1
|
Zhang R, Jiang G. Exploring a multi-path U-net with probability distribution attention and cascade dilated convolution for precise retinal vessel segmentation in fundus images. Sci Rep 2025; 15:13428. [PMID: 40251298 PMCID: PMC12008375 DOI: 10.1038/s41598-025-98021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
While deep learning has become the go-to method for image denoising due to its impressive noise removal Retinal blood vessel segmentation presents several challenges, including limited labeled image data, complex multi-scale vessel structures, and susceptibility to interference from lesion areas. To confront these challenges, this work offers a novel technique that integrates attention mechanisms and a cascaded dilated convolution module (CDCM) within a multi-path U-Net architecture. First, a dual-path U-Net is developed to extract both coarse and fine-grained vessel structures through separate texture and structural branches. A CDCM is integrated to gather multi-scale vessel features, enhancing the model's ability to extract deep semantic features. Second, a boosting algorithm that incorporates probability distribution attention (PDA) within the upscaling blocks is employed. This approach adjusts the probability distribution, increasing the contribution of shallow information, thereby enhancing segmentation performance in complex backgrounds and reducing the risk of overfitting. Finally, the output from the dual-path U-Net is processed through a feature refinement module. This step further refines the vessel segmentation by integrating and extracting relevant features. Results from experiments on three benchmark datasets, including CHASEDB1, DRIVE, and STARE, demonstrate that the proposed method delivers improved segmentation accuracy compared to existing techniques.
Collapse
Affiliation(s)
- Ruihong Zhang
- School of Computer, Huanggang Normal University, Huanggang, Hubei, 438000, China
| | - Guosong Jiang
- School of Computer, Huanggang Normal University, Huanggang, Hubei, 438000, China.
| |
Collapse
|
2
|
Ghislain F, Beaudelaire ST, Daniel T. An improved semi-supervised segmentation of the retinal vasculature using curvelet-based contrast adjustment and generalized linear model. Heliyon 2024; 10:e38027. [PMID: 39347436 PMCID: PMC11437861 DOI: 10.1016/j.heliyon.2024.e38027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Diagnosis of most ophthalmic conditions, such as diabetic retinopathy, generally relies on an effective analysis of retinal blood vessels. Techniques that depend solely on the visual observation of clinicians can be tedious and prone to numerous errors. In this article, we propose a semi-supervised automated approach for segmenting blood vessels in retinal color images. Our method effectively combines some classical filters with a Generalized Linear Model (GLM). We first apply the Curvelet Transform along with the Contrast-Limited Histogram Adaptive Equalization (CLAHE) technique to significantly enhance the contrast of vessels in the retinal image during the preprocessing phase. We then use Gabor transform to extract features from the enhanced image. For retinal vasculature identification, we use a GLM learning model with a simple link identity function. Binarization is then performed using an automatic optimal threshold based on the maximum Youden index. A morphological cleaning operation is applied to remove isolated or unwanted segments from the final segmented image. The proposed model is evaluated using statistical parameters on images from three publicly available databases. We achieve average accuracies of 0.9593, 0.9553 and 0.9643, with Receiver Operating Characteristic (ROC) analysis yielding Area Under Curve (AUC) values of 0.9722, 0.9682 and 0.9767 for the CHASE_DB1, STARE and DRIVE databases, respectively. Compared to some of the best results from similar approaches published recently, our results exceed their performance on several datasets.
Collapse
Affiliation(s)
- Feudjio Ghislain
- Research Unit of Condensed Matter, Electronics and Signal Processing (UR-MACETS). Department of Physics, Faculty of Sciences, University of Dschang, P.O. Box 67, Dschang, Cameroon
- Research Unit of Automation and Applied Computer (UR-AIA), Electrical Engineering Department of IUT-FV, University of Dschang, P.O. Box: 134, Bandjoun, Cameroon
| | - Saha Tchinda Beaudelaire
- Research Unit of Automation and Applied Computer (UR-AIA), Electrical Engineering Department of IUT-FV, University of Dschang, P.O. Box: 134, Bandjoun, Cameroon
| | - Tchiotsop Daniel
- Research Unit of Automation and Applied Computer (UR-AIA), Electrical Engineering Department of IUT-FV, University of Dschang, P.O. Box: 134, Bandjoun, Cameroon
| |
Collapse
|
3
|
Wang T, Dai Q. SURVS: A Swin-Unet and game theory-based unsupervised segmentation method for retinal vessel. Comput Biol Med 2023; 166:107542. [PMID: 37826953 DOI: 10.1016/j.compbiomed.2023.107542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/02/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Medical images, especially intricate vascular structures, are costly and time-consuming to annotate manually. It is beneficial to investigate an unsupervised method for vessel segmentation, one that circumvents the manual annotation yet remains valuable for disease detection. In this study, we design an unsupervised retinal vessel segmentation model based on the Swin-Unet framework and game theory. First, we construct two extreme pseudo-mapping functions by changing the contrast of the images and obtain their corresponding pseudo-masks based the on binary segmentation method and mathematical morphology, then we prove that there exists a mapping function between pseudo-mappings such that its corresponding mask is closest to the ground true mask. To acquire the best-predicted mask, based on which, we second develop a model based on the Swin-Unet frame to solve the optimal mapping function, and introduce an Image Colorization proxy task to assist the learning of pixel-level feature representations. Third, since to the instability of two pseudo-masks, the predicted mask will inevitably have errors, inspired by the two-player, non-zero-sum, non-cooperative Neighbor's Collision game in game theory, a game filter is proposed in this paper to reduce the errors in the final predicted mask. Finally, we verify the effectiveness of the presented unsupervised retinal vessel segmentation model on DRIVE, STARE and CHASE_DB1 datasets, and extensive experiments show that has obvious advantages over image segmentation and conventional unsupervised models.
Collapse
Affiliation(s)
- Tianxiang Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Qun Dai
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| |
Collapse
|
4
|
Iqbal S, Khan TM, Naveed K, Naqvi SS, Nawaz SJ. Recent trends and advances in fundus image analysis: A review. Comput Biol Med 2022; 151:106277. [PMID: 36370579 DOI: 10.1016/j.compbiomed.2022.106277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Automated retinal image analysis holds prime significance in the accurate diagnosis of various critical eye diseases that include diabetic retinopathy (DR), age-related macular degeneration (AMD), atherosclerosis, and glaucoma. Manual diagnosis of retinal diseases by ophthalmologists takes time, effort, and financial resources, and is prone to error, in comparison to computer-aided diagnosis systems. In this context, robust classification and segmentation of retinal images are primary operations that aid clinicians in the early screening of patients to ensure the prevention and/or treatment of these diseases. This paper conducts an extensive review of the state-of-the-art methods for the detection and segmentation of retinal image features. Existing notable techniques for the detection of retinal features are categorized into essential groups and compared in depth. Additionally, a summary of quantifiable performance measures for various important stages of retinal image analysis, such as image acquisition and preprocessing, is provided. Finally, the widely used in the literature datasets for analyzing retinal images are described and their significance is emphasized.
Collapse
Affiliation(s)
- Shahzaib Iqbal
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Tariq M Khan
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Khuram Naveed
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan; Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | - Syed S Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Syed Junaid Nawaz
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
5
|
Aria M, Hashemzadeh M, Farajzadeh N. QDL-CMFD: A Quality-independent and deep Learning-based Copy-Move image forgery detection method. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Hashemzadeh M, Farajzadeh N, Heydari M. Smoke detection in video using convolutional neural networks and efficient spatio-temporal features. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Pourbahrami S, Hashemzadeh M. A geometric-based clustering method using natural neighbors. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Khandouzi A, Ariafar A, Mashayekhpour Z, Pazira M, Baleghi Y. Retinal Vessel Segmentation, a Review of Classic and Deep Methods. Ann Biomed Eng 2022; 50:1292-1314. [PMID: 36008569 DOI: 10.1007/s10439-022-03058-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/01/2022]
Abstract
Retinal illnesses such as diabetic retinopathy (DR) are the main causes of vision loss. In the early recognition of eye diseases, the segmentation of blood vessels in retina images plays an important role. Different symptoms of ocular diseases can be identified by the geometric features of ocular arteries. However, due to the complex construction of the blood vessels and their different thicknesses, segmenting the retina image is a challenging task. There are a number of algorithms that helped the detection of retinal diseases. This paper presents an overview of papers from 2016 to 2022 that discuss machine learning and deep learning methods for automatic vessel segmentation. The methods are divided into two groups: Deep learning-based, and classic methods. Algorithms, classifiers, pre-processing and specific techniques of each group is described, comprehensively. The performances of recent works are compared based on their achieved accuracy in different datasets in inclusive tables. A survey of most popular datasets like DRIVE, STARE, HRF and CHASE_DB1 is also given in this paper. Finally, a list of findings from this review is presented in the conclusion section.
Collapse
Affiliation(s)
- Ali Khandouzi
- Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Ali Ariafar
- Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Zahra Mashayekhpour
- Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Milad Pazira
- Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Yasser Baleghi
- Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| |
Collapse
|
9
|
Analysis of Vessel Segmentation Based on Various Enhancement Techniques for Improvement of Vessel Intensity Profile. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7086632. [PMID: 35800676 PMCID: PMC9256369 DOI: 10.1155/2022/7086632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022]
Abstract
It is vital to develop an appropriate prediction model and link carefully to measurable events such as clinical parameters and patient outcomes to analyze the severity of the disease. Timely identifying retinal diseases is becoming more vital to prevent blindness among young and adults. Investigation of blood vessels delivers preliminary information on the existence and treatment of glaucoma, retinopathy, and so on. During the analysis of diabetic retinopathy, one of the essential steps is to extract the retinal blood vessel accurately. This study presents an improved Gabor filter through various enhancement approaches. The degraded images with the enhancement of certain features can simplify image interpretation both for a human observer and for machine recognition. Thus, in this work, few enhancement approaches such as Gamma corrected adaptively with distributed weight (GCADW), joint equalization of histogram (JEH), homomorphic filter, unsharp masking filter, adaptive unsharp masking filter, and particle swarm optimization (PSO) based unsharp masking filter are taken into consideration. In this paper, an effort has been made to improve the performance of the Gabor filter by combining it with different enhancement methods and to enhance the detection of blood vessels. The performance of all the suggested approaches is assessed on publicly available databases such as DRIVE and CHASE_DB1. The results of all the integrated enhanced techniques are analyzed, discussed, and compared. The best result is delivered by PSO unsharp masking filter combined with the Gabor filter with an accuracy of 0.9593 for the DRIVE database and 0.9685 for the CHASE_DB1 database. The results illustrate the robustness of the recommended model in automatic blood vessel segmentation that makes it possible to be a clinical support decision tool in diabetic retinopathy diagnosis.
Collapse
|
10
|
Toptaş B, Toptaş M, Hanbay D. Detection of Optic Disc Localization from Retinal Fundus Image Using Optimized Color Space. J Digit Imaging 2022; 35:302-319. [PMID: 35018540 PMCID: PMC8921449 DOI: 10.1007/s10278-021-00566-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022] Open
Abstract
Optic disc localization offers an important clue in detecting other retinal components such as the macula, fovea, and retinal vessels. With the correct detection of this area, sudden vision loss caused by diseases such as age-related macular degeneration and diabetic retinopathy can be prevented. Therefore, there is an increase in computer-aided diagnosis systems in this field. In this paper, an automated method for detecting optic disc localization is proposed. In the proposed method, the fundus images are moved from RGB color space to a new color space by using an artificial bee colony algorithm. In the new color space, the localization of the optical disc is clearer than in the RGB color space. In this method, a matrix called the feature matrix is created. This matrix is obtained from the color pixel values of the image patches containing the optical disc and the image patches not containing the optical disc. Then, the conversion matrix is created. The initial values of this matrix are randomly determined. These two matrices are processed in the artificial bee colony algorithm. Ultimately, the conversion matrix becomes optimal and is applied over the original fundus images. Thus, the images are moved to the new color space. Thresholding is applied to these images, and the optic disc localization is obtained. The success rate of the proposed method has been tested on three general datasets. The accuracy success rate for the DRIVE, DRIONS, and MESSIDOR datasets, respectively, is 100%, 96.37%, and 94.42% for the proposed method.
Collapse
Affiliation(s)
- Buket Toptaş
- Computer Eng. Dept, Engineering and Natural Science Faculty, Bandırma Onyedi Eylül University, Balıkesir, Turkey.
| | - Murat Toptaş
- Software Eng. Dept, Engineering and Natural Science Faculty, Bandırma Onyedi Eylül University, Balıkesir, Turkey
| | - Davut Hanbay
- Computer Eng. Dept., Engineering Faculty, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
11
|
Golzari Oskouei A, Hashemzadeh M, Asheghi B, Balafar MA. CGFFCM: Cluster-weight and Group-local Feature-weight learning in Fuzzy C-Means clustering algorithm for color image segmentation. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.108005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Lin Z, Huang J, Chen Y, Zhang X, Zhao W, Li Y, Lu L, Zhan M, Jiang X, Liang X. A high resolution representation network with multi-path scale for retinal vessel segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106206. [PMID: 34146772 DOI: 10.1016/j.cmpb.2021.106206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Automatic retinal vessel segmentation (RVS) in fundus images is expected to be a vital step in the early image diagnosis of ophthalmologic diseases. However, it is a challenging task to detect the retinal vessel accurately mainly due to the vascular intricacies, lesion areas and optic disc edges in retinal fundus images. METHODS In this paper, we propose a high resolution representation network with multi-path scale (MPS-Net) for RVS aiming to improve the performance of extracting the retinal blood vessels. In the MPS-Net, there exist one high resolution main road and two lower resolution branch roads where the proposed multi-path scale modules are embedded to enhance the representation ability of network. Besides, in order to guide the network focus on learning the features of hard examples in retinal images, we design a hard-focused cross-entropy loss function. RESULTS We evaluate our network structure on DRIVE, STARE, CHASE and synthetic images and the quantitative comparisons with respect to the existing methods are presented. The experimental results show that our approach is superior to most methods in terms of F1-score, sensitivity, G-mean and Matthews correlation coefficient. CONCLUSIONS The promising segmentation performances reveal that our method has potential in real-world applications and can be exploited for other medical images with further analysis.
Collapse
Affiliation(s)
- Zefang Lin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China.
| | - Jianping Huang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China.
| | - Yingyin Chen
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China.
| | - Xiao Zhang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Wei Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China.
| | - Xiaofei Jiang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China; Department of Cardiology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China.
| | - Xiong Liang
- Department of Obstetrics, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China.
| |
Collapse
|
13
|
Jia D, Zhuang X. Learning-based algorithms for vessel tracking: A review. Comput Med Imaging Graph 2021; 89:101840. [PMID: 33548822 DOI: 10.1016/j.compmedimag.2020.101840] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
Developing efficient vessel-tracking algorithms is crucial for imaging-based diagnosis and treatment of vascular diseases. Vessel tracking aims to solve recognition problems such as key (seed) point detection, centerline extraction, and vascular segmentation. Extensive image-processing techniques have been developed to overcome the problems of vessel tracking that are mainly attributed to the complex morphologies of vessels and image characteristics of angiography. This paper presents a literature review on vessel-tracking methods, focusing on machine-learning-based methods. First, the conventional machine-learning-based algorithms are reviewed, and then, a general survey of deep-learning-based frameworks is provided. On the basis of the reviewed methods, the evaluation issues are introduced. The paper is concluded with discussions about the remaining exigencies and future research.
Collapse
Affiliation(s)
- Dengqiang Jia
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Naveed K, Daud F, Madni HA, Khan MA, Khan TM, Naqvi SS. Towards Automated Eye Diagnosis: An Improved Retinal Vessel Segmentation Framework Using Ensemble Block Matching 3D Filter. Diagnostics (Basel) 2021; 11:114. [PMID: 33445723 PMCID: PMC7828181 DOI: 10.3390/diagnostics11010114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Automated detection of vision threatening eye disease based on high resolution retinal fundus images requires accurate segmentation of the blood vessels. In this regard, detection and segmentation of finer vessels, which are obscured by a considerable degree of noise and poor illumination, is particularly challenging. These noises include (systematic) additive noise and multiplicative (speckle) noise, which arise due to various practical limitations of the fundus imaging systems. To address this inherent issue, we present an efficient unsupervised vessel segmentation strategy as a step towards accurate classification of eye diseases from the noisy fundus images. To that end, an ensemble block matching 3D (BM3D) speckle filter is proposed for removal of unwanted noise leading to improved detection. The BM3D-speckle filter, despite its ability to recover finer details (i.e., vessels in fundus images), yields a pattern of checkerboard artifacts in the aftermath of multiplicative (speckle) noise removal. These artifacts are generally ignored in the case of satellite images; however, in the case of fundus images, these artifacts have a degenerating effect on the segmentation or detection of fine vessels. To counter that, an ensemble of BM3D-speckle filter is proposed to suppress these artifacts while further sharpening the recovered vessels. This is subsequently used to devise an improved unsupervised segmentation strategy that can detect fine vessels even in the presence of dominant noise and yields an overall much improved accuracy. Testing was carried out on three publicly available databases namely Structured Analysis of the Retina (STARE), Digital Retinal Images for Vessel Extraction (DRIVE) and CHASE_DB1. We have achieved a sensitivity of 82.88, 81.41 and 82.03 on DRIVE, SATARE, and CHASE_DB1, respectively. The accuracy is also boosted to 95.41, 95.70 and 95.61 on DRIVE, SATARE, and CHASE_DB1, respectively. The performance of the proposed methods on images with pathologies was observed to be more convincing than the performance of similar state-of-the-art methods.
Collapse
Affiliation(s)
- Khuram Naveed
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan; (H.A.M.); (S.S.N.)
| | - Faizan Daud
- School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Hussain Ahmad Madni
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan; (H.A.M.); (S.S.N.)
| | - Mohammad A.U. Khan
- Department of Electrical Engineering, Namal Institute, Mianwali, Namal 42200, Pakistan;
| | - Tariq M. Khan
- School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Syed Saud Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan; (H.A.M.); (S.S.N.)
| |
Collapse
|
15
|
Soltanzadeh P, Hashemzadeh M. RCSMOTE: Range-Controlled synthetic minority over-sampling technique for handling the class imbalance problem. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
A Hybrid Unsupervised Approach for Retinal Vessel Segmentation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8365783. [PMID: 33381585 PMCID: PMC7749777 DOI: 10.1155/2020/8365783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 11/26/2020] [Indexed: 12/04/2022]
Abstract
Retinal vessel segmentation (RVS) is a significant source of useful information for monitoring, identification, initial medication, and surgical development of ophthalmic disorders. Most common disorders, i.e., stroke, diabetic retinopathy (DR), and cardiac diseases, often change the normal structure of the retinal vascular network. A lot of research has been committed to building an automatic RVS system. But, it is still an open issue. In this article, a framework is recommended for RVS with fast execution and competing outcomes. An initial binary image is obtained by the application of the MISODATA on the preprocessed image. For vessel structure enhancement, B-COSFIRE filters are utilized along with thresholding to obtain another binary image. These two binary images are combined by logical AND-type operation. Then, it is fused with the enhanced image of B-COSFIRE filters followed by thresholding to obtain the vessel location map (VLM). The methodology is verified on four different datasets: DRIVE, STARE, HRF, and CHASE_DB1, which are publicly accessible for benchmarking and validation. The obtained results are compared with the existing competing methods.
Collapse
|
17
|
El Damrawi G, Zahran MA, Amin E, Abdelsalam MM. Enforcing artificial neural network in the early detection of diabetic retinopathy OCTA images analysed by multifractal geometry. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1796244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- G. El Damrawi
- Glass Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - M. A. Zahran
- Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - ElShaimaa Amin
- Physics Department (Biophysics), Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed M. Abdelsalam
- Computers and Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| |
Collapse
|
18
|
Cheng YL, Ma MN, Zhang LJ, Jin CJ, Ma L, Zhou Y. Retinal blood vessel segmentation based on Densely Connected U-Net. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:3088-3108. [PMID: 32987518 DOI: 10.3934/mbe.2020175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The segmentation of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. This paper proposes a new architecture of the U-Net network for retinal blood vessel segmentation. Adding dense block to U-Net network makes each layer's input come from the all previous layer's output which improves the segmentation accuracy of small blood vessels. The effectiveness of the proposed method has been evaluated on two public datasets (DRIVE and CHASE_DB1). The obtained results (DRIVE: Acc = 0.9559, AUC = 0.9793, CHASE_DB1: Acc = 0.9488, AUC = 0.9785) demonstrate the better performance of the proposed method compared to the state-of-the-art methods. Also, the results show that our method achieves better results for the segmentation of small blood vessels and can be helpful to evaluate related ophthalmic diseases.
Collapse
Affiliation(s)
- Yin Lin Cheng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
| | - Meng Nan Ma
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
| | - Liang Jun Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Chen Jin Jin
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Li Ma
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi Zhou
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|