1
|
Zhang Y, Jia XB, Liu YC, Yu WQ, Si YH, Guo SD. Fenofibrate enhances lipid deposition via modulating PPARγ, SREBP-1c, and gut microbiota in ob/ob mice fed a high-fat diet. Front Nutr 2022; 9:971581. [PMID: 36172518 PMCID: PMC9511108 DOI: 10.3389/fnut.2022.971581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is characterized by lipid accumulation in distinct organs. Presently, fenofibrate is a commonly used triglyceride-lowering drug. This study is designed to investigate whether long-term fenofibrate intervention can attenuate lipid accumulation in ob/ob mouse, a typical model of obesity. Our data demonstrated that fenofibrate intervention significantly decreased plasma triglyceride level by 21.0%, increased liver index and hepatic triglyceride content by 31.7 and 52.1%, respectively, and elevated adipose index by 44.6% compared to the vehicle group. As a PPARα agonist, fenofibrate intervention significantly increased the expression of PPARα protein in the liver by 46.3% and enhanced the expression of LDLR protein by 3.7-fold. However, fenofibrate dramatically increased the expression of PPARγ and SREBP-1c proteins by ~2.1- and 0.9-fold in the liver, respectively. Fenofibrate showed no effects on the expression of genes-related to fatty acid β-oxidation. Of note, it significantly increased the gene expression of FAS and SCD-1. Furthermore, fenofibrate modulated the gut microbiota. Collectively, long-term fenofibrate induces lipid accumulation in liver and adipose tissues in ob/ob mice by enhancing the expression of adipogenesis-related proteins and gut microbiota. These data suggest that fenofibrate may have limited effects on attenuating lipid deposition in obese patients.
Collapse
Affiliation(s)
- Ying Zhang
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiu-Bin Jia
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yun-Chao Liu
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wen-Qian Yu
- Innovative Drug Research Centre, School of Pharmacy, Institute of Lipid Metabolism and Atherosclerosis, Weifang Medical University, Weifang, China
| | - Yan-Hong Si
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- College of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Yan-Hong Si
| | - Shou-Dong Guo
- Innovative Drug Research Centre, School of Pharmacy, Institute of Lipid Metabolism and Atherosclerosis, Weifang Medical University, Weifang, China
- *Correspondence: Shou-Dong Guo
| |
Collapse
|
2
|
Vergès B, Duvillard L, Pais de Barros JP, Bouillet B, Baillot-Rudoni S, Rouland A, Petit JM, Degrace P, Demizieux L. Liraglutide Increases the Catabolism of Apolipoprotein B100-Containing Lipoproteins in Patients With Type 2 Diabetes and Reduces Proprotein Convertase Subtilisin/Kexin Type 9 Expression. Diabetes Care 2021; 44:1027-1037. [PMID: 33531418 DOI: 10.2337/dc20-1843] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/10/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Dyslipidemia observed in type 2 diabetes (T2D) is atherogenic. Important features of diabetic dyslipidemia are increased levels of triglyceride-rich lipoproteins and small dense LDL particles, which all have apolipoprotein B100 (apoB100) as a major apolipoprotein. This prompted us to study the effect of the GLP-1 agonist liraglutide on the metabolism of apoB100-containing lipoproteins. RESEARCH DESIGN AND METHODS We performed an in vivo kinetic study with stable isotopes (L-[1-13C]leucine) in 10 patients with T2D before and after 6 months of treatment with liraglutide (1.2 mg/day). We also evaluated in mice the effect of liraglutide on the expression of genes involved in apoB100-containing lipoprotein clearance. RESULTS In patients with T2D, liraglutide treatment significantly reduced plasma apoB100 (0.93 ± 0.13 vs. 1.09 ± 0.11 g/L, P = 0.011) and fasting triglycerides (1.76 ± 0.37 vs. 2.48 ± 0.69 mmol/L, P = 0.005). The kinetic study showed a significant increase in indirect catabolism of VLDL1-apoB100 (4.11 ± 1.91 vs. 2.96 ± 1.61 pools/day, P = 0.005), VLDL2-apoB100 (5.17 ± 2.53 vs. 2.84 ± 1.65 pools/day, P = 0.008), and IDL-apoB100 (5.27 ± 2.77 vs. 3.74 ± 1.85 pools/day, P = 0.017) and in catabolism of LDL-apoB100 (0.72 ± 0.22 vs. 0.56 ± 0.22 pools/day, P = 0.005). In mice, liraglutide increased lipoprotein lipase (LPL) gene expression and reduced proprotein convertase subtilisin/kexin type 9 (PCSK9), retinol-binding protein 4 (RBP4), and tumor necrosis factor-α (TNF-α) gene expression in adipose tissue and decreased PCSK9 mRNA and increased LDL receptor protein expression in liver. In vitro, liraglutide directly reduced the expression of PCSK9 in the liver. CONCLUSIONS Treatment with liraglutide induces a significant acceleration of the catabolism of triglyceride-rich lipoproteins (VLDL1, VLDL2, IDL) and LDL. Liraglutide modifies the expression of genes involved in apoB100-containing lipoprotein catabolism. These positive effects on lipoprotein metabolism may reduce cardiovascular risk in T2D.
Collapse
Affiliation(s)
- Bruno Vergès
- Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France .,INSERM LNC UMR1231, University of Burgundy, Dijon, France
| | - Laurence Duvillard
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Biochemistry, CHU Dijon, Dijon, France
| | - Jean Paul Pais de Barros
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Lipidomic Analytical Platform, University of Burgundy, Dijon, France
| | - Benjamin Bouillet
- Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France.,INSERM LNC UMR1231, University of Burgundy, Dijon, France
| | | | - Alexia Rouland
- Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France.,INSERM LNC UMR1231, University of Burgundy, Dijon, France
| | - Jean Michel Petit
- Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France.,INSERM LNC UMR1231, University of Burgundy, Dijon, France
| | - Pascal Degrace
- INSERM LNC UMR1231, University of Burgundy, Dijon, France
| | | |
Collapse
|
3
|
Vergès B, Duvillard L, Pais de Barros JP, Bouillet B, Baillot-Rudoni S, Rouland A, Sberna AL, Petit JM, Degrace P, Demizieux L. Liraglutide Reduces Postprandial Hyperlipidemia by Increasing ApoB48 (Apolipoprotein B48) Catabolism and by Reducing ApoB48 Production in Patients With Type 2 Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2018; 38:2198-2206. [DOI: 10.1161/atvbaha.118.310990] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Objective—
Treatment with liraglutide, a GLP-1 (glucagon-like peptide-1) agonist, has been shown to reduce postprandial lipidemia, an important feature of diabetic dyslipidemia. However, the underlying mechanisms for this effect remain unknown. This prompted us to study the effect of liraglutide on the metabolism of ApoB48 (apolipoprotein B48).
Approach and Results—
We performed an in vivo kinetic study with stable isotopes (D
8
-valine) in the fed state in 10 patients with type 2 diabetes mellitus before treatment and 6 months after the initiation of treatment with liraglutide (1.2 mg/d). We also evaluated, in mice, the effect of a 1-week liraglutide treatment on postload triglycerides and analysed in vitro on jejunum, the direct effect of liraglutide on the expression of genes involved in the biosynthesis of chylomicron. In diabetic patients, liraglutide treatment induced a dramatic reduction of ApoB48 pool (65±38 versus 162±87 mg;
P
=0.005) because of a significant decrease in ApoB48 production rate (3.02±1.33 versus 6.14±4.27 mg kg
-1
d
-1
;
P
=0.009) and a significant increase in ApoB48 fractional catabolic rate (5.12±1.35 versus 3.69±0.75 pool d
-1
;
P
=0.005). One-week treatment with liraglutide significantly reduced postload plasma triglycerides in mice and liraglutide, in vitro, reduced the expression of ApoB48, DGAT1 (diacylglycerol O-acyltransferase 1), and MTP (microsomal transfer protein) genes.
Conclusions—
We show that treatment with liraglutide induces a significant reduction of the ApoB48 pool because of both a reduction of ApoB48 production and an increase in ApoB48 catabolism. In vitro, liraglutide reduces the expression of genes involved in chylomicron synthesis. These effects might benefit cardiovascular health.
Clinical Trial Registration—
URL:
https://www.clinicaltrials.gov
. Unique identifier: NCT02721888.
Collapse
Affiliation(s)
- Bruno Vergès
- From the Department of Endocrinology-Diabetology (B.V., B.B, S.B.-R., A.R., A.-L.S., J.M.P.)
- INSERM LNR UMR1231, University of Burgundy and Franche-Comté, Dijon, France (B.V., L.D., J.P.P.d.B., B.B., J.-M.P., P.D., L.D.)
| | - Laurence Duvillard
- INSERM LNR UMR1231, University of Burgundy and Franche-Comté, Dijon, France (B.V., L.D., J.P.P.d.B., B.B., J.-M.P., P.D., L.D.)
| | - Jean Paul Pais de Barros
- INSERM LNR UMR1231, University of Burgundy and Franche-Comté, Dijon, France (B.V., L.D., J.P.P.d.B., B.B., J.-M.P., P.D., L.D.)
- Lipidomic Analytical Platform, Bâtiment B3, Dijon, France (J.P.P.d.B.)
| | - Benjamin Bouillet
- From the Department of Endocrinology-Diabetology (B.V., B.B, S.B.-R., A.R., A.-L.S., J.M.P.)
- INSERM LNR UMR1231, University of Burgundy and Franche-Comté, Dijon, France (B.V., L.D., J.P.P.d.B., B.B., J.-M.P., P.D., L.D.)
| | - Sabine Baillot-Rudoni
- From the Department of Endocrinology-Diabetology (B.V., B.B, S.B.-R., A.R., A.-L.S., J.M.P.)
| | - Alexia Rouland
- From the Department of Endocrinology-Diabetology (B.V., B.B, S.B.-R., A.R., A.-L.S., J.M.P.)
| | - Anne-Laure Sberna
- From the Department of Endocrinology-Diabetology (B.V., B.B, S.B.-R., A.R., A.-L.S., J.M.P.)
| | - Jean-Michel Petit
- From the Department of Endocrinology-Diabetology (B.V., B.B, S.B.-R., A.R., A.-L.S., J.M.P.)
- INSERM LNR UMR1231, University of Burgundy and Franche-Comté, Dijon, France (B.V., L.D., J.P.P.d.B., B.B., J.-M.P., P.D., L.D.)
| | - Pascal Degrace
- INSERM LNR UMR1231, University of Burgundy and Franche-Comté, Dijon, France (B.V., L.D., J.P.P.d.B., B.B., J.-M.P., P.D., L.D.)
| | - Laurent Demizieux
- Department of Biochemistry (L.D.), University Hospital, Dijon, France
- INSERM LNR UMR1231, University of Burgundy and Franche-Comté, Dijon, France (B.V., L.D., J.P.P.d.B., B.B., J.-M.P., P.D., L.D.)
| |
Collapse
|
4
|
Sakuma N, Hibino T, Saeki T, Nagata T, Sato T, Okuda N, Matsunaga A, Sasaki J. Compound Heterozygotes for a Novel Mutation, Apo E1 Nagoya (Arg142Ser) and Apo E2 (Arg158Cys), with Severe Type III Hyperlipoproteinemia and Familial Hypercholesterolemia. J Atheroscler Thromb 2014; 21:983-8. [DOI: 10.5551/jat.21394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
5
|
Xiao C, Lewis GF. Regulation of chylomicron production in humans. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:736-46. [DOI: 10.1016/j.bbalip.2011.09.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 12/18/2022]
|
6
|
Berthold HK, Sudhop T, von Bergmann K, Gouni-Berthold I. Lifibrol as a model compound for a novel lipid-lowering mechanism of action. J Cardiovasc Pharmacol Ther 2010; 15:364-72. [PMID: 20693157 DOI: 10.1177/1074248410371100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lifibrol is a potent lipid-lowering drug with an unknown mechanism of action. We investigated its effects on lipoprotein and sterol metabolism in normocholesterolemic male participants. Seven participants were treated for 4 weeks with 600 mg/d lifibrol and 9 with 40 mg/d pravastatin in a double-blind randomized parallel-group trial. Kinetic studies were performed at baseline and under acute and chronic treatment. Turnover of apolipoprotein B-100 was investigated with endogenous stable-isotope labeling, and kinetic parameters were derived by multicompartmental modeling. Lathosterol and cholesterol metabolism were investigated using mass isotopomer distribution analysis (MIDA) after [1-(13)C]acetate labeling. Carbon metabolism was investigated by calculating the total isotope incorporation into newly formed sterols and measuring the disposal of acetate by (13)CO(2) breath analysis. Total- and low-density lipoprotein (LDL) cholesterol decreased by 18% and 27% under lifibrol and by 17% and 28% under pravastatin, respectively, whereas very-low-density lipoprotein (VLDL) cholesterol, triglycerides, and high-density lipoprotein (HDL) cholesterol did not change. Very-low-density lipoprotein apoB fractional synthesis and production increased under lifibrol but remained unchanged under pravastatin. Low-density lipoprotein apoB fractional synthesis and production increased under pravastatin but remained unchanged under lifibrol. Mass isotopomer distribution analysis indicated that both drugs decrease endogenous sterol synthesis after acute administration, but pravastatin had more powerful effects. Carbon-13 appearance in breath was higher during pravastatin than during lifibrol treatment. Mass isotopomer distribution analysis and carbon metabolism analysis indicated compartmentalization at the site of sterol synthesis, thus suggesting differential effects of the 2 drugs. Although having comparable lipid-lowering properties, lifibrol seems to have a mechanism of action distinct from that of statins. Lifibrol could serve as a model compound for the development of new lipid-lowering agents.
Collapse
Affiliation(s)
- Heiner K Berthold
- Department of Clinical Pharmacology, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
7
|
Ooi EMM, Janus ED, Grant SJ, Sinclair LMT, R Barrett PH. Effect of apolipoprotein E genotype on apolipoprotein B-100 metabolism in normolipidemic and hyperlipidemic subjects. J Lipid Res 2010; 51:2413-21. [PMID: 20413671 DOI: 10.1194/jlr.m004705] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The effect of apolipoprotein (apo) E genotype on apoB-100 metabolism was examined in three normolipidemic apoE2/E2, five type III hyperlipidemic apoE2/E2, and five hyperlipidemic apoE3/E2 subjects using simultaneous administration of (131)I-VLDL and (125)I-LDL, and multi-compartmental modeling. Compared with normolipidemic apoE2/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased plasma and VLDL cholesterol, plasma and VLDL triglycerides, and VLDL and intermediate density lipoprotein (IDL) apoB concentrations (P < 0.05). These abnormalities were chiefly a consequence of decreased VLDL and IDL apoB fractional catabolic rate (FCR). Compared with hyperlipidemic E3/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased IDL apoB concentration and decreased conversion of IDL to LDL particles (P < 0.05). In a pooled analysis, VLDL cholesterol was positively associated with VLDL and IDL apoB concentrations and the proportion of VLDL apoB in the slowly turning over VLDL pool, and was negatively associated with VLDL apoB FCR after adjusting for subject group. VLDL triglyceride was positively associated with VLDL apoB concentration and VLDL and IDL apoB production rates after adjusting for subject group. A defective apoE contributes to altered lipoprotein metabolism but is not sufficient to cause overt hyperlipidemia. Additional genetic mutations and environmental factors, including insulin resistance and obesity, may contribute to the development of type III hyperlipidemia.
Collapse
Affiliation(s)
- Esther M M Ooi
- Metabolic Research Centre, School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, Perth, Western Australia
| | | | | | | | | |
Collapse
|
8
|
Chapman MJ, Redfern JS, McGovern ME, Giral P. Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk. Pharmacol Ther 2010; 126:314-45. [PMID: 20153365 DOI: 10.1016/j.pharmthera.2010.01.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 12/16/2022]
Abstract
Although statin therapy represents a cornerstone of cardiovascular disease (CVD) prevention, a major residual CVD risk (60-70% of total relative risk) remains, attributable to both modifiable and non-modifiable risk factors. Among the former, low levels of HDL-C together with elevated triglyceride (TG)-rich lipoproteins and their remnants represent major therapeutic targets. The current pandemic of obesity, metabolic syndrome, and type 2 diabetes is intimately associated with an atherogenic dyslipidemic phenotype featuring low HDL-C combined with elevated TG-rich lipoproteins and small dense LDL. In this context, there is renewed interest in pharmacotherapeutic strategies involving niacin and fibrates in monotherapy and in association with statins. This comprehensive, critical review of available data in dyslipidemic subjects indicates that niacin is more efficacious in raising HDL-C than fibrates, whereas niacin and fibrates reduce TG-rich lipoproteins and LDL comparably. Niacin is distinguished by its unique capacity to effectively lower Lp(a) levels. Several studies have demonstrated anti-atherosclerotic action for both niacin and fibrates. In contrast with statin therapy, the clinical benefit of fibrates appears limited to reduction of nonfatal myocardial infarction, whereas niacin (frequently associated with statins and/or other agents) exerts benefit across a wider range of cardiovascular endpoints in studies involving limited patient numbers. Clearly the future treatment of atherogenic dyslipidemias involving the lipid triad, as exemplified by the occurrence of the mixed dyslipidemic phenotype in metabolic syndrome, type 2 diabetes, renal, and auto-immune diseases, requires integrated pharmacotherapy targeted not only to proatherogenic particles, notably VLDL, IDL, LDL, and Lp(a), but also to atheroprotective HDL.
Collapse
Affiliation(s)
- M John Chapman
- Dyslipidemia, Inflammation and Atherosclerosis Research Unit, UMR-S939, National Institute for Health and Medical Research (INSERM), Hôpital de la Pitié-Salpetriere, Paris, France.
| | | | | | | |
Collapse
|
9
|
Shah A, Rader DJ, Millar JS. The effect of PPAR-alpha agonism on apolipoprotein metabolism in humans. Atherosclerosis 2009; 210:35-40. [PMID: 20005515 DOI: 10.1016/j.atherosclerosis.2009.11.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/30/2009] [Accepted: 11/09/2009] [Indexed: 11/27/2022]
Abstract
Metabolic syndrome, diabetes and obesity are frequently associated with hypertriglyceridemia, hypercholesterolemia and low HDL levels, a phenotype known as atherogenic dyslipidemia. Atherogenic dyslipidemia and hypertriglyceridemia are frequently treated with fibric acid derivatives which activate the nuclear receptor PPAR-alpha leading to reduce plasma triglycerides and an increase in HDL cholesterol levels. The mechanism by which activation of PPAR-alpha with fibrates improves the plasma lipid profile in patients with atherogenic dyslipidemia and hypertriglyceridemia has been examined in several small studies measuring lipoprotein kinetics. The results of these studies indicate that the changes in lipoprotein metabolism observed in response to fibrate treatment vary according to lipoprotein phenotype. In general, fibrates act to reduce VLDL apoB-100 through enhanced fractional catabolism (clearance) of VLDL apoB-100 with additional effects on reducing VLDL apoB-100 production. LDL apoB-100 levels generally decrease in response to fibrates due to increased LDL fractional catabolism except in those patients with high to very high plasma triglyceride levels (>400mg/dL). Fibrates also increase HDL apoA-I and apoA-II levels by enhancing apoA-I and apoA-II production, although this is partially counteracted by increasing fractional catabolism of these apolipoproteins. The potent and specific PPAR-alpha agonist LY518674, reduced VLDL apoB-100 levels through enhanced fractional catabolism similar to what is seen with fibrates. In contrast to fibrates, LY518674 did not change HDL apoA-I levels in response to due to an increased turnover of apoA-I where an increased fractional catabolic rate entirely counteracted the increase in apoA-I production. The changes in apoB metabolism in response to PPAR-alpha activation with fibrates and specific PPAR-alpha agonists would be expected to reduce the risk of cardiovascular disease. However, the benefit of the enhanced turnover of HDL apoA-I in response to PPAR-alpha activation remains to be determined.
Collapse
Affiliation(s)
- Ashish Shah
- University of Pennsylvania, Depts. of Medicine and Pharmacology, 652 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, United States
| | | | | |
Collapse
|