou 510632, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Ikiz ED, Hascup ER, Bae C, Hascup KN. Microglial Piezo1 mechanosensitive channel as a therapeutic target in Alzheimer's disease. Front Cell Neurosci 2024; 18:1423410. [PMID: 38957539 PMCID: PMC11217546 DOI: 10.3389/fncel.2024.1423410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Microglia are the resident macrophages of the central nervous system (CNS) that control brain development, maintain neural environments, respond to injuries, and regulate neuroinflammation. Despite their significant impact on various physiological and pathological processes across mammalian biology, there remains a notable gap in our understanding of how microglia perceive and transmit mechanical signals in both normal and diseased states. Recent studies have revealed that microglia possess the ability to detect changes in the mechanical properties of their environment, such as alterations in stiffness or pressure. These changes may occur during development, aging, or in pathological conditions such as trauma or neurodegenerative diseases. This review will discuss microglial Piezo1 mechanosensitive channels as potential therapeutic targets for Alzheimer's disease (AD). The structure, function, and modulation of Piezo1 will be discussed, as well as its role in facilitating microglial clearance of misfolded amyloid-β (Aβ) proteins implicated in the pathology of AD.
Collapse
Affiliation(s)
- Erol D. Ikiz
- Department of Chemistry, School of Integrated Sciences, Sustainability, and Public Health, College of Health, Science, and Technology, University of Illinois at Springfield, Springfield, IL, United States
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Erin R. Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Chilman Bae
- School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University at Carbondale, Carbondale, IL, United States
| | - Kevin N. Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
11
|
Liu H, Zhou L, Yi P, Zhan F, Zhou L, Dong Y, Xiong Y, Hua F, Xu G. ω3-PUFA alleviates neuroinflammation by upregulating miR-107 targeting PIEZO1/NFκB p65. Int Immunopharmacol 2024; 132:111996. [PMID: 38579563 DOI: 10.1016/j.intimp.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND MiR-107 is reduced in sepsis and associated with inflammation regulation. Dietary supplementation with polyunsaturated fatty acids (ω3-PUFA) can increase the expression of miR-107; this study investigated whether the ω3-PUFA can effectively inhibit neuroinflammation and improve cognitive function by regulating miR-107 in the brain. METHODS The LPS-induced mouse model of neuroinflammation and the BV2 cell inflammatory model were used to evaluate the effects of ω3-PUFA on miR-107 expression and inflammation. Intraventricular injection of Agomir and Antagomir was used to modulate miR-107 expression. HE and Nissl staining for analyzing hippocampal neuronal damage, immunofluorescence analysis for glial activation, RT-qPCR, and Western blot were conducted to examine miR-107 expression and inflammation signalling. RESULTS The result shows that LPS successfully induced the mouse neuroinflammation model and BV2 cell inflammation model. Supplementation of ω3-PUFA effectively reduced the secretion of pro-inflammatory factors TNFα, IL1β, and IL6 induced by LPS, improved cognitive function impairment, and increased miR-107 expression in the brain. Overexpression of miR-107 in the brain inhibited the nuclear factor κB (NFκB) pro-inflammatory signalling pathway by targeting PIEZO1, thus suppressing microglial and astrocyte activation and reducing the release of inflammatory mediators, which alleviated neuroinflammatory damage and improved cognitive function in mice. miR-107, as an intron of PANK1, PANK1 is subject to PPAR α Adjust. ω3-PUFA can activate PPARα, but ω3-PUFA upregulates brain miR-107, and PPARα/PANK1-related pathways may not be synchronized, and further research is needed to confirm the specific mechanism by which ω3-PUFA upregulates miR-107. CONCLUSION The miR-107/PIEZO1/NFκB p65 pathway represents a novel mechanism underlying the improvement of neuroinflammation by ω3-PUFA.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lian Zhou
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, Ganjiang New Area Hospital of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lanqian Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
12
|
Csemer A, Sokvári C, Maamrah B, Szabó L, Korpás K, Pocsai K, Pál B. Pharmacological Activation of Piezo1 Channels Enhances Astrocyte-Neuron Communication via NMDA Receptors in the Murine Neocortex. Int J Mol Sci 2024; 25:3994. [PMID: 38612801 PMCID: PMC11012114 DOI: 10.3390/ijms25073994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The Piezo1 mechanosensitive ion channel is abundant on several elements of the central nervous system including astrocytes. It has been already demonstrated that activation of these channels is able to elicit calcium waves on astrocytes, which contributes to the release of gliotransmitters. Astrocyte- and N-methyl-D-aspartate (NMDA) receptor-dependent slow inward currents (SICs) are hallmarks of astrocyte-neuron communication. These currents are triggered by glutamate released as gliotransmitter, which in turn activates neuronal NMDA receptors responsible for this inward current having slower kinetics than any synaptic events. In this project, we aimed to investigate whether Piezo1 activation and inhibition is able to alter spontaneous SIC activity of murine neocortical pyramidal neurons. When the Piezo1 opener Yoda1 was applied, the SIC frequency and the charge transfer by these events in a minute time was significantly increased. These changes were prevented by treating the preparations with the NMDA receptor inhibitor D-AP5. Furthermore, Yoda1 did not alter the spontaneous EPSC frequency and amplitude when SICs were absent. The Piezo1 inhibitor Dooku1 effectively reverted the actions of Yoda1 and decreased the rise time of SICs when applied alone. In conclusion, activation of Piezo1 channels is able to alter astrocyte-neuron communication. Via enhancement of SIC activity, astrocytic Piezo1 channels have the capacity to determine neuronal excitability.
Collapse
Affiliation(s)
- Andrea Csemer
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Cintia Sokvári
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Baneen Maamrah
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - László Szabó
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
- HUN-REN DE Cell Physiology Research Group, H-4032 Debrecen, Hungary
| | - Kristóf Korpás
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Krisztina Pocsai
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
| | - Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| |
Collapse
|
13
|
Prieto ML, Maduke M. Towards an ion-channel-centric approach to ultrasound neuromodulation. Curr Opin Behav Sci 2024; 56:101355. [PMID: 38505510 PMCID: PMC10947167 DOI: 10.1016/j.cobeha.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Ultrasound neuromodulation is a promising technology that could revolutionize study and treatment of brain conditions ranging from mood disorders to Alzheimer's disease and stroke. An understanding of how ultrasound directly modulates specific ion channels could provide a roadmap for targeting specific neurological circuits and achieving desired neurophysiological outcomes. Although experimental challenges make it difficult to unambiguously identify which ion channels are sensitive to ultrasound in vivo, recent progress indicates that there are likely several different ion channels involved, including members of the K2P, Piezo, and TRP channel families. A recent result linking TRPM2 channels in the hypothalamus to induction of torpor by ultrasound in rodents demonstrates the feasibility of targeting a specific ion channel in a specific population of neurons.
Collapse
Affiliation(s)
- Martin Loynaz Prieto
- Department of Molecular and Cellular Physiology, Stanford University, 279 Campus Drive West, B151 Beckman Center, Stanford, CA 94305
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University, 279 Campus Drive West, B155 Beckman Center, Stanford, CA 94305
| |
Collapse
|
14
|
Hart DA. The Heterogeneity of Post-Menopausal Disease Risk: Could the Basis for Why Only Subsets of Females Are Affected Be Due to a Reversible Epigenetic Modification System Associated with Puberty, Menstrual Cycles, Pregnancy and Lactation, and, Ultimately, Menopause? Int J Mol Sci 2024; 25:3866. [PMID: 38612676 PMCID: PMC11011715 DOI: 10.3390/ijms25073866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
For much of human evolution, the average lifespan was <40 years, due in part to disease, infant mortality, predators, food insecurity, and, for females, complications of childbirth. Thus, for much of evolution, many females did not reach the age of menopause (45-50 years of age) and it is mainly in the past several hundred years that the lifespan has been extended to >75 years, primarily due to public health advances, medical interventions, antibiotics, and nutrition. Therefore, the underlying biological mechanisms responsible for disease risk following menopause must have evolved during the complex processes leading to Homo sapiens to serve functions in the pre-menopausal state. Furthermore, as a primary function for the survival of the species is effective reproduction, it is likely that most of the advantages of having such post-menopausal risks relate to reproduction and the ability to address environmental stresses. This opinion/perspective will be discussed in the context of how such post-menopausal risks could enhance reproduction, with improved survival of offspring, and perhaps why such risks are preserved. Not all post-menopausal females exhibit risk for this set of diseases, and those who do develop such diseases do not have all of the conditions. The diseases of the post-menopausal state do not operate as a unified complex, but as independent variables, with the potential for some overlap. The how and why there would be such heterogeneity if the risk factors serve essential functions during the reproductive years is also discussed and the concept of sets of reversible epigenetic changes associated with puberty, pregnancy, and lactation is offered to explain the observations regarding the distribution of post-menopausal conditions and their potential roles in reproduction. While the involvement of an epigenetic system with a dynamic "modification-demodification-remodification" paradigm contributing to disease risk is a hypothesis at this point, validation of it could lead to a better understanding of post-menopausal disease risk in the context of reproduction with commonalities may also lead to future improved interventions to control such risk after menopause.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|