1
|
Zhou S, Xie Y, Feng X, Li Y, Shen L, Chen Y. Artificial intelligence in gastrointestinal cancer research: Image learning advances and applications. Cancer Lett 2025; 614:217555. [PMID: 39952597 DOI: 10.1016/j.canlet.2025.217555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
With the rapid advancement of artificial intelligence (AI) technologies, including deep learning, large language models, and neural networks, these methodologies are increasingly being developed and integrated into cancer research. Gastrointestinal tumors are characterized by complexity and heterogeneity, posing significant challenges for early detection, diagnostic accuracy, and the development of personalized treatment strategies. The application of AI in digestive oncology has demonstrated its transformative potential. AI not only alleviates the diagnostic burden on clinicians, but it improves tumor screening sensitivity, specificity, and accuracy. Additionally, AI aids the detection of biomarkers such as microsatellite instability and mismatch repair, supports intraoperative assessments of tumor invasion depth, predicts treatment responses, and facilitates the design of personalized treatment plans to potentially significantly enhance patient outcomes. Moreover, the integration of AI with multiomics analyses and imaging technologies has led to substantial advancements in foundational research on the tumor microenvironment. This review highlights the progress of AI in gastrointestinal oncology over the past 5 years with focus on early tumor screening, diagnosis, molecular marker identification, treatment planning, and prognosis predictions. We also explored the potential of AI to enhance medical imaging analyses to aid tumor detection and characterization as well as its role in automating and refining histopathological assessments.
Collapse
Affiliation(s)
- Shengyuan Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yi Xie
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xujiao Feng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanyan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China; Department of Gastrointestinal Cancer, Beijing GoBroad Hospital, Beijing, 102200, China.
| |
Collapse
|
2
|
López-Pérez M, Morales-Álvarez P, Cooper LAD, Felicelli C, Goldstein J, Vadasz B, Molina R, Katsaggelos AK. Learning from crowds for automated histopathological image segmentation. Comput Med Imaging Graph 2024; 112:102327. [PMID: 38194768 DOI: 10.1016/j.compmedimag.2024.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/20/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Automated semantic segmentation of histopathological images is an essential task in Computational Pathology (CPATH). The main limitation of Deep Learning (DL) to address this task is the scarcity of expert annotations. Crowdsourcing (CR) has emerged as a promising solution to reduce the individual (expert) annotation cost by distributing the labeling effort among a group of (non-expert) annotators. Extracting knowledge in this scenario is challenging, as it involves noisy annotations. Jointly learning the underlying (expert) segmentation and the annotators' expertise is currently a commonly used approach. Unfortunately, this approach is frequently carried out by learning a different neural network for each annotator, which scales poorly when the number of annotators grows. For this reason, this strategy cannot be easily applied to real-world CPATH segmentation. This paper proposes a new family of methods for CR segmentation of histopathological images. Our approach consists of two coupled networks: a segmentation network (for learning the expert segmentation) and an annotator network (for learning the annotators' expertise). We propose to estimate the annotators' behavior with only one network that receives the annotator ID as input, achieving scalability on the number of annotators. Our family is composed of three different models for the annotator network. Within this family, we propose a novel modeling of the annotator network in the CR segmentation literature, which considers the global features of the image. We validate our methods on a real-world dataset of Triple Negative Breast Cancer images labeled by several medical students. Our new CR modeling achieves a Dice coefficient of 0.7827, outperforming the well-known STAPLE (0.7039) and being competitive with the supervised method with expert labels (0.7723). The code is available at https://github.com/wizmik12/CRowd_Seg.
Collapse
Affiliation(s)
- Miguel López-Pérez
- Department of Computer Science and Artificial Intelligence, University of Granada, Spain.
| | | | - Lee A D Cooper
- Department of Pathology at Northwestern University, Chicago, USA; Center for Computational Imaging and Signal Analytics, Northwestern University, Chicago, USA.
| | | | | | - Brian Vadasz
- Department of Pathology at Northwestern University, Chicago, USA
| | - Rafael Molina
- Department of Computer Science and Artificial Intelligence, University of Granada, Spain.
| | - Aggelos K Katsaggelos
- Center for Computational Imaging and Signal Analytics, Northwestern University, Chicago, USA; Department of Electrical and Computer Engineering at Northwestern University, Chicago, USA.
| |
Collapse
|
3
|
Han Q, Qian X, Xu H, Wu K, Meng L, Qiu Z, Weng T, Zhou B, Gao X. DM-CNN: Dynamic Multi-scale Convolutional Neural Network with uncertainty quantification for medical image classification. Comput Biol Med 2024; 168:107758. [PMID: 38042102 DOI: 10.1016/j.compbiomed.2023.107758] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Convolutional neural network (CNN) has promoted the development of diagnosis technology of medical images. However, the performance of CNN is limited by insufficient feature information and inaccurate attention weight. Previous works have improved the accuracy and speed of CNN but ignored the uncertainty of the prediction, that is to say, uncertainty of CNN has not received enough attention. Therefore, it is still a great challenge for extracting effective features and uncertainty quantification of medical deep learning models In order to solve the above problems, this paper proposes a novel convolutional neural network model named DM-CNN, which mainly contains the four proposed sub-modules : dynamic multi-scale feature fusion module (DMFF), hierarchical dynamic uncertainty quantifies attention (HDUQ-Attention) and multi-scale fusion pooling method (MF Pooling) and multi-objective loss (MO loss). DMFF select different convolution kernels according to the feature maps at different levels, extract different-scale feature information, and make the feature information of each layer have stronger representation ability for information fusion HDUQ-Attention includes a tuning block that adjust the attention weight according to the different information of each layer, and a Monte-Carlo (MC) dropout structure for quantifying uncertainty MF Pooling is a pooling method designed for multi-scale models, which can speed up the calculation and prevent overfitting while retaining the main important information Because the number of parameters in the backbone part of DM-CNN is different from other modules, MO loss is proposed, which has a fast optimization speed and good classification effect DM-CNN conducts experiments on publicly available datasets in four areas of medicine (Dermatology, Histopathology, Respirology, Ophthalmology), achieving state-of-the-art classification performance on all datasets. DM-CNN can not only maintain excellent performance, but also solve the problem of quantification of uncertainty, which is a very important task for the medical field. The code is available: https://github.com/QIANXIN22/DM-CNN.
Collapse
Affiliation(s)
- Qi Han
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Xin Qian
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| | - Hongxiang Xu
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Kepeng Wu
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Lun Meng
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Zicheng Qiu
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Tengfei Weng
- School of Electrical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Baoping Zhou
- School of Information Engineering, Tarim University, Alar City, 843300, PR China
| | - Xianqiang Gao
- School of Information Engineering, Tarim University, Alar City, 843300, PR China
| |
Collapse
|
4
|
Kim S, Yoon H, Lee J, Yoo S. Facial wrinkle segmentation using weighted deep supervision and semi-automatic labeling. Artif Intell Med 2023; 145:102679. [PMID: 37925209 DOI: 10.1016/j.artmed.2023.102679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
Facial wrinkles are important indicators of human aging. Recently, a method using deep learning and a semi-automatic labeling was proposed to segment facial wrinkles, which showed much better performance than conventional image-processing-based methods. However, the difficulty of wrinkle segmentation remains challenging due to the thinness of wrinkles and their small proportion in the entire image. Therefore, performance improvement in wrinkle segmentation is still necessary. To address this issue, we propose a novel loss function that takes into account the thickness of wrinkles based on the semi-automatic labeling approach. First, considering the different spatial dimensions of the decoder in the U-Net architecture, we generated weighted wrinkle maps from ground truth. These weighted wrinkle maps were used to calculate the training losses more accurately than the existing deep supervision approach. This new loss computation approach is defined as weighted deep supervision in our study. The proposed method was evaluated using an image dataset obtained from a professional skin analysis device and labeled using semi-automatic labeling. In our experiment, the proposed weighted deep supervision showed higher Jaccard Similarity Index (JSI) performance for wrinkle segmentation compared to conventional deep supervision and traditional image processing methods. Additionally, we conducted experiments on the labeling using a semi-automatic labeling approach, which had not been explored in previous research, and compared it with human labeling. The semi-automatic labeling technology showed more consistent wrinkle labels than human-made labels. Furthermore, to assess the scalability of the proposed method to other domains, we applied it to retinal vessel segmentation. The results demonstrated superior performance of the proposed method compared to existing retinal vessel segmentation approaches. In conclusion, the proposed method offers high performance and can be easily applied to various biomedical domains and U-Net-based architectures. Therefore, the proposed approach will be beneficial for various biomedical imaging approaches. To facilitate this, we have made the source code of the proposed method publicly available at: https://github.com/resemin/WeightedDeepSupervision.
Collapse
Affiliation(s)
- Semin Kim
- AI R&D Center, Lululab Inc., 318, Dosan-daero, Gangnam-gu, Seoul, Republic of Korea.
| | - Huisu Yoon
- AI R&D Center, Lululab Inc., 318, Dosan-daero, Gangnam-gu, Seoul, Republic of Korea.
| | - Jongha Lee
- AI R&D Center, Lululab Inc., 318, Dosan-daero, Gangnam-gu, Seoul, Republic of Korea.
| | - Sangwook Yoo
- AI R&D Center, Lululab Inc., 318, Dosan-daero, Gangnam-gu, Seoul, Republic of Korea.
| |
Collapse
|