1
|
Irwin RM, Brown M, Koff MF, Lee CH, Lemmon E, Jeong HJ, Simmonds SP, Robinson JL, Seitz AM, Tanska P, Trujillo RJ, Patel JM, Jayasuriya CT, Pacicca D. Generating New Meniscus Therapies via Recent Breakthroughs in Development, Model Systems, and Clinical Diagnostics. J Orthop Res 2025; 43:1073-1089. [PMID: 40068999 DOI: 10.1002/jor.26066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Over 850,000 surgeries are performed to treat meniscal injuries each year in the United States. Even with repair, patients are likely to develop osteoarthritis (OA) within the next two decades. There is a pressing clinical need to improve meniscal repair procedures to restore tissue function and prevent joint degeneration later in life. Here we present a review of recently published articles (2020-2024) spanning basic science, translational, and clinical studies to highlight new advances in meniscus research across development, animal models, finite element models, and clinical interventions. Key progenitor cell populations and vascularity changes have been identified in human meniscus tissue development, aging, and degeneration with implications for novel tissue repair strategies. The use of animal and finite element models has expanded our understanding of meniscus tissue function and evaluated new therapies in preclinical studies. Further, advances in clinical diagnostics with machine learning models and surgical techniques have shed light on evidence-based practices for improving patient outcomes. We discuss across multiple length scales (micro-, meso-, macro-) the structure-function relationship of the meniscus in development and disease, recent advances in models and tools to study the meniscus, knowledge gaps in the field, persisting challenges in clinical treatments and assessments, and the translation of basic science therapies into the clinic.
Collapse
Affiliation(s)
- Rebecca M Irwin
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Matthew Brown
- Division of Sports Medicine, Connecticut Children's Medical Center, Farmington, Connecticut, USA
| | - Matthew F Koff
- Department of Radiology and Imaging, Hospital for Special Surgery, New York City, New York, USA
| | - Chang H Lee
- College of Dental Medicine, Columbia University, New York City, New York, USA
| | - Elisabeth Lemmon
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hun Jin Jeong
- College of Dental Medicine, Columbia University, New York City, New York, USA
| | - Susana P Simmonds
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Jennifer L Robinson
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington, Seattle, Washington, USA
| | - Andreas M Seitz
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Centre, Ulm, Germany
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Ruben J Trujillo
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Jay M Patel
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Rhode Island Hospital & The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Donna Pacicca
- Division of Sports Medicine, Connecticut Children's Medical Center, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Sachs JP, Mufti YN, Cole BJ. Orthopaedic Musculoskeletal Biologics Research Impacts Patient Care: The Third Annual Arthroscopy: The Journal of Arthroscopic and Related Surgery Orthobiologics Virtual Special Issue. Arthroscopy 2025:S0749-8063(25)00161-6. [PMID: 40090528 DOI: 10.1016/j.arthro.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Orthobiologics represent a rapidly advancing field of research in musculoskeletal care, providing novel therapies to modify symptoms and potentially augment tissue regeneration when used in the clinical or operative setting. These treatments are derived from autologous cells, tissues, and blood components, yielding bioactive elements that may promote healing, reduce symptoms, and be associated with improved patient outcomes. Biologic therapies such as platelet-rich plasma, bone marrow aspirate concentrate, adipose-derived products, and amniotic allograft tissues have demonstrated favorable clinical outcomes. Arthroscopy: The Journal of Arthroscopic and Related Surgery and its companion journals are committed to advancing the field by publishing high-quality, peer-reviewed orthobiologics research. This anthology of articles showcases significant recent advancements in musculoskeletal orthobiologics research.
Collapse
Affiliation(s)
- Jared P Sachs
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Yusuf N Mufti
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Brian J Cole
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A
| |
Collapse
|
3
|
Bian Y, Cai X, Zhou R, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Sun H, Zhao X, Feng B, Weng X. Advances in meniscus tissue engineering: Towards bridging the gaps from bench to bedside. Biomaterials 2025; 312:122716. [PMID: 39121731 DOI: 10.1016/j.biomaterials.2024.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Meniscus is vital for maintaining the anatomical and functional integrity of knee. Injuries to meniscus, commonly caused by trauma or degenerative processes, can result in knee joint dysfunction and secondary osteoarthritis, while current conservative and surgical interventions for meniscus injuries bear suboptimal outcomes. In the past decade, there has been a significant focus on advancing meniscus tissue engineering, encompassing isolated scaffold strategies, biological augmentation, physical stimulus, and meniscus organoids, to improve the prognosis of meniscus injuries. Despite noteworthy promising preclinical results, translational gaps and inconsistencies in the therapeutic efficiency between preclinical and clinical studies exist. This review comprehensively outlines the developments in meniscus tissue engineering over the past decade (Scheme 1). Reasons for the discordant results between preclinical and clinical trials, as well as potential strategies to expedite the translation of bench-to-bedside approaches are analyzed and discussed.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xuejie Cai
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Runze Zhou
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Zehui Lv
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yiming Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Han Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Wei Zhu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Hanyang Sun
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Bin Feng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
González-Duque MI, Flórez AM, Torres MA, Fontanilla MR. Composite Zonal Scaffolds of Collagen I/II for Meniscus Regeneration. ACS Biomater Sci Eng 2024; 10:2426-2441. [PMID: 38549452 DOI: 10.1021/acsbiomaterials.3c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The meniscus is divided into three zones according to its vascularity: an external vascularized red-red zone mainly comprising collagen I, a red-white interphase zone mainly comprising collagens I and II, and an internal white-white zone rich in collagen II. Known scaffolds used to treat meniscal injuries do not reflect the chemical composition of the vascular areas of the meniscus. Therefore, in this study, four composite zonal scaffolds (named A, B, C, and D) were developed and characterized; the developed scaffolds exhibited the main chemical components of the external (collagen I), interphase (collagens I/II), and internal (collagen II) zones of the meniscus. Noncomposite scaffolds were also produced (named E), which had the same shape as the composite scaffolds but were entirely made of collagen I. The composite zonal scaffolds were prepared using different concentrations of collagen I and the same concentration of collagen II and were either cross-linked with genipin or not cross-linked. Porous, biodegradable, and hydrophilic scaffolds with an expected chemical composition were obtained. Their pore size was smaller than the size reported for the meniscus substitutes; however, all scaffolds allowed the adhesion and proliferation of human adipose-derived stem cells (hADSCs) and were not cytotoxic. Data from enzymatic degradation and hADSC proliferation assays were considered for choosing the cross-linked composite scaffolds along with the collagen I scaffold and to test if composite zonal scaffolds seeded with hADSC and cultured with differentiation medium produced fibrocartilage-like tissue different from that formed in noncomposite scaffolds. After 21 days of culture, hADSCs seeded on composite scaffolds afforded an extracellular matrix with aggrecan, whereas hADSCs seeded on noncomposite collagen I scaffolds formed a matrix-like fibrocartilage without aggrecan.
Collapse
Affiliation(s)
- Martha Isabel González-Duque
- Tissue Engineering Group, Departmento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, Bogotá 111321, D.C., Colombia
| | - Adriana Matilde Flórez
- Tissue Engineering Group, Departmento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, Bogotá 111321, D.C., Colombia
| | - María Alejandra Torres
- Tissue Engineering Group, Departmento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, Bogotá 111321, D.C., Colombia
| | - Marta Raquel Fontanilla
- Tissue Engineering Group, Departmento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, Bogotá 111321, D.C., Colombia
| |
Collapse
|
5
|
Vignes H, Smaida R, Conzatti G, Hua G, Benkirane-Jessel N. Custom-made meniscus biofabrication. Trends Biotechnol 2023; 41:1467-1470. [PMID: 37423883 DOI: 10.1016/j.tibtech.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Reconstructing the meniscus is not currently possible due to its intricate and heterogeneous structure. In this forum, we first discuss the shortcomings of current clinical strategies in meniscus repair. Then, we describe a new promising cell-based, ink-free 3D biofabrication technology to produce tailor-made large-scale functional menisci.
Collapse
Affiliation(s)
- Hélène Vignes
- French National Institute of Health and Medical Research (INSERM), UMR 1260, Regenerative Nanomedicine (RNM), 1 Rue Eugène Boeckel, 67000 Strasbourg, France; Université de Strasbourg (Faculté de Médecine, Faculté de Chirurgie Dentaire, Faculté de Pharmacie), Strasbourg, France
| | - Rana Smaida
- French National Institute of Health and Medical Research (INSERM), UMR 1260, Regenerative Nanomedicine (RNM), 1 Rue Eugène Boeckel, 67000 Strasbourg, France; Université de Strasbourg (Faculté de Médecine, Faculté de Chirurgie Dentaire, Faculté de Pharmacie), Strasbourg, France
| | - Guillaume Conzatti
- French National Institute of Health and Medical Research (INSERM), UMR 1260, Regenerative Nanomedicine (RNM), 1 Rue Eugène Boeckel, 67000 Strasbourg, France; Université de Strasbourg (Faculté de Médecine, Faculté de Chirurgie Dentaire, Faculté de Pharmacie), Strasbourg, France
| | - Guoqiang Hua
- French National Institute of Health and Medical Research (INSERM), UMR 1260, Regenerative Nanomedicine (RNM), 1 Rue Eugène Boeckel, 67000 Strasbourg, France; Université de Strasbourg (Faculté de Médecine, Faculté de Chirurgie Dentaire, Faculté de Pharmacie), Strasbourg, France
| | - Nadia Benkirane-Jessel
- French National Institute of Health and Medical Research (INSERM), UMR 1260, Regenerative Nanomedicine (RNM), 1 Rue Eugène Boeckel, 67000 Strasbourg, France; Université de Strasbourg (Faculté de Médecine, Faculté de Chirurgie Dentaire, Faculté de Pharmacie), Strasbourg, France.
| |
Collapse
|
6
|
Li X, Li D, Li J, Wang G, Yan L, Liu H, Jiu J, Li JJ, Wang B. Preclinical Studies and Clinical Trials on Cell-Based Treatments for Meniscus Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:634-670. [PMID: 37212339 DOI: 10.1089/ten.teb.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study aims at performing a thorough review of cell-based treatment strategies for meniscus regeneration in preclinical and clinical studies. The PubMed, Embase, and Web of Science databases were searched for relevant studies (both preclinical and clinical) published from the time of database construction to December 2022. Data related to cell-based therapies for in situ regeneration of the meniscus were extracted independently by two researchers. Assessment of risk of bias was performed according to the Cochrane Handbook for Systematic Reviews of Interventions. Statistical analyses based on the classification of different treatment strategies were performed. A total of 5730 articles were retrieved, of which 72 preclinical studies and 6 clinical studies were included in this review. Mesenchymal stem cells (MSCs), especially bone marrow MSCs (BMSCs), were the most commonly used cell type. Among preclinical studies, rabbit was the most commonly used animal species, partial meniscectomy was the most commonly adopted injury pattern, and 12 weeks was the most frequently chosen final time point for assessing repair outcomes. A range of natural and synthetic materials were used to aid cell delivery as scaffolds, hydrogels, or other morphologies. In clinical trials, there was large variation in the dose of cells, ranging from 16 × 106 to 150 × 106 cells with an average of 41.52 × 106 cells. The selection of treatment strategy for meniscus repair should be based on the nature of the injury. Cell-based therapies incorporating various "combination" strategies such as co-culture, composite materials, and extra stimulation may offer greater promise than single strategies for effective meniscal tissue regeneration, restoring natural meniscal anisotropy, and eventually achieving clinical translation. Impact Statement This review provides an up-to-date and comprehensive overview of preclinical and clinical studies that tested cell-based treatments for meniscus regeneration. It presents novel perspectives on studies published in the past 30 years, giving consideration to the cell sources and dose selection, delivery methods, extra stimulation, animal models and injury patterns, timing of outcome assessment, and histological and biomechanical outcomes, as well as a summary of findings for individual studies. These unique insights will help to shape future research on the repair of meniscus lesions and inform the clinical translation of new cell-based tissue engineering strategies.
Collapse
Affiliation(s)
- Xiaoke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Dijun Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jingwei Jiu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Yan W, Zhu J, Wu Y, Wang Y, Du C, Cheng J, Hu X, Ao Y. Meniscal Fibrocartilage Repair Based on Developmental Characteristics: A Proof-of-Concept Study. Am J Sports Med 2023; 51:3509-3522. [PMID: 37743771 DOI: 10.1177/03635465231194028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Unlike the adult meniscus, the fetal meniscus possesses robust healing capacity. The dense and stiff matrix of the adult meniscus provides a biophysical barrier for cell migration, which is not present in the fetal meniscus. Inspired by developmental characteristics, modifying the matrix of the adult meniscus into a fetal-like, loose and soft microenvironment holds opportunity to facilitate repair, especially in the avascular zone. HYPOTHESIS Modifying the dense and stiff matrix of the adult meniscus into a fetal-like, loose and soft microenvironment could enhance cell migration to the tear interface and subsequent robust healing capacity. STUDY DESIGN Controlled laboratory study. METHODS Fresh porcine menisci were treated with hyaluronidase or collagenase. The density and arrangement of collagen fibers were assessed. The degradation of proteoglycans and collagen was evaluated histologically. Cell migration within the meniscus or the infiltration of exogenous cells into the meniscus was examined. Dendritic silica nanoparticles with relatively large pores were used to encapsulate hyaluronidase for rapid release. Mesoporous silica nanoparticles with relatively small pores were used to encapsulate transforming growth factor-beta 3 (TGF-β3) for slow release. A total of 24 mature male rabbits were included. A longitudinal vertical tear (0.5 cm in length) was prepared in the avascular zone of the medial meniscus. The tear was repaired with suture, repaired with suture in addition to blank silica nanoparticles, or repaired with suture in addition to silica nanoparticles releasing hyaluronidase and TGF-β3. Animals were sacrificed at 12 months postoperatively. Meniscal repair was evaluated macroscopically and histologically. RESULTS The gaps between collagen bundles increased after hyaluronidase treatment, while collagenase treatment resulted in collagen disruption. Proteoglycans degraded after hyaluronidase treatment in a dose-dependent manner, but collagen integrity was maintained. Hyaluronidase treatment enhanced the migration and infiltration of cells within meniscal tissue. Last, the application of fibrin gel and the delivery system of silica nanoparticles encapsulating hyaluronidase and TGF-β3 enhanced meniscal repair responses in an orthotopic longitudinal vertical tear model. CONCLUSION The gradient release of hyaluronidase and TGF-β3 removed biophysical barriers for cell migration, creating a fetal-like, loose and soft microenvironment, and enhanced the fibrochondrogenic phenotype of reparative cells, facilitating the synthesis of matrix and tissue integration. CLINICAL RELEVANCE Modifying the adult matrix into a fetal-like, loose and soft microenvironment via the local gradient release of hyaluronidase and TGF-β3 enhanced the healing capacity of the meniscus.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jingxian Zhu
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yue Wu
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yiqun Wang
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Cancan Du
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jin Cheng
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| |
Collapse
|
8
|
Anjiki K, Matsumoto T, Kuroda Y, Fujita M, Hayashi S, Nakano N, Tsubosaka M, Kamenaga T, Takashima Y, Kikuchi K, Ikuta K, Onoi Y, Tachibana S, Suda Y, Wada K, Matsushita T, Kuroda R. Heterogeneous Cells as well as Adipose-Derived Stromal Cells in Stromal Vascular Fraction Contribute to Enhance Anabolic and Inhibit Catabolic Factors in Osteoarthritis. Stem Cell Rev Rep 2023; 19:2407-2419. [PMID: 37477775 DOI: 10.1007/s12015-023-10589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
The stromal-vascular fraction (SVF), comprising heterogeneous cell populations and adipose-derived stromal cells (ADSCs), has therapeutic potential against osteoarthritis (OA); however, the underlying mechanism remains elusive. This study aimed to investigate the therapeutic effects of heterogeneous cells in rabbit SVF on rabbit chondrocytes. Rabbit SVF and ADSCs were autografted into knees at OA onset. The SVF (1 × 105) and low-dose ADSCs (lADSC; 1 × 104) groups adjusted for their stromal cell content were compared. Animals were euthanized 8 and 12 weeks after OA onset for macroscopic and histological analyses of OA progression and synovitis. Immunohistochemical and real-time polymerase chain reaction assessments were conducted. In vitro, immune-fluorescent double staining was performed for SVF to stain macrophages with F4/80, CD86(M1), and CD163(M2). OA progression was markedly suppressed, and synovitis was reduced in the SVF groups (OARSI histological score 8 W: 6.8 ± 0.75 vs. 3.8 ± 0.75, p = 0.001; 12 W: 8.8 ± 0.4 vs. 5.4 ± 0.49, p = 0.0002). The SVF groups had higher expression of collagen II and SOX9 in cartilage and TGF-β and IL-10 in the synovium, lower expression of MMP-13, and lower macrophage M1/M2 ratio than the lADSC groups. Immunofluorescent double staining revealed a markedly higher number of M2 than that of M1 macrophages in the SVF. The therapeutic effects of SVF on chondrocytes were superior than those of lADSCs, with enhanced anabolic and inhibited catabolic factors. Heterogeneous cells, mainly M2 macrophages in the SVF, enhanced growth factor secretion and chondrocyte-protective cytokines, thus benefiting chondrocytes and knee joint homeostasis. Overall, the SVF is a safe, relatively simple, and a useful treatment option for OA.
Collapse
Affiliation(s)
- Kensuke Anjiki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masahiro Fujita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshinori Takashima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kenichi Kikuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kenmei Ikuta
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshihito Suda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kensuke Wada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
9
|
Song W, Zhang D, Wu D, Zhong L, Zhu Q, Bai Z, Yu W, Wang C, He Y. Cryopreserved Adipose-Derived Stem Cell Sheets: An Off-the-Shelf Scaffold for Augmenting Tendon-to-Bone Healing in a Rabbit Model of Chronic Rotator Cuff Tear. Am J Sports Med 2023; 51:2005-2017. [PMID: 37227145 DOI: 10.1177/03635465231171682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Adipose-derived stem cell (ADSC) sheets have been shown to promote tendon-to-bone healing. However, conventional laboratory preparation methods for ADSC sheets are time-consuming and risky, which precludes their diverse clinical applications. PURPOSE To explore the utility of off-the-shelf cryopreserved ADSC sheets (c-ADSC sheets) for rotator cuff tendon-to-bone healing. STUDY DESIGN Controlled laboratory study. METHODS The ADSC sheets were cryopreserved and thawed for live/dead double staining, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, scanning electron microscopy observation, and biomechanical testing. Clone formation, proliferative capacity, and multilineage differentiation of ADSCs within the c-ADSC sheets were assayed to explore the effect of cryopreservation on stem cell properties. A total of 67 rabbits were randomly divided into 4 groups: normal group (without supraspinatus tendon tears; n = 7), control group (repair alone; n = 20), fresh ADSC (f-ADSC) sheet group (repair; n = 20), and c-ADSC sheet group (repair; n = 20). Rabbit bilateral supraspinatus tendon tears were induced to establish a chronic rotator cuff tear model. Gross observation, micro-computed tomography analysis, histological or immunohistochemical tests, and biomechanical tests were conducted at 6 and 12 weeks after repair. RESULTS No significant impairment was seen in the cell viability, morphology, and mechanical properties of c-ADSC sheets when compared with f-ADSC sheets. The stem cell properties of ADSC sheets also were preserved by cryopreservation. At 6 and 12 weeks after the repair, the f-ADSC and c-ADSC sheet groups showed superior bone regeneration, higher histological scores, larger fibrocartilage areas, more mature collagen, and better biomechanical results compared with the control group. No obvious difference was seen between the f-ADSC and c-ADSC sheet groups in terms of bone regeneration, histological score, fibrocartilage formation, and biomechanical tests. CONCLUSION c-ADSC sheets, an off-the-shelf scaffold with a high potential for clinical translational application, can effectively promote rotator cuff tendon-to-bone healing. CLINICAL RELEVANCE Programmed cryopreservation of ADSC sheets is an efficient off-the-shelf scaffold for rotator cuff tendon-to-bone healing.
Collapse
Affiliation(s)
- Wei Song
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongliang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Wu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhong
- Department of Nursing, Medical College of Shihezi University, Shihezi, China
| | - Qi Zhu
- Department of Orthopedic Surgery, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhenlong Bai
- Department of Orthopedic Surgery, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Weilin Yu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chongyang Wang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaohua He
- Department of Orthopedic Surgery, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
10
|
Li P, Li H, Guo Q. Editorial Commentary: Meniscus Regeneration Based on Adipose-Derived Stem Cells: How Far Are We From Clinical Application? Arthroscopy 2023; 39:371-372. [PMID: 36604003 DOI: 10.1016/j.arthro.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 01/04/2023]
Abstract
The goal of meniscal tissue engineering is tissue remodeling and functional recovery. Autologous, tissue-engineered adipose-derived stem cell (ADSC) sheets promote meniscal regeneration in rabbit meniscal defects in vivo. Moreover, compared with a control group, in the ADSC sheet model, both histologic scores and gene expression are more similar to normal meniscal tissue. ADSC sheets promote meniscal regeneration regardless of whether the defect involves the whole width or inner half of a meniscal defect. Mechanical properties are also important, and experimental data show encouraging mechanical properties of meniscus tissue reconstructed from ADSC sheets. Cell sheet technology is a promising therapeutic strategy for meniscal regenerative medicine and tissue engineering. Theoretically, cell sheet transplantation could result in superior outcomes to traditional cell-free scaffolds, and further research is needed before clinical application.
Collapse
|
11
|
Nishino K, Hashimoto Y, Nishida Y, Orita K, Takigami J, Nakamura H. Transplantation of Parathyroid Hormone-Treated Achilles Tendon Promotes Meniscal Regeneration in a Rat Meniscal Defect Model. Am J Sports Med 2022; 50:3102-3111. [PMID: 35914290 DOI: 10.1177/03635465221112954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Autologous tendon grafts are used for meniscal reconstruction of surgically removed knee joint meniscus. However, as meniscal reconstruction cannot prevent the progression of cartilage degeneration, additional procedures that confer meniscus-like histological properties to the transplanted tendon are required for improved outcomes. HYPOTHESES Parathyroid hormone (PTH)(1-34) induces cartilage formation in the rat tendon, and transplantation of PTH-treated tendon promotes meniscal regeneration. STUDY DESIGN Controlled laboratory study. METHODS Rat Achilles tendon-derived cells were cultured with or without PTH for 28 days and stained with Alcian blue to determine chondrogenic differentiation. After 14 and 28 days of incubation, gene expression was assessed using quantitative real-time polymerase chain reaction. In an in vivo study, rat Achilles tendon was injected with PTH and then transplanted onto a medial meniscal defect. Macroscopic and histological assessments of the regenerated meniscus and of cartilage degeneration in the tibial plateau were performed at 4 and 8 weeks after surgery. RESULTS In vitro, PTH-treated cells showed better staining with Alcian blue than the control (normal medium) group. PTH1R, Col2a1, Sox9, and RUNX2 were significantly upregulated in PTH-treated cells (P < .05). Macroscopically, the in vivo results revealed more prominent meniscal coverage and lesser progression of articular cartilage degeneration in the PTH group than in the phosphate-buffered saline-injected group. Histologically, toluidine blue staining revealed metachromasia in the PTH-injected tissue at 4 and 8 weeks. The PTH-treated regenerated meniscus showed positive immunostaining for type II collagen in the area exhibiting metachromasia. Moreover, PTH-treated tendon had an enhanced histological score compared with the untreated group at 4 and 8 weeks (P < .05). CONCLUSION PTH(1-34) induced cartilage formation in the rat tendon. Transplantation of PTH(1-34)-treated Achilles tendon in a rat meniscal defect model induced meniscal regeneration and preserved knee articular cartilage. Macroscopically, PTH groups showed a greater coverage of the regenerated meniscus. Histologically, the regenerated meniscus had higher cartilaginous matrix content in rats transplanted with PTH-treated tendons. PTH(1-34) stimulated tendon-derived cells to promote chondrogenic differentiation. CLINICAL RELEVANCE Meniscal transplantation using PTH-injected autologous tendon grafts might promote meniscal regeneration and prevent progression of cartilage degeneration by stimulating chondrogenic differentiation of tendon-derived cells.
Collapse
Affiliation(s)
- Kazuya Nishino
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Hashimoto
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yohei Nishida
- Department of Orthopaedic Surgery, Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Kumi Orita
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Junsei Takigami
- Department of Orthopaedic Surgery, Shimada Hospital, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|