1
|
Alzubaidi L, Al-Dulaimi K, Salhi A, Alammar Z, Fadhel MA, Albahri AS, Alamoodi AH, Albahri OS, Hasan AF, Bai J, Gilliland L, Peng J, Branni M, Shuker T, Cutbush K, Santamaría J, Moreira C, Ouyang C, Duan Y, Manoufali M, Jomaa M, Gupta A, Abbosh A, Gu Y. Comprehensive review of deep learning in orthopaedics: Applications, challenges, trustworthiness, and fusion. Artif Intell Med 2024; 155:102935. [PMID: 39079201 DOI: 10.1016/j.artmed.2024.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/18/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Deep learning (DL) in orthopaedics has gained significant attention in recent years. Previous studies have shown that DL can be applied to a wide variety of orthopaedic tasks, including fracture detection, bone tumour diagnosis, implant recognition, and evaluation of osteoarthritis severity. The utilisation of DL is expected to increase, owing to its ability to present accurate diagnoses more efficiently than traditional methods in many scenarios. This reduces the time and cost of diagnosis for patients and orthopaedic surgeons. To our knowledge, no exclusive study has comprehensively reviewed all aspects of DL currently used in orthopaedic practice. This review addresses this knowledge gap using articles from Science Direct, Scopus, IEEE Xplore, and Web of Science between 2017 and 2023. The authors begin with the motivation for using DL in orthopaedics, including its ability to enhance diagnosis and treatment planning. The review then covers various applications of DL in orthopaedics, including fracture detection, detection of supraspinatus tears using MRI, osteoarthritis, prediction of types of arthroplasty implants, bone age assessment, and detection of joint-specific soft tissue disease. We also examine the challenges for implementing DL in orthopaedics, including the scarcity of data to train DL and the lack of interpretability, as well as possible solutions to these common pitfalls. Our work highlights the requirements to achieve trustworthiness in the outcomes generated by DL, including the need for accuracy, explainability, and fairness in the DL models. We pay particular attention to fusion techniques as one of the ways to increase trustworthiness, which have also been used to address the common multimodality in orthopaedics. Finally, we have reviewed the approval requirements set forth by the US Food and Drug Administration to enable the use of DL applications. As such, we aim to have this review function as a guide for researchers to develop a reliable DL application for orthopaedic tasks from scratch for use in the market.
Collapse
Affiliation(s)
- Laith Alzubaidi
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia.
| | - Khamael Al-Dulaimi
- Computer Science Department, College of Science, Al-Nahrain University, Baghdad, Baghdad 10011, Iraq; School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Asma Salhi
- QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia
| | - Zaenab Alammar
- School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Mohammed A Fadhel
- Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia
| | - A S Albahri
- Technical College, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - A H Alamoodi
- Institute of Informatics and Computing in Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia
| | - O S Albahri
- Australian Technical and Management College, Melbourne, Australia
| | - Amjad F Hasan
- Faculty of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Jinshuai Bai
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Luke Gilliland
- QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia
| | - Jing Peng
- Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia
| | - Marco Branni
- QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia
| | - Tristan Shuker
- QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; St Andrew's War Memorial Hospital, Brisbane, QLD 4000, Australia
| | - Kenneth Cutbush
- QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; St Andrew's War Memorial Hospital, Brisbane, QLD 4000, Australia
| | - Jose Santamaría
- Department of Computer Science, University of Jaén, Jaén 23071, Spain
| | - Catarina Moreira
- Data Science Institute, University of Technology Sydney, Australia
| | - Chun Ouyang
- School of Information Systems, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ye Duan
- School of Computing, Clemson University, Clemson, 29631, SC, USA
| | - Mohamed Manoufali
- CSIRO, Kensington, WA 6151, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Mohammad Jomaa
- QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; St Andrew's War Memorial Hospital, Brisbane, QLD 4000, Australia
| | - Ashish Gupta
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia
| | - Amin Abbosh
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Yuantong Gu
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Moskalenko V, Kharchenko V. Resilience-aware MLOps for AI-based medical diagnostic system. Front Public Health 2024; 12:1342937. [PMID: 38601490 PMCID: PMC11004236 DOI: 10.3389/fpubh.2024.1342937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Background The healthcare sector demands a higher degree of responsibility, trustworthiness, and accountability when implementing Artificial Intelligence (AI) systems. Machine learning operations (MLOps) for AI-based medical diagnostic systems are primarily focused on aspects such as data quality and confidentiality, bias reduction, model deployment, performance monitoring, and continuous improvement. However, so far, MLOps techniques do not take into account the need to provide resilience to disturbances such as adversarial attacks, including fault injections, and drift, including out-of-distribution. This article is concerned with the MLOps methodology that incorporates the steps necessary to increase the resilience of an AI-based medical diagnostic system against various kinds of disruptive influences. Methods Post-hoc resilience optimization, post-hoc predictive uncertainty calibration, uncertainty monitoring, and graceful degradation are incorporated as additional stages in MLOps. To optimize the resilience of the AI based medical diagnostic system, additional components in the form of adapters and meta-adapters are utilized. These components are fine-tuned during meta-training based on the results of adaptation to synthetic disturbances. Furthermore, an additional model is introduced for post-hoc calibration of predictive uncertainty. This model is trained using both in-distribution and out-of-distribution data to refine predictive confidence during the inference mode. Results The structure of resilience-aware MLOps for medical diagnostic systems has been proposed. Experimentally confirmed increase of robustness and speed of adaptation for medical image recognition system during several intervals of the system's life cycle due to the use of resilience optimization and uncertainty calibration stages. The experiments were performed on the DermaMNIST dataset, BloodMNIST and PathMNIST. ResNet-18 as a representative of convolutional networks and MedViT-T as a representative of visual transformers are considered. It is worth noting that transformers exhibited lower resilience than convolutional networks, although this observation may be attributed to potential imperfections in the architecture of adapters and meta-adapters. Сonclusion The main novelty of the suggested resilience-aware MLOps methodology and structure lie in the separating possibilities and activities on creating a basic model for normal operating conditions and ensuring its resilience and trustworthiness. This is significant for the medical applications as the developer of the basic model should devote more time to comprehending medical field and the diagnostic task at hand, rather than specializing in system resilience. Resilience optimization increases robustness to disturbances and speed of adaptation. Calibrated confidences ensure the recognition of a portion of unabsorbed disturbances to mitigate their impact, thereby enhancing trustworthiness.
Collapse
Affiliation(s)
- Viacheslav Moskalenko
- Department of Computer Science, Faculty of Electronics and Information Technologies, Sumy State University, Sumy, Ukraine
| | - Vyacheslav Kharchenko
- Department of Computer Systems, Network and Cybersecurity, Faculty of Radio-Electronics, Computer Systems and Infocommunications, National Aerospace University “KhAI”, Kharkiv, Ukraine
| |
Collapse
|