1
|
Qin B, Bao D, Liu Y, Zeng S, Deng K, Liu H, Fu S. Engineered exosomes: a promising strategy for tendon-bone healing. J Adv Res 2024; 64:155-169. [PMID: 37972886 PMCID: PMC11464473 DOI: 10.1016/j.jare.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Due to the spatiotemporal complexity of the composition, structure, and cell population of the tendon-bone interface (TBI), it is difficult to achieve true healing. Recent research is increasingly focusing on engineered exosomes, which are a promising strategy for TBI regeneration. AIM OF REVIEW This review discusses the physiological and pathological characteristics of TBI and the application and limitations of natural exosomes in the field of tendon-bone healing. The definition, loading strategies, and spatiotemporal properties of engineered exosomes were elaborated. We also summarize the application and future research directions of engineered exosomes in the field of tendon-bone healing. KEY SCIENTIFIC CONCEPTS OF REVIEW Engineered exosomes can spatially deliver cargo to targeted sites and temporally realize the sustained release of therapeutic molecules in TBI. This review expounds on the multidifferentiation of engineered exosomes for tendon-bone healing, which effectively improves the biological and biomechanical properties of TBI. Engineered exosomes could be a promising strategy for tendon-bone healing.
Collapse
Affiliation(s)
- Bo Qin
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Dingsu Bao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Yang Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Shengqiang Zeng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Kai Deng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China.
| | - Shijie Fu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China.
| |
Collapse
|
2
|
Gögele C, Hahn J, Schulze-Tanzil G. Anatomical Tissue Engineering of the Anterior Cruciate Ligament Entheses. Int J Mol Sci 2023; 24:ijms24119745. [PMID: 37298698 DOI: 10.3390/ijms24119745] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The firm integration of anterior cruciate ligament (ACL) grafts into bones remains the most demanding challenge in ACL reconstruction, since graft loosening means graft failure. For a functional-tissue-engineered ACL substitute to be realized in future, robust bone attachment sites (entheses) have to be re-established. The latter comprise four tissue compartments (ligament, non-calcified and calcified fibrocartilage, separated by the tidemark, bone) forming a histological and biomechanical gradient at the attachment interface between the ACL and bone. The ACL enthesis is surrounded by the synovium and exposed to the intra-articular micromilieu. This review will picture and explain the peculiarities of these synovioentheseal complexes at the femoral and tibial attachment sites based on published data. Using this, emerging tissue engineering (TE) strategies addressing them will be discussed. Several material composites (e.g., polycaprolactone and silk fibroin) and manufacturing techniques (e.g., three-dimensional-/bio-printing, electrospinning, braiding and embroidering) have been applied to create zonal cell carriers (bi- or triphasic scaffolds) mimicking the ACL enthesis tissue gradients with appropriate topological parameters for zones. Functionalized or bioactive materials (e.g., collagen, tricalcium phosphate, hydroxyapatite and bioactive glass (BG)) or growth factors (e.g., bone morphogenetic proteins [BMP]-2) have been integrated to achieve the zone-dependent differentiation of precursor cells. However, the ACL entheses comprise individual (loading history) asymmetric and polar histoarchitectures. They result from the unique biomechanical microenvironment of overlapping tensile, compressive and shear forces involved in enthesis formation, maturation and maintenance. This review should provide a road map of key parameters to be considered in future in ACL interface TE approaches.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Judith Hahn
- Workgroup BioEngineering, Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
3
|
Shengnan Q, Bennett S, Wen W, Aiguo L, Jiake X. The role of tendon derived stem/progenitor cells and extracellular matrix components in the bone tendon junction repair. Bone 2021; 153:116172. [PMID: 34506992 DOI: 10.1016/j.bone.2021.116172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
Fibrocartilage enthesis is the junction between bone and tendon with a typical characteristics of fibrocartilage transition zones. The regeneration of this transition zone is the bottleneck for functional restoration of bone tendon junction (BTJ). Biomimetic approaches, especially decellularized extracellular matrix (ECM) materials, are strategies which aim to mimic the components of tissues to the utmost extent, and are becoming popular in BTJ healing because of their ability not only to provide scaffolds to allow cells to attach and migrate, but also to provide a microenvironment to guide stem/progenitor cells lineage-specific differentiation. However, the cellular and molecular mechanisms of those approaches, especially the ECM proteins, remain unclear. For BTJ reconstruction, fibrocartilage regeneration is the key for good integrity of bone and tendon as well as its mechanical recovery, so the components which can guide stem cells to a chondrogenic commitment in biomimetic approaches might well be the key for fibrocartilage regeneration and eventually for the better BTJ healing. In this review, we firstly discuss the importance of cartilage-like formation in the healing process of BTJ. Next, we explore the possibility of tendon-derived stem/progenitor cells as cell sources for BTJ regeneration due to their multi-differentiation potential. Finally, we summarize the role of extracellular matrix components of BTJ in guiding stem cell fate to a chondrogenic commitment, so as to provide cues for understanding the mechanisms of lineage-specific potential of biomimetic approaches as well as to inspire researchers to incorporate unique ECM components that facilitate BTJ repair into design.
Collapse
Affiliation(s)
- Qin Shengnan
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Wang Wen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Li Aiguo
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.
| | - Xu Jiake
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia.
| |
Collapse
|
4
|
He X, Li Y, Guo J, Xu J, Zu H, Huang L, Tim-Yun Ong M, Shu-Hang Yung P, Qin L. Biomaterials developed for facilitating healing outcome after anterior cruciate ligament reconstruction: Efficacy, surgical protocols, and assessments using preclinical animal models. Biomaterials 2020; 269:120625. [PMID: 33395579 DOI: 10.1016/j.biomaterials.2020.120625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
Anterior cruciate ligament (ACL) reconstruction is the recommended treatment for ACL tear in the American Academy of Orthopaedic Surgeons (AAOS) guideline. However, not a small number of cases failed because of the tunnel bone resorption, unsatisfactory bone-tendon integration, and graft degeneration. The biomaterials developed and designed for improving ACL reconstruction have been investigated for decades. According to the Food and Drug Administration (FDA) and the International Organization for Standardization (ISO) regulations, animal studies should be performed to prove the safety and bioeffect of materials before clinical trials. In this review, we first evaluated available biomaterials that can enhance the healing outcome after ACL reconstruction in animals and then discussed the animal models and assessments for testing applied materials. Furthermore, we identified the relevance and knowledge gaps between animal experimental studies and clinical expectations. Critical analyses and suggestions for future research were also provided to design the animal study connecting basic research and requirements for future clinical translation.
Collapse
Affiliation(s)
- Xuan He
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Haiyue Zu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Le Huang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Michael Tim-Yun Ong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Patrick Shu-Hang Yung
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Quinet MT, Raghavan M, Morris E, Smith T, Cook H, Walter N, Shuler M. Effectiveness of Amniotic Fluid Injection in the Treatment of Trigger Finger: A Pilot Study. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2020; 2:301-305. [PMID: 35415511 PMCID: PMC8991634 DOI: 10.1016/j.jhsg.2020.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/25/2020] [Indexed: 11/28/2022] Open
Abstract
Purpose To assess the efficacy and safety of amniotic fluid therapy injections in patients with mild to moderate trigger finger. Methods All participants received 1 mL of amniotic fluid injected into the tendon sheath of the affected tendon. Pretreatment and posttreatment data were collected for triggering frequency, Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire scores, and numerical pain rating scale scores. Results Of 111 digits from 96 patients, 51% experienced clinically notable improvement and did not receive an alternative treatment. Average length of follow-up was 11 months. From baseline to end of follow-up, average pain score (0–10) decreased from 5.19 to 1.19 (P < .001), median triggering per day decreased from 5 to 0 (P < .001), and median DASH score (1–100) decreased from 20 to 6.03 (P < .001). There was a 50% success rate in patients with diabetes and a 52.6% success rate in digits diagnosed with concomitant Dupuytren contracture in the same hand. Conclusions Amniotic fluid therapy injections may offer a biologic alternative for conservative treatment of trigger finger, particularly for patients with diabetes. Decreased pain, decreased triggering, and improved DASH scores offer preliminary evidence supporting the use of amniotic injections for stenosing tenosynovitis. Type of study/level of evidence Therapeutic IV.
Collapse
Affiliation(s)
- Michael T. Quinet
- Department of Medicine, Augusta University/Medical College of George Partnership, Athens, GA
| | | | - Emily Morris
- Department of Medicine, Augusta University/Medical College of George Partnership, Athens, GA
| | | | - Haley Cook
- Department of Medicine, Augusta University/Medical College of George Partnership, Athens, GA
| | - Nathan Walter
- Department of Medicine, Augusta University/Medical College of George Partnership, Athens, GA
| | - Michael Shuler
- Athens Orthopedic Clinic, Athens, GA
- Corresponding author: Michael Shuler, MD, Athens Orthopedic Clinic, 1765 Old West Broad Street, Building 2, Suite 200, Athens, GA 30606.
| |
Collapse
|
6
|
Wei B, Wang C, Yan C, Tang B, Yu X, Zhang H, Tang L, Wang Q. Osteoprotegerin/bone morphogenetic protein 2 combining with collagen sponges on tendon-bone healing in rabbits. J Bone Miner Metab 2020; 38:432-441. [PMID: 31980897 DOI: 10.1007/s00774-019-01078-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/17/2019] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The aim was to investigate the effect of collagen sponges (CS) as a delivery device for osteoprotegerin (OPG)/bone morphogenetic protein 2 (BMP-2) and support matrix on the tendon-bone healing after anterior crusicate ligament (ACL) reconstruction in modeled rabbits. MATERIALS AND METHODS Sixty New Zealand white rabbits were randomly divided into four groups based on treatments they received at the tendon-bone interface after left knee ACL reconstruction: the control group, OPG/BMP-2, CS, and OPG/BMP-2/CS combination. At 4, 8 and 12 weeks post-surgery, five rabbits from each group were euthanized to examine the tendon-bone healing. Levels of OPG and BMP-2 in synovial fluid, the bone tunnel enlargement value, the histomorphological typing of tendon-bone interface, and the bone tunnel area of the tendon-bone interface were compared among different treatments. RESULTS The OPG/BMP-2/CS combination treatment group had the highest levels of OPG and BMP-2 in synovial fluid (both P < 0.05), the greatest number of Sharpey-like collagen fibers at all test points (P < 0.05), the most fibrocartilage enthesis on week 12, the greatest bone tunnel area (P < 0.05), and the greatest decrease in bone tunnel enlargement on week 12 (P < 0.05). Histomorphological typing of tendon-bone interface of all groups showed changes varying from tendon-bone separation to firm healing, and the change was most significant in the OPG/BMP-2/CS combination treatment group. CONCLUSION CS treatment alone serves as a fixing support, and CS combining with growth factors OPG/BMP-2 ensures slow and stable release of OPG/BMP-2, significantly improves the tendon-bone healing in the rabbit ACL model.
Collapse
Affiliation(s)
- Bing Wei
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Chao Wang
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Cheng Yan
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Bushun Tang
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Xiaofei Yu
- Department of Pathology, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Hui Zhang
- Department of General Diseases, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Lixia Tang
- Department of General Diseases, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China.
| | - Qing Wang
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China.
| |
Collapse
|
7
|
Zhao F, Hu X, Zhang J, Shi W, Ren B, Huang H, Ao Y. A more flattened bone tunnel has a positive effect on tendon-bone healing in the early period after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2019; 27:3543-3551. [PMID: 30877317 DOI: 10.1007/s00167-019-05420-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE The purpose of this study was to evaluate whether a flattened bone tunnel has a positive effect on the tendon-bone healing (TBH) process in the early period after anterior cruciate ligament (ACL) reconstruction. METHODS Seventy-two New Zealand White rabbits were randomly allocated into two groups, the flattened tunnel (FT) group and the conventional round tunnel (RT) group. We compared the cross-sectional areas and diameters of the bone tunnels between the two groups through computed tomography (CT) scanning. TBH results between the two groups were assessed by histological analysis, micro-CT scanning and biomechanical tests at 4 weeks, 8 weeks and 12 weeks after operation. RESULTS The cross-sectional areas of the bone tunnels between the two groups were almost the same. However, the shape of bone tunnels in the FT group was more flattened. A faster cellular and collagen remoulding process were found in the FT group. Semiquantitative histological analysis of Safranin O staining showed that there was more fibrocartilage formation in the interface region in the FT group (P < 0.05). Sirius Red staining showed that the tissues in the interface areas were more intense in the FT group. Micro-CT scanning showed that more new bone formation could be found in the interface region in the FT group. The biomechanical tests also showed that FT ACL reconstruction will result in a stronger regenerated tendon-bone interface. CONCLUSIONS Our study found that a flattened bone tunnel accelerated TBH in the early period after ACL reconstruction surgery in a rabbit model, which lays the groundwork for further clinical practice of this ACL reconstruction method.
Collapse
Affiliation(s)
- Fengyuan Zhao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, NO. 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, NO. 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Jiahao Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, NO. 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Weili Shi
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, NO. 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Bo Ren
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, NO. 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Hongjie Huang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, NO. 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, NO. 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
8
|
Calejo I, Costa-Almeida R, Reis RL, Gomes ME. Enthesis Tissue Engineering: Biological Requirements Meet at the Interface. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:330-356. [DOI: 10.1089/ten.teb.2018.0383] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isabel Calejo
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Manuela E. Gomes
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
9
|
Hirakawa Y, Manaka T, Orita K, Ito Y, Ichikawa K, Nakamura H. The accelerated effect of recombinant human bone morphogenetic protein 2 delivered by β-tricalcium phosphate on tendon-to-bone repair process in rabbit models. J Shoulder Elbow Surg 2018; 27:894-902. [PMID: 29396102 DOI: 10.1016/j.jse.2017.11.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bone morphogenetic protein 2 (BMP-2) plays an important role in the tendon-to-bone repair process. However, there is no previous literature on acceleration of the tendon-to-bone repair process by BMP-2 delivered by β-tricalcium phosphate (β-TCP). The aim of this study was to investigate the accelerated effect of recombinant human BMP-2 (rhBMP-2) delivered by β-TCP on the tendon-to-bone repair process. METHODS The infraspinatus tendon of elderly female Japanese white rabbits was detached from its insertion site on the humerus. A bone tunnel (4.2 mm) was created at the original insertion site of the tendon, which was repaired using the McLaughlin procedure after filling in β-TCP (porosity 75%) without BMP-2 (control group) or with 10 µg rhBMP-2 (BMP group). The rabbits were sacrificed at the second, fourth, and eighth weeks after surgery for histologic analysis and biomechanical testing. We also evaluated the maturity of the tendon-to-bone junction using the tendon-to-bone maturity score. RESULTS Histologic analysis revealed no significant difference between the groups at 2 and 8 weeks but a more abundant organized fibrocartilage at the tendon-to-bone junction in the BMP group at 4 weeks. The tendon-to-bone maturity score improved sequentially. The interface of the BMP group at 4 weeks had significantly improved biomechanical properties than that of the control group. CONCLUSION The tendon-to-bone repair process was facilitated by the use of rhBMP-2 delivered by β-TCP at 4 weeks.
Collapse
Affiliation(s)
- Yoshihiro Hirakawa
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomoya Manaka
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Kumi Orita
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoichi Ito
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan; Osaka Shoulder Center, Ito Clinic, Osaka, Japan
| | - Koichi Ichikawa
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
10
|
Baicalein Accelerates Tendon-Bone Healing via Activation of Wnt/ β-Catenin Signaling Pathway in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3849760. [PMID: 29693006 PMCID: PMC5859801 DOI: 10.1155/2018/3849760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023]
Abstract
Background Tendon-bone healing is a reconstructive procedure which requires a tendon graft healing to a bone tunnel or to the surface of bone after the junction injury between tendon, ligament, and bone. The surgical reattachment of tendon to bone often fails due to regeneration failure of the specialized tendon-bone junction. Materials and Methods An extra-articular tendon-bone healing rat model was established to discuss the effect of the baicalein 10 mg/(kg·d) in accelerating tendon-bone healing progress. Also, tendon-derived stem cells (TDSCs) were treated with various concentrations of baicalein or dickkopf-1 (DKK-1) to stimulate differentiation for 14 days. Results In vivo, tendon-bone healing strength of experiment group was obviously stronger than the control group in 3 weeks as well as in 6 weeks. And there were more mature fibroblasts, more Sharpey fibers, and larger new bone formation area treated intragastrically with baicalein compared with rats that were treated with vehicle for 3 weeks and 6 weeks. In vitro, after induction for 14 days, the expressions of osteoblast differentiation markers, that is, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), osterix (OSX), and collagen I, were upregulated and Wnt/β-catenin signaling pathway was enhanced in TDSCs. The effect of DKK-1 significantly reduced the effect of baicalein on the osteogenic differentiation. Conclusion These data suggest that baicalein may stimulate TDSCs osteogenic differentiation via activation of Wnt/β-catenin signaling pathway to accelerate tendon-bone healing.
Collapse
|
11
|
Hexter AT, Thangarajah T, Blunn G, Haddad FS. Biological augmentation of graft healing in anterior cruciate ligament reconstruction: a systematic review. Bone Joint J 2018; 100-B:271-284. [PMID: 29589505 DOI: 10.1302/0301-620x.100b3.bjj-2017-0733.r2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims The success of anterior cruciate ligament reconstruction (ACLR) depends on osseointegration at the graft-tunnel interface and intra-articular ligamentization. Our aim was to conduct a systematic review of clinical and preclinical studies that evaluated biological augmentation of graft healing in ACLR. Materials and Methods In all, 1879 studies were identified across three databases. Following assessment against strict criteria, 112 studies were included (20 clinical studies; 92 animal studies). Results Seven categories of biological interventions were identified: growth factors, biomaterials, stem cells, gene therapy, autologous tissue, biophysical/environmental, and pharmaceuticals. The methodological quality of animal studies was moderate in 97%, but only 10% used clinically relevant outcome measures. The most interventions in clinical trials target the graft-tunnel interface and are applied intraoperatively. Platelet-rich plasma is the most studied intervention, but the clinical outcomes are mixed, and the methodological quality of studies was suboptimal. Other biological therapies investigated in clinical trials include: remnant-augmented ACLR; bone substitutes; calcium phosphate-hybridized grafts; extracorporeal shockwave therapy; and adult autologus non-cultivated stem cells. Conclusion There is extensive preclinical research supporting the use of biological therapies to augment ACLR. Further clinical studies that meet the minimum standards of reporting are required to determine whether emerging biological strategies will provide tangible benefits in patients undergoing ACLR. Cite this article: Bone Joint J 2018;100-B:271-84.
Collapse
Affiliation(s)
- A T Hexter
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, and Royal National Orthopaedic Hospital Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - T Thangarajah
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, and Royal National Orthopaedic Hospital Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - G Blunn
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, and Royal National Orthopaedic Hospital Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - F S Haddad
- University College London Hospitals, 235 Euston Road, London, NW1 2BU, UK and NIHR University College London Hospitals Biomedical Research Centre, UK
| |
Collapse
|
12
|
Zou G, Song E, Wei B. Effects of tendon-bone healing of anterior cruciate ligament reconstruction by osteoprotegerin combined with deproteinized bovine bone. Muscles Ligaments Tendons J 2017; 7:256-262. [PMID: 29264336 DOI: 10.11138/mltj/2017.7.2.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The healing of a tendon graft in a bone tunnel depends on bone ingrowth into the interface between tendon and bone, or that can enhance tendon-bone healing, which is important to reduce the failure rate after ACL reconstruction. Methods Sixty skeletally mature, New Zealand white rabbits underwent left ACL reconstruction. OPG/DBB compound (concentration ratio of 30%, 60%, 100%) was delivered to the tendon-bone interface with use of a DBB carrier, and nothing as control group. Twenty animals were killed at 4, 8 and 12 weeks after surgery. I-IV levels of semi-quantitative and Sharpey fibers at the healing tendon-bone interface were evaluated, and the biomechanical properties were tested. Results A significantly greater amount of Sharpey fibers at the healing tendon-bone interface in the concentration ratio of 100% OPG/DBB-treated group was found compared with the others at all time-points (P<0.05), and it is the same to the Grade Scores at 12 weeks (P<0.05). The femur-ACL-tibia complex of the concentration ratio of 100% OPG/DBB-treated group has significantly increased stiffness compared with the others at 12 weeks (P<0.05). Conclusion The concentration ratio of 100% OPG/DBB compound significantly improve bone formation around the grafted tendon and improve the stiffness at the healing tendon-bone junction in a rabbit model.
Collapse
Affiliation(s)
- Guoyao Zou
- Department of Spinal and Joint Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Enhong Song
- Department of Spinal and Joint Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bing Wei
- Department of Spinal and Joint Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
13
|
Setiawati R, Utomo DN, Rantam FA, Ifran NN, Budhiparama NC. Early Graft Tunnel Healing After Anterior Cruciate Ligament Reconstruction With Intratunnel Injection of Bone Marrow Mesenchymal Stem Cells and Vascular Endothelial Growth Factor. Orthop J Sports Med 2017; 5:2325967117708548. [PMID: 28680888 PMCID: PMC5482354 DOI: 10.1177/2325967117708548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent adult stem cells and have become an important source of cells for engineering tissue repair and cell therapy. Vascular endothelial growth factor (VEGF) promotes angiogenesis and contributes fibrous integration between tendon and bone during the early postoperative stage. Both MSCs and VEGF can stimulate cell proliferation, differentiation, and matrix deposition by enhancing angiogenesis and osteogenesis of the graft in the tunnel. Hypothesis: Injection of intratunnel BM-MSCs and VEGF enhances the early healing process of a tendon graft. Study Design: Controlled laboratory study. Methods: In this controlled animal laboratory study, each of 4 groups of rabbits underwent unilateral anterior cruciate ligament (ACL) reconstruction with use of the ipsilateral semitendinosus tendon. The rabbits received intratunnel injection of BM-MSCs and VEGF with a fibrin glue seal covering the distal tunnel at the articular site. Evaluation using magnetic resonance imaging (MRI), collagen type III expression, and biomechanical analyses were performed at 3- and 6-week intervals. Results: All parameters using MRI, collagen type III expression, and biomechanical analysis of pullout strength of the graft showed that application of intratunnel BM-MSCs and VEGF enhanced tendon-to-bone healing after ACL reconstruction. Conclusion: Intratunnel injections of BM-MSCs and VEGF after ACL reconstruction enhanced graft tunnel healing. Overall, the femoral tunnel that received BM-MSCs and VEGF had better advanced healing with increased collagen type III fibers and better outcomes on MRI and biomechanical analysis. MRI is the most reliable tool for clinical use in evaluating stages of ACL healing after reconstruction, since biopsy is an invasive procedure.
Collapse
Affiliation(s)
- Rosy Setiawati
- Musculoskeletal Division, Department of Radiology, School of Medicine, Airlangga University, Dr Soetomo Hospital, Airlangga University Hospital, Surabaya, Indonesia.,Stem Cell Laboratory, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Dwikora Novembri Utomo
- Stem Cell Laboratory, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Orthopedics, School of Medicine, Airlangga University, Dr Soetomo Hospital, Surabaya, Indonesia.,Regenerative Medicine, School of Medicine, Airlangga University, Dr Soetomo Hospital, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Laboratory, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Virology and Immunology Laboratory, Department of Microbiology, School of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | - Nadia Nastassia Ifran
- Nicolaas Institute of Constructive Orthopedic Research and Education Foundation, Jakarta, Indonesia
| | - Nicolaas C Budhiparama
- Nicolaas Institute of Constructive Orthopedic Research and Education Foundation, Jakarta, Indonesia
| |
Collapse
|
14
|
Zhang P, Zhi Y, Fang H, Wu Z, Chen T, Jiang J, Chen S. Effects of polyvinylpyrrolidone-iodine on tendon-bone healing in a rabbit extra-articular model. Exp Ther Med 2017; 13:2751-2756. [PMID: 28587336 PMCID: PMC5450688 DOI: 10.3892/etm.2017.4359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/17/2017] [Indexed: 12/16/2022] Open
Abstract
Polyvinylpyrrolidone-iodine (PVP-I) is a broad-spectrum antimicrobial agent, but its effects on tendon-bone healing are unclear. The purpose of this study was to investigate the effects of PVP-I on bone marrow mesenchymal stem cells (BMSCs) in vitro and on tendon-bone healing in vivo. In this study, following investigation of the concentration-dependent effects of PVP-I on the viability and osteogenic differentiation of BMSCs, the appropriate concentration of PVP-I was selected for animal experiments. New Zealand white rabbits received autologous tendon transplantation with and without PVP-I treatment of the graft tendon. Subsequently, histological examination, biomechanical testing and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses were conducted. At 6 weeks post-surgery, connective tissue and osteogenesis was observed at the tendon-bone interface in the PVP-I group. At 12 weeks post-surgery, the interface width in the PVP-I group was much narrower compared with that of the control group. Furthermore, the biomechanical properties of the PVP-I group were significantly stronger than those in the control group (P<0.05). RT-qPCR examination revealed that the mRNA levels of bone morphogenetic protein-2 and osteopontin in the PVP-I group were higher than those in the control group at 6 weeks (P<0.05). In conclusion, these results indicated that PVP-I promoted tendon-bone healing via osteogenesis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yunlong Zhi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hongwei Fang
- Department of Anesthesiology, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Ziying Wu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Tianwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jia Jiang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
15
|
Saccomanno MF, Capasso L, Fresta L, Milano G. Biological enhancement of graft-tunnel healing in anterior cruciate ligament reconstruction. JOINTS 2016; 4:174-182. [PMID: 27900311 DOI: 10.11138/jts/2016.4.3.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sites where graft healing occurs within the bone tunnel and where the intra-articular ligamentization process takes place are the two most important sites of biological incorporation after anterior cruciate ligament (ACL) reconstruction, since they help to determine the mechanical behavior of the femur-ACL graft-tibia complex. Graft-tunnel healing is a complex process influenced by several factors, such as type of graft, preservation of remnants, bone quality, tunnel length and placement, fixation techniques and mechanical stress. In recent years, numerous experimental and clinical studies have been carried out to evaluate potential strategies designed to enhance and optimize the biological environment of the graft-tunnel interface. Modulation of inflammation, tissue engineering and gene transfer techniques have been applied in order to obtain a direct-type fibrocartilaginous insertion of the ACL graft, similar to that of native ligament, and to accelerate the healing process of tendon grafts within the bone tunnel. Although animal studies have given encouraging results, clinical studies are lacking and their results do not really support the use of the various strategies in clinical practice. Further investigations are therefore needed to optimize delivery techniques, therapeutic concentrations, maintenance of therapeutic effects over time, and to reduce the risk of undesirable effects in clinical practice.
Collapse
Affiliation(s)
- Maristella F Saccomanno
- Department of Orthopaedics, Catholic University, "A. Gemelli" University Hospital, Rome, Italy
| | - Luigi Capasso
- Department of Orthopaedics, Catholic University, "A. Gemelli" University Hospital, Rome, Italy
| | - Luca Fresta
- Department of Orthopaedics, Catholic University, "A. Gemelli" University Hospital, Rome, Italy
| | - Giuseppe Milano
- Department of Orthopaedics, Catholic University, "A. Gemelli" University Hospital, Rome, Italy
| |
Collapse
|
16
|
Adipose-Derived Regenerative Cells Promote Tendon-Bone Healing in a Rabbit Model. Arthroscopy 2016; 32:851-9. [PMID: 26790583 DOI: 10.1016/j.arthro.2015.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 08/15/2015] [Accepted: 10/15/2015] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate the therapeutic effect of adipose-derived regenerative cell (ADRC) administration on tendon-bone healing in a rabbit anterior cruciate ligament (ACL) reconstruction model. METHODS ACL reconstruction with semitendinosus tendon autograft was performed in the right knees of adult white rabbits. Eighty rabbits were divided into 2 groups: the treatment group, in which the graft was coated with ADRCs mixed in a fibrin glue carrier during surgery, and the control group, in which the graft was coated with fibrin glue only. At 2, 4, 6, 8, and 12 weeks postoperatively, 8 rabbits were killed in each group. Three were used for histologic evaluation at the tendon-bone interface and 5 for biomechanical examination. RESULTS On histologic analysis, chondroid cells appeared more orderly and more regular in size and shape and Sharpey-like fibers, which connected the tendon graft and bone tissue, appeared earlier in ADRC-treated tissues than in control tissues. On biomechanical analysis, the ultimate failure load in the ADRC-treated group was significantly greater than that in the control group at 2 weeks (29.5 ± 7.2 N v 20.9 ± 2.7 N, P = .016) and 4 weeks (32.3 ± 3.9 N v 22.8 ± 5.4 N, P = .016). Stiffness was significantly higher in the ADRC-treated group than in the control group at 6 weeks (21.7 ± 5.9 N/mm v 12.6 ± 4.9 N/mm, P = .037). Although the ultimate failure load and stiffness of the ADRC-treated limbs were higher than those of the limbs in the control group at 8 and 12 weeks, these differences were not significant. CONCLUSIONS Local administration of ADRCs promoted the early healing process at the tendon-bone junction, both histologically and mechanically, in a rabbit ACL reconstruction model. CLINICAL RELEVANCE ADRCs could be used to enhance graft healing in ACL reconstruction.
Collapse
|
17
|
Zhang X, Ma Y, Fu X, Liu Q, Shao Z, Dai L, Pi Y, Hu X, Zhang J, Duan X, Chen W, Chen P, Zhou C, Ao Y. Runx2-Modified Adipose-Derived Stem Cells Promote Tendon Graft Integration in Anterior Cruciate Ligament Reconstruction. Sci Rep 2016; 6:19073. [PMID: 26743583 PMCID: PMC4705474 DOI: 10.1038/srep19073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/02/2015] [Indexed: 01/04/2023] Open
Abstract
Runx2 is a powerful osteo-inductive factor and adipose-derived stem cells (ADSCs) are multipotent. However, it is unknown whether Runx2-overexpressing ADSCs (Runx2-ADSCs) could promote anterior cruciate ligament (ACL) reconstruction. We evaluated the effect of Runx2-ADSCs on ACL reconstruction in vitro and in vivo. mRNA expressions of osteocalcin (OCN), bone sialoprotein (BSP) and collagen I (COLI) increased over time in Runx2-ADSCs. Runx2 overexpression inhibited LPL and PPARγ mRNA expressions. Runx2 induced alkaline phosphatase activity markedly. In nude mice injected with Runx2-ADSCs, promoted bone formation was detected by X-rays 8 weeks after injection. The healing of tendon-to-bone in a rabbit model of ACL reconstruction treated with Runx2-ADSCs, fibrin glue only and an RNAi targeting Runx2, was evaluated with CT 3D reconstruction, histological analysis and biomechanical methods. CT showed a greater degree of new bone formation around the bone tunnel in the group treated with Runx2-ADSCs compared with the fibrin glue group and RNAi Runx2 group. Histology showed that treatment with Runx2-ADSCs led to a rapid and significant increase at the tendon-to-bone compared with the control groups. Biomechanical tests demonstrated higher tendon pullout strength in the Runx2-ADSCs group at early time points. The healing of the attachment in ACL reconstruction was enhanced by Runx2-ADSCs.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Yong Ma
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Xin Fu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Qiang Liu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Zhenxing Shao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Linghui Dai
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Yanbin Pi
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Jiying Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Xiaoning Duan
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Wenqing Chen
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Ping Chen
- Department of Biochemistry and Molecular Biology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| |
Collapse
|
18
|
Tokunaga T, Ide J, Arimura H, Nakamura T, Uehara Y, Sakamoto H, Mizuta H. Local Application of Gelatin Hydrogel Sheets Impregnated With Platelet-Derived Growth Factor BB Promotes Tendon-to-Bone Healing After Rotator Cuff Repair in Rats. Arthroscopy 2015; 31:1482-91. [PMID: 25911389 DOI: 10.1016/j.arthro.2015.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/12/2015] [Accepted: 03/06/2015] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine whether the local application of platelet-derived growth factor BB (PDGF-BB) in hydrogel sheets would promote healing and improve histologic characteristics and biomechanical strength after rotator cuff (RC) repair in rats. METHODS To assess the effect of PDGF-BB on tendon-to-bone healing we divided 36 adult male Sprague-Dawley rats treated with bilateral surgery to repair the supraspinatus tendon at its insertion site into 3 groups: group 1 = suture-only group; group 2 = suture and gelatin hydrogel sheets impregnated with phosphate-buffered saline (PBS); and group 3 = suture and gelatin hydrogel sheets impregnated with PDGF-BB (0.5 μg). Semiquantitative histologic evaluation was carried out 2, 6, and 12 weeks later; cell proliferation was assessed 2 and 6 weeks postoperatively by immunostaining for proliferating cell nuclear antigen (PCNA), and biomechanical testing, including ultimate load to failure, stiffness, and ultimate stress to failure, was performed 12 weeks after the operation. RESULTS At 2 weeks, the average percentage of PCNA-positive cells at the insertion site was significantly higher in group 3 (40.5% ± 2.4%) than in group 1 (32.1% ± 6.9%; P = .03) and group 2 (31.9% ± 3.7%; P = .02). At 2 and 6 weeks, the histologic scores were similar among the 3 groups. At 12 weeks, the histologic score was significantly higher in group 3 (10.3 ± 0.8) than in group 1 (8.5 ± 0.5; P = .002) or group 2 (8.8 ± 0.8; P = .009), whereas ultimate load to failure, stiffness, and ultimate load to stress (normal control population, 44.73 ± 9.75 N, 27.59 ± 4.32 N/mm, and 21.33 ± 4.65 N/mm(2), respectively) were significantly higher in group 3 (28.28 ± 6.28 N, 11.05 ± 2.37 N/mm, and 7.99 ± 2.13 N/mm(2), respectively) than in group 1 (10.44 ± 1.98 N, 4.74 ± 1.31 N/mm, and 3.28 ± 1.27 N/mm(2), respectively; all P < .001) or group 2 (11.85 ± 2.89 N, 5.86 ± 1.75 N/mm, and 3.31 ± 0.80 N/mm(2), respectively; all P < .001). CONCLUSIONS The placement of a PDGF-BB-impregnated hydrogel sheet just lateral to a transected and acutely reattached supraspinatus tendon produced significantly more PCNA-positive cells at 2 weeks and greater collagen fiber orientation, ultimate failure loads, stiffness, and stress to failure at 12 weeks than did a PBS-impregnated hydrogel sheet. No differences in vascularity or cellularity were observed. CLINICAL RELEVANCE The local application of PDGF-BB-impregnated gelatin hydrogel may help to promote tendon-to-bone healing after RC repair in humans.
Collapse
Affiliation(s)
- Takuya Tokunaga
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Junji Ide
- Department of Advanced Joint Reconstructive Surgery, Kumamoto University Hospital, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Arimura
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayuki Nakamura
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Uehara
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetoshi Sakamoto
- Department of Mechanical System Engineering, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Mizuta
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Proffen BL, Sieker JT, Murray M. Bio-enhanced repair of the anterior cruciate ligament. Arthroscopy 2015; 31:990-7. [PMID: 25595694 PMCID: PMC4426066 DOI: 10.1016/j.arthro.2014.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/30/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023]
Abstract
Suture repair of the anterior cruciate ligament (ACL) has been widely abandoned in favor of ACL reconstruction, largely because of the high rates of failure and unreliability of the outcomes after suture repair. However, there have been recent basic science studies that suggest that combining a suture repair with a biological adjunct may improve the results of suture repair of the ACL, with several studies in large animal models showing equivalent strength of an ACL treated with bio-enhanced repaired to that of an ACL graft at 3, 6, and 12 months after surgery. In addition, the groups treated with bio-enhanced repair had significantly less osteoarthritis when compared with the animals undergoing ACL reconstruction. These findings have led to a renewed interest in bio-enhanced primary repair as a way to make repair of the ACL a viable option for a select group of patients in the future.
Collapse
Affiliation(s)
- Benedikt L. Proffen
- Sports Medicine Research Laboratory, Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School
| | - Jakob T. Sieker
- Sports Medicine Research Laboratory, Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School
| | - Martha Murray
- Sports Medicine Research Laboratory, Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
20
|
Proto JD, Tang Y, Lu A, Chen WCW, Stahl E, Poddar M, Beckman SA, Robbins PD, Nidernhofer LJ, Imbrogno K, Hannigan T, Mars WM, Wang B, Huard J. NF-κB inhibition reveals a novel role for HGF during skeletal muscle repair. Cell Death Dis 2015; 6:e1730. [PMID: 25906153 PMCID: PMC4650539 DOI: 10.1038/cddis.2015.66] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/08/2015] [Accepted: 02/09/2015] [Indexed: 11/10/2022]
Abstract
The transcription factor nuclear factor κB (NF-κB)/p65 is the master regulator of inflammation in Duchenne muscular dystrophy (DMD). Disease severity is reduced by NF-κB inhibition in the mdx mouse, a murine DMD model; however, therapeutic targeting of NF-κB remains problematic for patients because of its fundamental role in immunity. In this investigation, we found that the therapeutic effect of NF-κB blockade requires hepatocyte growth factor (HGF) production by myogenic cells. We found that deleting one allele of the NF-κB subunit p65 (p65+/-) improved the survival and enhanced the anti-inflammatory capacity of muscle-derived stem cells (MDSCs) following intramuscular transplantation. Factors secreted from p65+/- MDSCs in cell cultures modulated macrophage cytokine expression in an HGF-receptor-dependent manner. Indeed, we found that following genetic or pharmacologic inhibition of basal NF-κB/p65 activity, HGF gene transcription was induced in MDSCs. We investigated the role of HGF in anti-NF-κB therapy in vivo using mdx;p65+/- mice, and found that accelerated regeneration coincided with HGF upregulation in the skeletal muscle. This anti-NF-κB-mediated dystrophic phenotype was reversed by blocking de novo HGF production by myogenic cells following disease onset. HGF silencing resulted in increased inflammation and extensive necrosis of the diaphragm muscle. Proteolytic processing of matrix-associated HGF is known to activate muscle stem cells at the earliest stages of repair, but our results indicate that the production of a second pool of HGF by myogenic cells, negatively regulated by NF-κB/p65, is crucial for inflammation resolution and the completion of repair in dystrophic skeletal muscle. Our findings warrant further investigation into the potential of HGF mimetics for the treatment of DMD.
Collapse
Affiliation(s)
- J D Proto
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Y Tang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - A Lu
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W C W Chen
- 1] Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E Stahl
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M Poddar
- 1] Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S A Beckman
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P D Robbins
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - L J Nidernhofer
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - K Imbrogno
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T Hannigan
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W M Mars
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - B Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Huard
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Jabbari E. Nanoparticles for Stem‐Cell Engineering. STEM‐CELL NANOENGINEERING 2015:143-169. [DOI: 10.1002/9781118540640.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
The immunosuppressive effect of Siglecs on tendon-bone healing after ACL reconstruction. Med Hypotheses 2014; 84:38-9. [PMID: 25434483 DOI: 10.1016/j.mehy.2014.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/12/2014] [Indexed: 11/20/2022]
Abstract
The quality of the bone-tendon healing is very important to the surgery outcome after anterior cruciate ligament reconstruction. The necrosis of autograft and local new blood vessels occur after the surgery. The fibroblasts and mesenchymal cells presenting in the tendon-bone interface as well as the infiltrated of neutrophils and macrophages improve the biomechanical properties of the healing. We hypothesize that immunosuppressive effect of Siglecs which present on the surface of neutrophils and macrophages play the important roles to regulate acute local inflammatory reaction, maintain the physiological environment and induce the differentiation of the pluripotent cells to form the accepted histologic structure healing of the tendon-bone interface. It might be helpful to understand the mechanism of tendon-bone healing.
Collapse
|
23
|
Kuang GM, Yau WP, Lu WW, Chiu KY. Local application of strontium in a calcium phosphate cement system accelerates healing of soft tissue tendon grafts in anterior cruciate ligament reconstruction: experiment using a rabbit model. Am J Sports Med 2014; 42:2996-3002. [PMID: 25239932 DOI: 10.1177/0363546514549536] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Healing of soft tissue tendon grafts within the bone tunnel in anterior cruciate ligament (ACL) reconstruction is known to be slower than that of bone-patellar tendon-bone grafts. There are attempts to accelerate healing of the graft within the bone tunnel. One of the methods is the use of strontium-enriched calcium phosphate cement (Sr-CPC). Early results in animal studies have been encouraging, although it is not known whether the accelerated healing was solely caused by the effect of strontium within the cement or by the calcium phosphate cement (CPC) itself. HYPOTHESIS There would be differences between Sr-CPC and conventional CPC in terms of the effect on healing of soft tissue tendon grafts within the bone tunnels in ACL reconstruction. STUDY DESIGN Controlled laboratory study. METHODS A total of 30 single-bundle ACL reconstruction procedures were performed in 15 rabbits with the use of an Achilles tendon allograft. The graft on the left limb was coated with Sr-CPC, while that on the right limb was coated with CPC. Three animals each were sacrificed for histological and histomorphometric analyses at 3, 6, 9, 12, and 24 weeks after surgery. RESULTS In the Sr-CPC group, early formation of Sharpey fibers was present at 6 weeks after surgery, while early remodeling of a graft-fibrocartilage-bone junction was noted at 12 weeks. In the CPC group, early formation of Sharpey fibers was only found at 9 to 12 weeks after surgery. At 24 weeks, a direct enthesis was found in both groups. According to the histomorphometric score, graft healing in the Sr-CPC group took place 3 weeks faster than that in the CPC group at and before 12 weeks; however, there was no difference between the groups at 24 weeks. CONCLUSION The local application of strontium in a CPC system leads to accelerated graft healing within the bone tunnels. CLINICAL RELEVANCE The use of Sr-CPC to enhance graft-bone healing may improve the clinical results of ACL reconstruction using soft tissue tendon grafts.
Collapse
Affiliation(s)
- Guan-Ming Kuang
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, University of Hong Kong, Shenzhen, China
| | - W P Yau
- Department of Orthopaedics and Traumatology, Li KaShing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - William W Lu
- Department of Orthopaedics and Traumatology, Li KaShing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - K Y Chiu
- Department of Orthopaedics and Traumatology, Li KaShing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
HGF-Met Pathway in Regeneration and Drug Discovery. Biomedicines 2014; 2:275-300. [PMID: 28548072 PMCID: PMC5344275 DOI: 10.3390/biomedicines2040275] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/15/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022] Open
Abstract
Hepatocyte growth factor (HGF) is composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. Activation of the HGF–Met pathway evokes dynamic biological responses that support morphogenesis (e.g., epithelial tubulogenesis), regeneration, and the survival of cells and tissues. Characterizations of conditional Met knockout mice have indicated that the HGF–Met pathway plays important roles in regeneration, protection, and homeostasis in various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. The promotion of cell growth, survival, migration, and morphogenesis that is associated with extracellular matrix proteolysis are the biological activities that underlie the therapeutic actions of HGF. Recombinant HGF protein and the expression vectors for HGF are biological drug candidates for the treatment of patients with diseases and injuries that are associated with impaired tissue function. The intravenous/systemic administration of recombinant HGF protein has been well tolerated in phase I/II clinical trials. The phase-I and phase-I/II clinical trials of the intrathecal administration of HGF protein for the treatment of patients with amyotrophic lateral sclerosis and spinal cord injury, respectively, are ongoing.
Collapse
|
25
|
Rundle CH, Chen ST, Coen MJ, Wergedal JE, Stiffel V, Lau KHW. Direct lentiviral-cyclooxygenase 2 application to the tendon-bone interface promotes osteointegration and enhances return of the pull-out tensile strength of the tendon graft in a rat model of biceps tenodesis. PLoS One 2014; 9:e98004. [PMID: 24848992 PMCID: PMC4029780 DOI: 10.1371/journal.pone.0098004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
This study sought to determine if direct application of the lentiviral (LV)-cyclooxygenase 2 (COX2) vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis. The LV-COX2 gene transfer strategy was chosen for investigation because a similar COX2 gene transfer strategy promoted bony bridging of the fracture gap during bone repair, which involves similar histologic transitions that occur in osteointegration. Briefly, a 1.14-mm diameter tunnel was drilled in the mid-groove of the humerus of adult Fischer 344 rats. The LV-COX2 or βgal control vector was applied directly into the bone tunnel and onto the end of the tendon graft, which was then pulled into the bone tunnel. A poly-L-lactide pin was press-fitted into the tunnel as interference fixation. Animals were sacrificed at 3, 5, or 8 weeks for histology analysis of osteointegration. The LV-COX2 gene transfer strategy enhanced neo-chondrogenesis at the tendon-bone interface but with only marginal effect on de novo bone formation. The tendon-bone interface of the LV-COX2-treated tenodesis showed the well-defined tendon-to-fibrocartilage-to-bone histologic transitions that are indicative of osteointegration of the tendon graft. The LV-COX2 in vivo gene transfer strategy also significantly enhanced angiogenesis at the tendon-bone interface. To determine if the increased osteointegration was translated into an improved pull-out mechanical strength property, the pull-out tensile strength of the LV-COX2-treated tendon grafts was determined with a pull-out mechanical testing assay. The LV-COX2 strategy yielded a significant improvement in the return of the pull-out strength of the tendon graft after 8 weeks. In conclusion, the COX2-based in vivo gene transfer strategy enhanced angiogenesis, osteointegration and improved return of the pull-out strength of the tendon graft. Thus, this strategy has great potential to be developed into an effective therapy to promote tendon-to-bone healing after tenodesis or related surgeries.
Collapse
Affiliation(s)
- Charles H. Rundle
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United State of America
| | - Shin-Tai Chen
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United State of America
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, California, United State of America
| | - Michael J. Coen
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Orthopedic Surgery, Loma Linda University School of Medicine, Loma Linda, California, United State of America
| | - Jon E. Wergedal
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United State of America
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, California, United State of America
| | - Virginia Stiffel
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United State of America
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, California, United State of America
- * E-mail:
| |
Collapse
|
26
|
Nakase J, Kitaoka K, Toratani T, Kosaka M, Ohashi Y, Tsuchiya H. Grafted tendon healing in femoral and tibial tunnels after anterior cruciate ligament reconstruction. J Orthop Surg (Hong Kong) 2014; 22:65-9. [PMID: 24781617 DOI: 10.1177/230949901402200117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To evaluate tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction in the fibrous interzone (FIZ) of the femoral and tibial tunnels using magnetic resonance imaging (MRI). METHODS Five men and 5 women (mean age, 29 years) underwent arthroscopic ACL reconstruction by a single surgeon, using the semitendinosus and gracilis tendon. The tendon-to-bone healing in the FIZ was evaluated using sagittal and coronal MRI at 1, 3, 6, 9, 12, and 24 weeks, with the knee flexed at 60º and the tendon graft straight in both images. The signal intensity of the FIZ was visually assessed by comparing it with anatomic landmarks in the same patient's knee, and classified into 4 grades. It was grade 3 when similar to that of the patellar tendon, grade 2 when similar to that of skeletal muscle, grade 1 when greater than that of muscle but less than that of joint fluid, and grade 0 when similar to that of joint fluid. At 24 weeks, subjective and objective functional outcomes were evaluated using the Lysholm score and the International Knee Documentation Committee score. RESULTS At 24 weeks, no patient had knee laxity. All patients had an International Knee Documentation Committee score of A, and their mean Lysholm score was 98.5. In the femoral tunnel, the FIZ did not change during the first 9 weeks (in particular the anterior part), but healing occurred rapidly thereafter. In the tibial tunnel, the FIZ healed over time in all locations, and healing was complete in the lateral and posterior parts at 12 weeks, and in all locations at 24 weeks. The mean signal intensity grade was significantly higher in the tibial than femoral FIZ at 3 to 12 weeks (p<0.01). CONCLUSION After ACL reconstruction, the tendon-to- bone healing in the FIZ of the tibial tunnel was faster than that of the femoral tunnel.
Collapse
Affiliation(s)
- Junsuke Nakase
- Department of Orthopaedic Surgery, School of Medicine, Kanazawa University, Kanazawa, Japan
| | | | - Tatsuhiro Toratani
- Department of Orthopaedic Surgery, School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Masahiro Kosaka
- Department of Orthopaedic Surgery, School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Yoshinori Ohashi
- Department of Orthopaedic Surgery, School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, School of Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
27
|
Zhu Z, Yu A, Hou M, Xie X, Li P. Effects of Sox9 gene therapy on the healing of bone-tendon junction: An experimental study. Indian J Orthop 2014; 48:88-95. [PMID: 24600069 PMCID: PMC3931159 DOI: 10.4103/0019-5413.125521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Sox9 is an operon that positively regulates the transcription of type II collagen. The generation of type II collagen plays a critical role in the healing process of the bone-tendon junction (BTJ). MATERIALS AND METHODS Sox9 was injected into an established bone-tendon healing model in order to observe its effect on the healing by determining the biomechanical properties of the BTJ. In addition, the recombinant adenovirus Sox9 was used to transduce the animal model samples and in vivo observations of the effect of the adenovirus-mediated Sox9 transduction as well as its promotion of the healing properties were made. RESULTS Sox9 was not only able to promote the healing, but also increased the biomechanical strength. The recombinant Sox9 delivered by adenoviral vector can be expressed at a high level in the damaged tissues of the bone-tendon junction, which can stimulate the production of type II collagen and improve the healing of the BTJ. CONCLUSIONS Based on the results of this study, we considered that gene therapy may be applicable in the healing process of the bone-tendon junction.
Collapse
Affiliation(s)
- Zhiqi Zhu
- Department of Orthopaedics, Wuhan University Zhongnan Hospital, Wuhan, Hubei Province, China,Department of Orthopaedics, People's Hospital of Longgang District, Shenzhen, China
| | - Aixi Yu
- Department of Orthopaedics, Wuhan University Zhongnan Hospital, Wuhan, Hubei Province, China,Address for correspondence: Dr. Aixi Yu, Department of Orthopaedics, Wuhan University Zhongnan Hospital, No. 169 Donghu Road, Wuhan, Hubei Province, China - 430030. E-mail:
| | - Ming Hou
- Department of Orthopaedics, People's Hospital of Longgang District, Shenzhen, China
| | - Xiaoqing Xie
- Department of Orthopaedics, People's Hospital of Longgang District, Shenzhen, China
| | - Peng Li
- Department of Orthopaedics, People's Hospital of Longgang District, Shenzhen, China
| |
Collapse
|
28
|
Yuan T, Zhang CQ, Wang JHC. Augmenting tendon and ligament repair with platelet-rich plasma (PRP). Muscles Ligaments Tendons J 2013. [PMID: 24367773 DOI: 10.11138/mltj/2013.3.3.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tendon and ligament injuries (TLI) commonly occur in athletes and non-athletes alike, and remarkably debilitate patients' athletic and personal abilities. Current clinical treatments, such as reconstruction surgeries, do not adequately heal these injuries and often result in the formation of scar tissue that is prone to re-injury. Platelet-rich plasma (PRP) is a widely used alternative option that is also safe because of its autologous nature. PRP contains a number of growth factors that are responsible for its potential to heal TLIs effectively. In this review, we provide a comprehensive report on PRP. While basic science studies in general indicate the potential of PRP to treat TLIs effectively, a review of existing literature on the clinical use of PRP for the treatment of TLIs indicates a lack of consensus due to varied treatment outcomes. This suggests that current PRP treatment protocols for TLIs may not be optimal, and that not all TLIs may be effectively treated with PRP. Certainly, additional basic science studies are needed to develop optimal treatment protocols and determine those TLI conditions that can be treated effectively.
Collapse
Affiliation(s)
- Ting Yuan
- Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, USA ; Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai, China
| | - Chang-Qing Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai, China
| | - James H-C Wang
- Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, USA
| |
Collapse
|
29
|
Oka S, Matsumoto T, Kubo S, Matsushita T, Sasaki H, Nishizawa Y, Matsuzaki T, Saito T, Nishida K, Tabata Y, Kurosaka M, Kuroda R. Local Administration of Low-Dose Simvastatin-Conjugated Gelatin Hydrogel for Tendon–Bone Healing in Anterior Cruciate Ligament Reconstruction. Tissue Eng Part A 2013. [DOI: 10.1089/ten.tea.2012.0325] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shinya Oka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seiji Kubo
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Sasaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichiro Nishizawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tokio Matsuzaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Saito
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kotaro Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
30
|
Goshima K, Nakase J, Xu Q, Matsumoto K, Tsuchiya H. Repair of segmental bone defects in rabbit tibia promoted by a complex of β-tricalcium phosphate and hepatocyte growth factor. J Orthop Sci 2012; 17:639-48. [PMID: 22763716 DOI: 10.1007/s00776-012-0262-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 06/01/2012] [Indexed: 01/03/2023]
Abstract
BACKGROUND Segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on bone tissue engineering. Clinical studies are ongoing to address application of hepatocyte growth factor (HGF) for treatment of some diseases; however, the use of HGF in bone tissue engineering has not been addressed. This study was performed to evaluate the effect of HGF in a complex of β-tricalcium phosphate (β-TCP) and collagen in repairing segmental bone defects. METHODS Segmental bone defects 5 mm long were created in the middle of the tibial shafts of rabbits. The defect was stabilized with external fixators and implanted with a complex of β-TCP granules and collagen, with or without 100 μg recombinant human HGF. Biweekly, bone regeneration and β-TCP resorption were assessed radiographically and histologically. At 4 and 8 weeks, bone regeneration was evaluated by use of micro-computed tomography and mechanical tests. RESULTS Compared with the bone tissue treated with β-TCP and collagen, mineralization, angiogenesis, new bone formation, and absorption of β-TCP were promoted 4 weeks postoperatively by treatment with HGF in the β-TCP and collagen group. These changes were associated with promoting biomechanical regeneration. By 8 weeks, the formation of bone marrow in newly generated bone and absorption of the β-TCP granules were completed in a shorter period by combining HGF with β-TCP and collagen, compared with tissues without HGF. CONCLUSIONS The combined application of HGF in a β-TCP and collagen matrix promoted histological bone healing and augmented mechanical strength of the healing bone, particularly in the early stages. The combined use of HGF and β-TCP for treatment of bone defects made a substantial difference.
Collapse
Affiliation(s)
- Kenichi Goshima
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | |
Collapse
|
31
|
Tabuchi K, Soejima T, Kanazawa T, Noguchi K, Nagata K. Chronological changes in the collagen-type composition at tendon-bone interface in rabbits. Bone Joint Res 2012; 1:218-24. [PMID: 23610694 PMCID: PMC3626213 DOI: 10.1302/2046-3758.19.2000109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/03/2012] [Indexed: 11/16/2022] Open
Abstract
Objectives The purpose of this study was to evaluate chronological changes
in the collagen-type composition at tendon–bone interface during
tendon–bone healing and to clarify the continuity between Sharpey-like
fibres and inner fibres of the tendon. Methods Male white rabbits were used to create an extra-articular bone–tendon
graft model by grafting the extensor digitorum longus into a bone
tunnel. Three rabbits were killed at two, four, eight, 12 and 26
weeks post-operatively. Elastica van Gieson staining was used to colour
5 µm coronal sections, which were examined under optical and polarised
light microscopy. Immunostaining for type I, II and III collagen
was also performed. Results Sharpey-like fibres comprised of type III collagen in the early
phase were gradually replaced by type I collagen from 12 weeks onwards,
until continuity between the Sharpey-like fibres and inner fibres
of the tendon was achieved by 26 weeks. Conclusions Even in rabbits, which heal faster than humans, an observation
period of at least 12 to 26 weeks is required, because the collagen-type
composition of the Sharpey-like fibre bone–tendon connection may
have insufficient pullout strength during this period. These results suggest
that caution is necessary when permitting post-operative activity
in humans who have undergone intra-bone tunnel grafts.
Collapse
Affiliation(s)
- K Tabuchi
- Kurume University, Department of Orthopaedic Surgery, 67 Asahi-machi, Kurume 830-0011, Japan
| | | | | | | | | |
Collapse
|
32
|
Ueshima K, Kitaoka K, Nakase J, Xu Q, Matsumoto K, Tsuchiya H. Promotion of rabbit ligament healing by local delivery of hepatocyte growth factor. J Orthop Sci 2011; 16:451-7. [PMID: 21611801 DOI: 10.1007/s00776-011-0101-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 04/25/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND Extracapsular ligament injuries of the knee and ankle are common injuries. Ligaments heal slowly, usually over months or longer by scar formation rather than by tissue regeneration. This study was performed to evaluate the therapeutic effect of locally delivered recombinant hepatocyte growth factor (HGF) on the early healing of ligaments in a rabbit model. METHODS Japanese white rabbits were subjected to a standardized gap injury in the medial collateral ligaments (MCLs) of both knees. Each rabbit underwent bilateral transection of the midsubstance of the MCL, which was not repaired. During postoperative days 0-6, the rabbits were injected with 10 μg human recombinant HGF into the right MCL, while the left MCL was injected with saline alone. One, 3, 6, and 12 weeks after surgery, experimental rabbits were sacrificed. The structural properties of the femur-MCL-tibia complex were then assessed and the tissue was subjected to histological evaluation. To see the distribution of cells that express c-Met receptor, the tissue was subjected to immunohistochemistry. RESULTS Immunohistochemical evaluation revealed that c-Met expression was observed particularly at opposing ligament ends in the HGF-treated limbs 1 week after surgery. Histological evaluation revealed earlier neovascularization and more aligned collagen fibers in the MCLs of the HGF-treated group than the control group. In mechanical evaluations, similar ligament failure modes were noted in the two groups. After 3 weeks, HGF-treated limbs had significantly improved structural properties than the paired control limbs. CONCLUSIONS Our findings indicate local administration of recombinant HGF promotes early steps in ligament healing and the repair of structural properties in a rabbit model. Local administration of HGF may represent a new therapeutic approach to accelerating healing and rehabilitation after ligament injury.
Collapse
Affiliation(s)
- Kenichi Ueshima
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | | | | | | | | | | |
Collapse
|