1
|
Baraldi S, Rigato E, Fusco G. Growth Regulation in the Larvae of the Lepidopteran Pieris brassicae: A Field Study. INSECTS 2023; 14:insects14020167. [PMID: 36835736 PMCID: PMC9965483 DOI: 10.3390/insects14020167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/06/2023]
Abstract
Size and shape are important determinants of fitness in most living beings. Accordingly, the capacity of the organism to regulate size and shape during growth, containing the effects of developmental disturbances of different origin, is considered a key feature of the developmental system. In a recent study, through a geometric morphometric analysis on a laboratory-reared sample of the lepidopteran Pieris brassicae, we found evidence of regulatory mechanisms able to restrain size and shape variation, including bilateral fluctuating asymmetry, during larval development. However, the efficacy of the regulatory mechanism under greater environmental variation remains to be explored. Here, based on a field-reared sample of the same species, by adopting identical measurements of size and shape variation, we found that the regulatory mechanisms for containing the effects of developmental disturbances during larval growth in P. brassicae are also effective under more natural environmental conditions. This study may contribute to better characterization of the mechanisms of developmental stability and canalization and their combined effects in the developmental interactions between the organism and its environment.
Collapse
|
2
|
Shape asymmetry - what's new? Emerg Top Life Sci 2022; 6:285-294. [PMID: 35758318 DOI: 10.1042/etls20210273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Studies of shape asymmetry have become increasingly abundant as the methods of geometric morphometrics have gained widespread use. Most of these studies have focussed on fluctuating asymmetry and have largely obtained similar results as more traditional analyses of asymmetry in distance measurements, but several notable differences have also emerged. A key difference is that shape analyses provide information on the patterns, not just the amount of variation, and therefore tend to be more sensitive. Such analyses have shown that apparently symmetric structures in animals consistently show directional asymmetry for shape, but not for size. Furthermore, the long-standing prediction that phenotypic plasticity in response to environmental heterogeneity can contribute to fluctuating asymmetry has been confirmed for the first time for the shape of flower parts (but not for size). Finally, shape analyses in structures with complex symmetry, such as many flowers, can distinguish multiple types of directional asymmetry, generated by distinct direction-giving factors, which combine to the single component observable in bilaterally symmetric structures. While analyses of shape asymmetry are broadly compatible with traditional analyses of asymmetry, they incorporate more detailed morphological information, particularly for structures with complex symmetry, and therefore can reveal subtle biological effects that would otherwise not be apparent. This makes them a promising tool for a wide range of studies in the basic and applied life sciences.
Collapse
|
3
|
Budečević S, Manitašević Jovanović S, Vuleta A, Tucić B, Klingenberg CP. Directional asymmetry and direction-giving factors: Lessons from flowers with complex symmetry. Evol Dev 2022; 24:92-108. [PMID: 35708164 PMCID: PMC9542681 DOI: 10.1111/ede.12402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Directional asymmetry is a systematic difference between the left and right sides for structures with bilateral symmetry or a systematic differentiation among repeated parts for complex symmetry. This study explores factors that produce directional asymmetry in the flower of Iris pumila, a structure with complex symmetry that makes it possible to investigate multiple such factors simultaneously. The shapes and sizes of three types of floral organs, the falls, standards, and style branches, were quantified using the methods of geometric morphometrics. For each flower, this study recorded the compass orientations of floral organs as well as their anatomical orientations relative to the two spathes subtending each flower. To characterize directional asymmetry at the whole-flower level, differences in the average sizes and shapes according to compass orientation and relative orientation were computed, and the left-right asymmetry was also evaluated for each individual organ. No size or shape differences within flowers were found in relation to anatomical position; this may relate to the terminal position of flowers in Iris pumila, suggesting that there may be no adaxial-abaxial polarity, which is very prominent in many other taxa. There was clear directional asymmetry of shape in relation to compass orientation, presumably driven by a consistent environmental gradient such as solar irradiance. There was also clear directional asymmetry between left and right halves of every floral organ, most likely related to the arrangement of organs in the bud. These findings indicate that different factors are acting to produce directional asymmetry at different levels. In conventional analyses not recording flower orientations, these effects would be impossible to disentangle from each other and would probably be included as part of fluctuating asymmetry.
Collapse
Affiliation(s)
- Sanja Budečević
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Manitašević Jovanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Vuleta
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Tucić
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
4
|
Savriama Y, Tautz D. Testing the accuracy of 3D automatic landmarking via genome-wide association studies. G3 (BETHESDA, MD.) 2022; 12:jkab443. [PMID: 35100368 PMCID: PMC9210295 DOI: 10.1093/g3journal/jkab443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022]
Abstract
Various advances in 3D automatic phenotyping and landmark-based geometric morphometric methods have been made. While it is generally accepted that automatic landmarking compromises the capture of the biological variation, no studies have directly tested the actual impact of such landmarking approaches in analyses requiring a large number of specimens and for which the precision of phenotyping is crucial to extract an actual biological signal adequately. Here, we use a recently developed 3D atlas-based automatic landmarking method to test its accuracy in detecting QTLs associated with craniofacial development of the house mouse skull and lower jaws for a large number of specimens (circa 700) that were previously phenotyped via a semiautomatic landmarking method complemented with manual adjustment. We compare both landmarking methods with univariate and multivariate mapping of the skull and the lower jaws. We find that most significant SNPs and QTLs are not recovered based on the data derived from the automatic landmarking method. Our results thus confirm the notion that information is lost in the automated landmarking procedure although somewhat dependent on the analyzed structure. The automatic method seems to capture certain types of structures slightly better, such as lower jaws whose shape is almost entirely summarized by its outline and could be assimilated as a 2D flat object. By contrast, the more apparent 3D features exhibited by a structure such as the skull are not adequately captured by the automatic method. We conclude that using 3D atlas-based automatic landmarking methods requires careful consideration of the experimental question.
Collapse
Affiliation(s)
- Yoland Savriama
- Department Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Diethard Tautz
- Department Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
5
|
Springolo A, Rigato E, Fusco G. Larval growth and allometry in the cabbage butterfly
Pieris brassicae
(Lepidoptera: Pieridae). ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Klingenberg CP. Phenotypic Plasticity, Developmental Instability, and Robustness: The Concepts and How They Are Connected. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00056] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
7
|
Savriama Y, Gerber S. Geometric morphometrics of nested symmetries unravels hierarchical inter- and intra-individual variation in biological shapes. Sci Rep 2018. [PMID: 30575747 DOI: 10.1101/306712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Symmetry is a pervasive feature of organismal shape and the focus of a large body of research in Biology. Here, we consider complex patterns of symmetry where a phenotype exhibits a hierarchically structured combination of symmetries. We extend the Procrustes ANOVA for the analysis of nested symmetries and the decomposition of the overall morphological variation into components of symmetry (among-individual variation) and asymmetry (directional and fluctuating asymmetry). We illustrate its use with the Aristotle's lantern, the masticatory apparatus of 'regular' sea urchins, a complex organ displaying bilateral symmetry nested within five-fold rotational symmetry. Our results highlight the importance of characterising the full symmetry of a structure with nested symmetries. Higher order rotational symmetry appears strongly constrained and developmentally stable compared to lower level bilateral symmetry. This contrast between higher and lower levels of asymmetry is discussed in relation to the spatial pattern of the lantern morphogenesis. This extended framework is applicable to any biological object exhibiting nested symmetries, regardless of their type (e.g., bilateral, rotational, translational). Such cases are extremely widespread in animals and plants, from arthropod segmentation to angiosperm inflorescence and corolla shape. The method therefore widens the research scope on developmental instability, canalization, developmental modularity and morphological integration.
Collapse
Affiliation(s)
- Yoland Savriama
- Institute of Biotechnology, PO Box 56 (Viikinkaari 5), FIN-00014 University of Helsinki, Helsinki, Finland.
| | - Sylvain Gerber
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 50, 57 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
8
|
Geometric morphometrics of nested symmetries unravels hierarchical inter- and intra-individual variation in biological shapes. Sci Rep 2018; 8:18055. [PMID: 30575747 PMCID: PMC6303334 DOI: 10.1038/s41598-018-36147-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/14/2018] [Indexed: 11/12/2022] Open
Abstract
Symmetry is a pervasive feature of organismal shape and the focus of a large body of research in Biology. Here, we consider complex patterns of symmetry where a phenotype exhibits a hierarchically structured combination of symmetries. We extend the Procrustes ANOVA for the analysis of nested symmetries and the decomposition of the overall morphological variation into components of symmetry (among-individual variation) and asymmetry (directional and fluctuating asymmetry). We illustrate its use with the Aristotle’s lantern, the masticatory apparatus of ‘regular’ sea urchins, a complex organ displaying bilateral symmetry nested within five-fold rotational symmetry. Our results highlight the importance of characterising the full symmetry of a structure with nested symmetries. Higher order rotational symmetry appears strongly constrained and developmentally stable compared to lower level bilateral symmetry. This contrast between higher and lower levels of asymmetry is discussed in relation to the spatial pattern of the lantern morphogenesis. This extended framework is applicable to any biological object exhibiting nested symmetries, regardless of their type (e.g., bilateral, rotational, translational). Such cases are extremely widespread in animals and plants, from arthropod segmentation to angiosperm inflorescence and corolla shape. The method therefore widens the research scope on developmental instability, canalization, developmental modularity and morphological integration.
Collapse
|
9
|
Neustupa J, Stastny J. Symmetry breaking of the cellular lobes closely relates to phylogenetic structure within green microalgae of the Micrasterias lineage (Zygnematophyceae). PeerJ 2018; 6:e6098. [PMID: 30568863 PMCID: PMC6287601 DOI: 10.7717/peerj.6098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/11/2018] [Indexed: 11/20/2022] Open
Abstract
Green microalgae of the Micrasterias lineage are unicellular microorganisms with modular morphology consisting of successively differentiated lobes. Due to their morphological diversity and peculiar morphogenesis, these species are important model systems for studies of cytomorphogenesis and cellular plasticity. Interestingly, the phylogenetic structure of the Micrasterias lineage and most other Desmidiales is poorly related to the traditional morphological characters used for delimitation of taxa. In this study, we focused on symmetry breaking between adjacent cellular lobes in relation to phylogeny of the studied species. While pronounced morphological asymmetry between the adjacent lobes is typical for some species, others have been characterized by the almost identical morphologies of these structures. We asked whether there is any detectable average shape asymmetry between the pairs of lobes and terminal lobules in 19 Micrasterias species representing all major clades of this desmidiacean lineage. Then, we evaluated whether the asymmetric patterns among species are phylogenetically structured. The analyses showed that the phylogeny was in fact strongly related to the patterns of morphological asymmetry between the adjacent cellular lobes. Thus, evolution of the asymmetric development between the adjacent lobes proved to be the key event differentiating cellular shape patterns of Micrasterias. Conversely, the phylogeny was only weakly related to asymmetry between the pairs of terminal lobules. The subsequent analyses of the phylogenetic morphological integration showed that individual hierarchical levels of cellular morphology were only weakly coordinated with regard to asymmetric variation among species. This finding indicates that evolutionary differentiation of morphogenetic processes leading to symmetry breaking may be relatively independent at different branching levels. Such modularity is probably the key to the evolvability of cellular shapes, leading to the extraordinary morphological diversity of these intriguing microalgae.
Collapse
Affiliation(s)
- Jiri Neustupa
- Department of Botany, Faculty of Science, Charles University Prague, Prague, Czech Republic
| | - Jan Stastny
- Department of Botany, Faculty of Science, Charles University Prague, Prague, Czech Republic
| |
Collapse
|
10
|
Neustupa J, Nemcova Y. Morphological allometry constrains symmetric shape variation, but not asymmetry, of Halimeda tuna (Bryopsidales, Ulvophyceae) segments. PLoS One 2018; 13:e0206492. [PMID: 30359424 PMCID: PMC6201959 DOI: 10.1371/journal.pone.0206492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/15/2018] [Indexed: 11/29/2022] Open
Abstract
Green algae of the genus Halimeda have modular siphonous thalli composed of multiple repeated segments. Morphological variation among the segments has been related to various environmental factors, which often jointly affect their size and shape. The segments are bilaterally symmetric, which means that their shape variation can be decomposed into the symmetric and asymmetric components. Asymmetric variation might reflect both environmental heterogeneity and developmental instability of morphogenetic processes during the development of segments. In the present study, we examined if segment shape in H. tuna is related to their size and if an allometric relationship can also be found with respect to their asymmetry. Relative contributions of directional and fluctuating asymmetry to the segment shape variation within individual plants were investigated at two close localities in the northern Adriatic Sea. A series of equidistant semilandmarks were set along the outline of the segments, and analyzed by geometric morphometrics using two parallel methods to optimize their final position. Symmetric variation was strongly constrained by allometry, which also explained differences between populations. Smaller segments were significantly more asymmetric, but the difference in asymmetry between populations could not be explained solely by this allometric relationship. These differences between populations might have been caused by variation in local environmental factors. We conclude that members of the genus Halimeda represent an intriguing model system for studies of morphometric symmetry and asymmetry of sessile marine organisms, including effects of allometric relationships and infraspecific variation in relation to environmental factors of the benthic coastal habitats.
Collapse
Affiliation(s)
- Jiri Neustupa
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| | - Yvonne Nemcova
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Savriama Y. A Step-by-Step Guide for Geometric Morphometrics of Floral Symmetry. FRONTIERS IN PLANT SCIENCE 2018; 9:1433. [PMID: 30364116 PMCID: PMC6191499 DOI: 10.3389/fpls.2018.01433] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/10/2018] [Indexed: 05/21/2023]
Abstract
This paper provides a step-by-step guide for the morphological analysis of corolla and the decomposition of corolla shape variation into its symmetric and asymmetric components. The shape and symmetric organisation of corolla are key traits in the developmental and evolutionary biology of flowering plants. The various spatial layout of petals can exhibit bilateral symmetry, rotational symmetry or more complex combination of symmetry types. Here, I describe a general landmark-based geometric morphometric framework for the full statistical shape analysis of corolla and exemplify its use with four fully worked out case studies including tissue treatment, imaging, landmark data collection, file formatting, and statistical analyses: (i) bilateral symmetry (Fedia graciliflora), (ii) two perpendicular axes of bilateral symmetry (Erysimum mediohispanicum), (iii) rotational symmetry (Vinca minor), and (iv) combined bilateral and rotational symmetry (Trillium undulatum). The necessary tools for such analyses are not implemented in standard morphometric software and they are therefore provided here as functions running in the R environment. Principal Component Analysis is used to separate symmetric and asymmetric components of variation, respectively, quantifying variation among and within individuals. For bilaterally symmetric flowers, only one component of left-right asymmetric variation is extracted, while flowers with more complex symmetric layout have components of asymmetric variation associated with each symmetry operator implied (e.g., left-right asymmetry and adaxial-abaxial asymmetry). Fundamental information on the genetic, developmental, and environmental determinants of shape variation can be inferred from this decomposition (e.g., directional asymmetry, fluctuating asymmetry) and further exploited to document patterns of canalization, developmental stability, developmental modularity and morphological integration. Even if symmetry and asymmetry are not the primary interest of a study on corolla shape variation, statistical and anatomical arguments support the use of the framework advocated. This didactic protocol will help both morphometricians and non-morphometricians to further understand the role of symmetry in the development, variation and adaptive evolution of flowers.
Collapse
Affiliation(s)
- Yoland Savriama
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|