1
|
Prior SJ, Chrencik MT, Christensen E, Kundi R, Ryan AS, Addison O, Lal BK. An exercise stress test for contrast-enhanced duplex ultrasound assessment of lower limb muscle perfusion in patients with peripheral arterial disease. J Vasc Surg 2024; 79:397-404. [PMID: 37844848 PMCID: PMC10969459 DOI: 10.1016/j.jvs.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVE The aim of the present study was to develop a standardized contrast-enhanced duplex ultrasound (CE-DUS) protocol to assess lower-extremity muscle perfusion before and after exercise and determine relationships of perfusion with clinical and functional measures. METHODS CE-DUS (EPIQ 5G, Philips) was used before and immediately after a 10-minute, standardized bout of treadmill walking to compare microvascular perfusion of the gastrocnemius muscle in older (55-82 years) patients with peripheral arterial disease (PAD) (n = 15, mean ankle-brachial index, 0.78 ± 0.04) and controls (n = 13). Microvascular blood volume (MBV) and microvascular flow velocity (MFV) were measured at rest and immediately following treadmill exercise, and the Modified Physical Performance Test (MPPT) was used to assess mobility function. RESULTS In the resting state (pre-exercise), MBV in patients with PAD was not significantly different than normal controls (5.17 ± 0.71 vs 6.20 ± 0.83 arbitrary units (AU) respectively; P = .36); however, after exercise, MBV was ∼40% lower in patients with PAD compared with normal controls (5.85 ± 1.13 vs 9.53 ± 1.31 AU, respectively; P = .04). Conversely, MFV was ∼60% higher in patients with PAD compared with normal controls after exercise (0.180 ± 0.016 vs 0.113 ± 0.018 AU, respectively; P = .01). There was a significant between-group difference in the exercise-induced changes in both MBV and MFV (P ≤ .05). Both basal and exercise MBV directly correlated with MPPT score in the patients with PAD (r = 0.56-0.62; P < .05). CONCLUSIONS This standardized protocol for exercise stress testing of the lower extremities quantifies calf muscle perfusion and elicits perfusion deficits in patients with PAD. This technique objectively quantifies microvascular perfusion deficits that are related to reduced mobility function and could be used to assess therapeutic efficacy in patients with PAD.
Collapse
Affiliation(s)
- Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD; Department of Veterans Affairs and Baltimore Veterans Affairs Medical Center Geriatric Research, Education and Clinical Center (GRECC), Baltimore, MD; Department of Medicine, Division of Gerontology, Geriatrics and Palliative Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Matthew T Chrencik
- Department of Surgery, Division of Vascular Surgery, University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center, Baltimore, MD
| | - Eric Christensen
- Department of Veterans Affairs and Baltimore Veterans Affairs Medical Center Geriatric Research, Education and Clinical Center (GRECC), Baltimore, MD; Department of Medicine, Division of Gerontology, Geriatrics and Palliative Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Rishi Kundi
- Department of Surgery, Division of Vascular Surgery, University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center, Baltimore, MD
| | - Alice S Ryan
- Department of Veterans Affairs and Baltimore Veterans Affairs Medical Center Geriatric Research, Education and Clinical Center (GRECC), Baltimore, MD; Department of Medicine, Division of Gerontology, Geriatrics and Palliative Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Odessa Addison
- Department of Veterans Affairs and Baltimore Veterans Affairs Medical Center Geriatric Research, Education and Clinical Center (GRECC), Baltimore, MD; Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore
| | - Brajesh K Lal
- Department of Surgery, Division of Vascular Surgery, University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center, Baltimore, MD.
| |
Collapse
|
2
|
Miceli G, Tuttolomondo A, Velardo M, Bencivinni F, Poma S, Pinto A. "The importance of being external": review of the literature of the rare phenomenon of common carotid occlusion with bulb reverse-crossed stenosis and external collaterals activation. Is still correct speaking about carotid steal? J Ultrasound 2022; 25:435-442. [PMID: 35032023 PMCID: PMC9402855 DOI: 10.1007/s40477-021-00644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/27/2021] [Indexed: 11/25/2022] Open
Abstract
Common carotid artery occlusion (CCAO) is a rare phenomenon associated with the development of neurological symptoms. In CCAO, diversion of blood flow from the external carotid artery (ECA) to the internal carotid artery (ICA) via the carotid bulb (CB) may occur. This pathway activation has been called "carotid steal". Starting from a particular case we describe the ECD finding of a complete occlusion of CCA with patency of ICA and ECA. In case of occlusion of CCA, inversion of the ECA flow may occur, towards the ICA, and it can be damped by a significant stenosis crossed in retrograde direction that may concur to maintain the pressure balance between the two circulations. Usually, this particular compensation can guarantee normal flow velocities in middle cerebral arteries without signs of activation of anterior collateral pathways. In this review we underline the protective role of ECA and we propose a new definition for this phenomenon. The ECA may provide blood to the cerebral circulation through several anastomotic secondary channels. Finally, only with an extensive knowledge of hemodynamic information of all intracranial and extracranial arteries, including ECA, we can estimate cerebral ischemic risk of the patient and choose the correct management of this occlusion.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, piazza delle Cliniche 2, 90127, Palermo, Italy.
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Mariachiara Velardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, piazza delle Cliniche 2, 90127, Palermo, Italy
| | | | - Sonia Poma
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Antonio Pinto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, piazza delle Cliniche 2, 90127, Palermo, Italy
| |
Collapse
|
3
|
Wu Y, Tian S, Li C, Zhang W, Xing Q, Chen G. Predictive Value of Contrast-Enhanced Ultrasound in Chemical Lumbar Sympathectomy for End-Stage Arteriosclerosis Obliterans of the Lower Extremities. Pain Ther 2022; 11:209-223. [PMID: 35034342 PMCID: PMC8861241 DOI: 10.1007/s40122-021-00347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction The therapeutic effect of chemical lumbar sympathectomy (CLS) on ischemic diseases of the lower limbs varies greatly among individuals. The time to peak (TTP) response in contrast-enhanced ultrasound (CEUS) can reflect the perfusion disorder of the calf skeletal muscle and the collateral circulation. In this study we evaluated the predictive value of CEUS in patients treated with CLS for end-stage atherosclerotic occlusive disease of the lower extremity (ASO-LE). Methods This was a prospective study that included patients with end-stage ASO-LE and moderate to severe pain who had undergone a CEUS examination and CLS procedure and who were observed for 12 months after surgery. The patients’ characteristics and prognostic factors, including lower limb pain score, skin temperature, walking distance, and ulcer and gangrene healing, were recorded. Results Fifty-eight patients with a mean age of 66.24 (range 58–78) years were included in the study, of whom 42 (71.41%) were men. Following the CLS procedure, the numerical rating scale (NRS)-measured pain decreased significantly, and the skin temperature of the affected limb increased significantly (P < 0.05). The satisfaction rate of lower limb pain relief 1 year after operation was 53.45%. Correlation analysis showed that preoperative TTP response was correlated with the NRS score and skin temperature of the affected limb at 6 months and 12 months post surgery (P < 0.05). The binary logistic regression analysis indicated that a longer preoperative TTP response was associated with a higher risk of poor pain relief after CLS (odds ratio 1.126, 95% confidence interval 1.058–1.205). The receiver operating characteristic curve showed that preoperative TTP response had a certain predictive value on CLS treatment effect, with a sensitivity and specificity of 81.5% and 83.9%, respectively. When the preoperative TTP response was > 77.5, the risk of poor response after CLS increased. Conclusions Preoperative TTP response was able to predict the therapeutic effect of CLS to a certain extent, and thus may aid physicians in determining the choice of CLS treatment for patients with ASO-LE. Trial Registration Chinese Clinical Trial Registry: ChicTR1900028424 (principal investigator: Yue Wu; date of registration: 21 December 2019). Supplementary Information The online version contains supplementary material available at 10.1007/s40122-021-00347-9.
Collapse
Affiliation(s)
- Yue Wu
- Department of Anesthesiology, Sir Run Run Shaw Hospital affiliated with School of Medicine of Zhejang University, 3 Qingchun Road East, Shangcheng District, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Suming Tian
- Department of Anesthesiology, Sir Run Run Shaw Hospital affiliated with School of Medicine of Zhejang University, 3 Qingchun Road East, Shangcheng District, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Chunye Li
- Department of Pain, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
| | - Weibo Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital affiliated with School of Medicine of Zhejang University, 3 Qingchun Road East, Shangcheng District, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Qianqian Xing
- Department of Anesthesiology, Sir Run Run Shaw Hospital affiliated with School of Medicine of Zhejang University, 3 Qingchun Road East, Shangcheng District, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital affiliated with School of Medicine of Zhejang University, 3 Qingchun Road East, Shangcheng District, Hangzhou, 310016, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Atrial Fibrillation is Associated with Femoropopliteal Totally Occlusive In-Stent Restenosis: A Single-Center, Retrospective, Observational Study. J Interv Cardiol 2021; 2021:8852466. [PMID: 33623483 PMCID: PMC7875648 DOI: 10.1155/2021/8852466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction The proportion of patients with comorbid atrial fibrillation (AF) and peripheral artery disease (PAD) has increased in this era. This study aimed to assess the relationship between AF and totally occlusive in-stent restenosis (ISR) in femoropopliteal (FP) lesions. Methods In this study, 363 patients (461 stents) who underwent endovascular therapy with de novo stent implantation in our hospital between April 2007 and December 2016 were retrospectively evaluated. The patients were divided into two groups according to the AF status (AF group, 61 patients; sinus group, 302 patients). The primary endpoint was the incidence of totally occlusive ISR within 3 years. The secondary endpoint was the incidence of acute limb ischemia (ALI) due to FP stent occlusion. Results Baseline characteristics were similar, except for higher age and a lower prevalence of dyslipidemia in the AF group. The incidence of a totally occlusive ISR was higher in the AF group than in the sinus group (29.5% vs. 14.6%, p=0.004). A multiple Cox regression model suggested that presence of AF (hazard ratio, 2.10) and CTO lesion (hazard ratio, 1.97) which were the independent predictors of a totally occlusive ISR within 3 years. The incidence of ALI was significantly higher in the AF group than in the sinus group (3.9% vs. 0%, p=0.0001). In the AF group, the introduction of an anticoagulant did not prevent the occurrence of totally occlusive ISR (p=0.71) for ALI (p=0.79). Conclusions AF is independently associated with totally occlusive ISR of FP stents; however, anticoagulant use does not prevent stent occlusion.
Collapse
|
5
|
Fischer C, Krix M, Weber MA, Loizides A, Gruber H, Jung EM, Klauser A, Radzina M, Dietrich CF. Contrast-Enhanced Ultrasound for Musculoskeletal Applications: A World Federation for Ultrasound in Medicine and Biology Position Paper. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1279-1295. [PMID: 32139152 DOI: 10.1016/j.ultrasmedbio.2020.01.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
This World Federation for Ultrasound in Medicine and Biology position paper reviews the diagnostic potential of ultrasound contrast agents for clinical decision-making and provides general advice for optimal contrast-enhanced ultrasound performance in musculoskeletal issues. In this domain, contrast-enhanced ultrasound performance has increasingly been investigated with promising results, but still lacks everyday clinical application and standardized techniques; therefore, experts summarized current knowledge according to published evidence and best personal experience. The goal was to intensify and standardize the use and administration of ultrasound contrast agents to facilitate correct diagnoses and ultimately to improve the management and outcomes of patients.
Collapse
Affiliation(s)
- Christian Fischer
- Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany.
| | | | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
| | - Alexander Loizides
- Department of Radiology, Ultrasound Center, Innsbruck Medical University, Innsbruck, Austria
| | - Hannes Gruber
- Department of Radiology, Ultrasound Center, Innsbruck Medical University, Innsbruck, Austria
| | | | - Andrea Klauser
- Department of Radiology, Ultrasound Center, Innsbruck Medical University, Innsbruck, Austria
| | - Maija Radzina
- Diagnostic Radiology Institute, Riga Stradins University, Riga, Latvia
| | | |
Collapse
|
6
|
Schierling W, Wipper S, Behem CR, Hinck DC, Trepte CJ, Debus ES, Pfister K. Sonographic real-time imaging of tissue perfusion in a porcine haemorrhagic shock model. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2797-2804. [PMID: 31277923 DOI: 10.1016/j.ultrasmedbio.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 05/02/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Injection of fluorescence-labelled microspheres (FMs) in pigs allows only the postmortem determination of organ perfusion. Colour duplex ultrasound (CDU) and contrast-enhanced ultrasound were established as techniques for real-time imaging of tissue perfusion in a porcine haemorrhagic shock model. Haemorrhagic shock was provoked in nine domestic pigs by taking at least 15% of the calculated blood volume. Ultrasound examinations were performed with a Hitachi HI VISION Ascendus. SonoVue was injected for contrast-enhanced ultrasound. Monitoring of the resistive index and time-to-peak ratio enabled quantification of tissue perfusion in vivo during the entire study, allowing real-time differentiation of animals with systemic shock versus failing shock effect. Postmortem analyses of injected FMs confirmed the sonographic in vivo results. Determination of the resistive index and time-to-peak ratio by CDU and contrast-enhanced ultrasound allowed real-time monitoring of tissue perfusion. Effects of haemorrhagic shock and therapeutic approaches related to organ perfusion can be observed live and in vivo.
Collapse
Affiliation(s)
- Wilma Schierling
- Division of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany.
| | - Sabine Wipper
- Department of Vascular Medicine, German Aortic Center Hamburg, University Heart Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph R Behem
- Centre of Anaesthesiology and Intensive Care Medicine, Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel C Hinck
- Section of Vascular Surgery, Department of General and Visceral Surgery, Bundeswehrkrankenhaus Hamburg, Hamburg, Germany
| | - Constantin J Trepte
- Centre of Anaesthesiology and Intensive Care Medicine, Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike S Debus
- Department of Vascular Medicine, German Aortic Center Hamburg, University Heart Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karin Pfister
- Division of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Misra S, Shishehbor MH, Takahashi EA, Aronow HD, Brewster LP, Bunte MC, Kim ESH, Lindner JR, Rich K. Perfusion Assessment in Critical Limb Ischemia: Principles for Understanding and the Development of Evidence and Evaluation of Devices: A Scientific Statement From the American Heart Association. Circulation 2019; 140:e657-e672. [PMID: 31401843 PMCID: PMC7372288 DOI: 10.1161/cir.0000000000000708] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There are >12 million patients with peripheral artery disease in the United States. The most severe form of peripheral artery disease is critical limb ischemia (CLI). The diagnosis and management of CLI is often challenging. Ethnic differences in comorbidities and presentation of CLI exist. Compared with white patients, black and Hispanic patients have higher prevalence rates of diabetes mellitus and chronic renal disease and are more likely to present with gangrene, whereas white patients are more likely to present with ulcers and rest pain. A thorough evaluation of limb perfusion is important in the diagnosis of CLI because it can not only enable timely diagnosis but also reduce unnecessary invasive procedures in patients with adequate blood flow or among those with other causes for ulcers, including venous, neuropathic, or pressure changes. This scientific statement discusses the current tests and technologies for noninvasive assessment of limb perfusion, including the ankle-brachial index, toe-brachial index, and other perfusion technologies. In addition, limitations of the current technologies along with opportunities for improvement, research, and reducing disparities in health care for patients with CLI are discussed.
Collapse
|
8
|
Ma KF, Kleiss SF, Schuurmann RCL, Bokkers RPH, Ünlü Ç, De Vries JPPM. A systematic review of diagnostic techniques to determine tissue perfusion in patients with peripheral arterial disease. Expert Rev Med Devices 2019; 16:697-710. [PMID: 31340684 DOI: 10.1080/17434440.2019.1644166] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Peripheral arterial disease (PAD) may cause symptoms due to impaired tissue perfusion of the lower extremity. So far, assessment of PAD is mainly performed by determination of stenosis or occlusion in the large arteries and does not focus on microcirculation. Several diagnostic techniques have been recently introduced that may enable tissue perfusion measurements in the lower limb; however, most have not yet been implemented in clinical daily practice. This systematic review provides an overview of these diagnostic techniques and their ability to accurately detect PAD by peripheral tissue perfusion. Areas covered: A literature search was performed for articles that described a diagnostic technique to determine tissue perfusion in patients with known PAD compared with healthy controls. Expert opinion: So far, transcutaneous oxygen measurements are most often used to measure tissue oxygenation in PAD patients, but evidence seems too low to define this technique as a gold standard, and implementing this technique for home monitoring is difficult. New potentially suitable diagnostic tests should be non-invasive, contact-free, and quick. Further research is needed for all of these techniques before broad implementation in clinical use is justified, in hospital, and for home monitoring.
Collapse
Affiliation(s)
- Kirsten F Ma
- a Department of Surgery, Division of Vascular Surgery, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Simone F Kleiss
- a Department of Surgery, Division of Vascular Surgery, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Richte C L Schuurmann
- a Department of Surgery, Division of Vascular Surgery, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Reinoud P H Bokkers
- b Department of Vascular Surgery, Noordwest Hospital Group , Alkmaar , The Netherlands
| | - Çagdas Ünlü
- c Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Jean-Paul P M De Vries
- a Department of Surgery, Division of Vascular Surgery, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
9
|
Abstract
METHODICAL ISSUE Contrast-enhanced ultrasound (CEUS) offers easily accessible visualization and quantification of the skeletal muscle microcirculation and other tissues in vivo and in real-time with almost no side effects. AIM The aim of this review is to present the increasing number of musculoskeletal CEUS applications. METHODICAL INNOVATIONS/PERFORMANCE CEUS applications regarding the musculoskeletal system include applications at bone and joints extending beyond the visualization of only the muscular microcirculation. Besides basic muscle physiology, impaired microcirculation in patients with peripheral artery disease or diabetes mellitus and the diagnosis of inflammatory myopathies have been the subject of previous CEUS studies. More recent studies in orthopedics and traumatology have focused on osseous and muscular perfusion characteristics, e. g., in differentiating infected and aseptic non-unions or the impact of different types of implants and prostheses on muscular microcirculation as a surrogate marker of clinical success. PRACTICAL RECOMMENDATIONS CEUS of the musculoskeletal system is used in clinical trials or off-label. Therefore, it is not well established in clinical routine. However, considering the increasing number of musculoskeletal CEUS applications, this could change in the future.
Collapse
|
10
|
Davidson BP, Hodovan J, Mason OR, Moccetti F, Gupta A, Muller M, Belcik JT, Annex BH, Lindner JR. Limb Perfusion During Exercise Assessed by Contrast Ultrasound Varies According to Symptom Severity in Patients with Peripheral Artery Disease. J Am Soc Echocardiogr 2019; 32:1086-1094.e3. [PMID: 31235422 DOI: 10.1016/j.echo.2019.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND In patients with peripheral artery disease (PAD), the severity of symptoms correlates poorly with ankle-brachial index (ABI). The aim of this study was to test the hypothesis that limb perfusion assessed using contrast-enhanced ultrasound (CEU) during contractile exercise varies according to functional class in patients with PAD, particularly those with ABIs in the 0.4 to 0.6 range whose symptoms vary widely. METHODS Bilateral quantitative CEU perfusion imaging of the calf was performed in normal control subjects (n = 10) and patients with PAD who had at least one limb with a moderately reduced ABI (0.4-0.6; n = 17). Imaging was performed at rest and immediately after 30 sec of modest periodic (0.3-Hz) plantar flexion (10 W). RESULTS In patients with PAD, Rutherford symptom classification for each limb varied widely, including in limbs with ABIs of 0.4 to 0.6 (n = 6 with mild or no symptoms, n = 14 with moderate to severe symptoms). CEU perfusion imaging parameters at rest were similar between control subjects and patients with PAD irrespective of ABI. In normal control subjects, limb flow increased on average by > 20-fold after only 30 sec of moderate exercise. In patients with PAD, muscle exercise perfusion for all limbs was reduced compared with control subjects and decreased according to the severity of ABI reduction, primarily from reduced microvascular flux rate. Even limbs with ABIs > 0.9 in patients with PAD had lower exercise perfusion than in control subjects (P = .03). In subjects with PAD, exercise perfusion was lower in those with moderate to severe versus mild symptoms when analyzed for all limbs (median, 30 IU/sec [interquartile range (IQR), 21-52 IU/sec] vs 84 IU/sec [IQR, 36-177 IU/sec]; P = .01) and limbs with ABIs of 0.4 to 0.6 (median, 26 IU/sec [IQR, 14-41 IU/sec] vs 54 IU/sec [IQR, 31-105 IU/sec]; P = .05). CONCLUSIONS In patients with PAD, CEU exercise perfusion imaging detects differences in limb muscle perfusion that are likely to be responsible for differences in symptom severity and can detect the flow abnormalities from microvascular dysfunction even in limbs with normal ABIs.
Collapse
Affiliation(s)
- Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; VA Portland Health Care System, Portland, Oregon
| | - James Hodovan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - O'Neil R Mason
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Federico Moccetti
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Avi Gupta
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Matthew Muller
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Brian H Annex
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
11
|
Chen LL, Zhai JX, Kang J, Li YS. Utility of Contrast-Enhanced Ultrasound for the Assessment of Skeletal Muscle Perfusion in Diabetes Mellitus: A Meta-Analysis. Med Sci Monit 2019; 25:4535-4543. [PMID: 31211767 PMCID: PMC6597144 DOI: 10.12659/msm.915252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study evaluated the effectiveness of contrast-enhanced ultrasonography for the assessment of skeletal muscle perfusion in diabetes mellites. MATERIAL AND METHODS Electronic databases (Embase, Google Scholar, Ovid, and PubMed) were searched for required articles, and studies were selected by following pre-determined eligibility criteria. Meta-analyses of mean differences or standardized mean differences (SMD) were performed to evaluate the significance of difference in contrast-enhanced ultrasonography measured muscle perfusion indices between patients with diabetes and healthy individuals or between basal and final values of perfusion indices after insulin manipulation or physical exercise in patients with diabetes or healthy individuals. RESULTS There were 15 studies included, with 279 patients with diabetes and 230 healthy individuals in total. The age of the study patients with diabetes mellitus was 55.8 years (95% CI: 49.6 years, 61.9 years) and these patients had disease for 11.4 years (95% CI: 7.7 years, 15.1 years). The percentage of males in group of patients with diabetes was 66% (95% CI: 49%, 84%), body mass index was 29.4 kg/m² (95% CI: 26.5 kg/m², 32.3 kg/m²), hemoglobin A1c was 7.3% (95% CI: 6.7%, 7.9%), and fasting plasma glucose was 149 kg/m² (95% CI: 118 kg/m², 179 kg/m²). Time to peak intensity after provocation was significantly higher in patients with diabetes than in healthy individuals (SMD 1.18 [95% CI: 0.60, 1.76]; P<0.00001). In patients with diabetes, insulin administration did not improve contrast-enhanced ultrasonography measured muscle perfusion indices but exercise improved muscle perfusion but at a level that was statistically non-significant (SMD between basal and post-exercise values (1.03 [95% CI: -0.14, 2.20]; P=0.08). In healthy individuals, lipids in addition to insulin administration was associated with significantly reduced blood volume and blood flow. CONCLUSIONS Our review showed that the use of contrast-enhanced ultrasonography showed that diabetes mellitus was associated with altered muscle perfusion in which insulin-mediated metabolic changes played an important role.
Collapse
Affiliation(s)
- Lin-Lin Chen
- Department of Ultrasound, Dong Zhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Jun-Xiu Zhai
- Department of Ultrasound, Dong Zhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Jie Kang
- Department of Ultrasound, Dong Zhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - You-Shan Li
- Department of Ultrasound, Dong Zhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|
12
|
Nguyen T, Davidson BP. Contrast Enhanced Ultrasound Perfusion Imaging in Skeletal Muscle. J Cardiovasc Imaging 2019; 27:163-177. [PMID: 31161755 PMCID: PMC6669180 DOI: 10.4250/jcvi.2019.27.e31] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
The ability to accurately evaluate skeletal muscle microvascular blood flow has broad clinical applications for understanding the regulation of skeletal muscle perfusion in health and disease states. Contrast-enhanced ultrasound (CEU) perfusion imaging, a technique originally developed to evaluate myocardial perfusion, is one of many techniques that have been applied to evaluate skeletal muscle perfusion. Among the advantages of CEU perfusion imaging of skeletal muscle is that it is rapid, safe and performed with equipment already present in most vascular medicine laboratories. The aim of this review is to discuss the use of CEU perfusion imaging in skeletal muscle. This article provides details of the protocols for CEU imaging in skeletal muscle, including two predominant methods for bolus and continuous infusion destruction-replenishment techniques. The importance of stress perfusion imaging will be highlighted, including a discussion of the methods used to produce hyperemic skeletal muscle blood flow. A broad overview of the disease states that have been studied in humans using CEU perfusion imaging of skeletal muscle will be presented including: (1) peripheral arterial disease; (2) sickle cell disease; (3) diabetes; and (4) heart failure. Finally, future applications of CEU imaging in skeletal muscle including therapeutic CEU imaging will be discussed along with technological developments needed to advance the field.
Collapse
Affiliation(s)
- TheAnh Nguyen
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.,Veterans Affairs Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
13
|
Zhang JL, Layec G, Hanrahan C, Conlin CC, Hart C, Hu N, Khor L, Mueller M, Lee VS. Exercise-induced calf muscle hyperemia: quantitative mapping with low-dose dynamic contrast enhanced magnetic resonance imaging. Am J Physiol Heart Circ Physiol 2018; 316:H201-H211. [PMID: 30388024 DOI: 10.1152/ajpheart.00537.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) in the lower extremities often leads to intermittent claudication. In the present study, we proposed a low-dose DCE MRI protocol for quantifying calf muscle perfusion stimulated with plantar flexion and multiple new metrics for interpreting perfusion maps, including the ratio of gastrocnemius over soleus perfusion (G/S; for assessing the vascular redistribution between the two muscles) and muscle perfusion normalized by whole body perfusion (for quantifying the muscle's active hyperemia). Twenty-eight human subjects participated in this Institutional Review Board-approved study, with 10 healthy subjects ( group A) for assessing interday reproducibility and 8 healthy subjects ( group B) for exploring the relationship between plantar-flexion load and induced muscle perfusion. In a pilot group of five elderly healthy subjects and five patients with PAD ( group C), we proposed a protocol that measured perfusion for a low-intensity exercise and for an exhaustion exercise in a single MRI session. In group A, perfusion estimates for calf muscles were highly reproducible, with correlation coefficients of 0.90-0.93. In group B, gastrocnemius perfusion increased linearly with the exercise workload ( P < 0.05). With the low-intensity exercise, patients with PAD in group C showed substantially lower gastrocnemius perfusion compared with elderly healthy subjects [43.4 (SD 23.5) vs. 106.7 (SD 73.2) ml·min-1·100 g-1]. With exhaustion exercise, G/S [1.0 (SD 0.4)] for patients with PAD was lower than both its low-intensity level [1.9 (SD 1.3)] and the level in elderly healthy subjects [2.7 (SD 2.1)]. In conclusion, the proposed MRI protocol and the new metrics are feasible for quantifying exercise-induced muscle hyperemia, a promising functional test of PAD. NEW & NOTEWORTHY To quantitatively map exercise-induced hyperemia in calf muscles, we proposed a high-resolution MRI method shown to be highly reproducible and sensitive to exercise load. With the use of low contrast, it is feasible to measure calf muscle hyperemia for both low-intensity and exhaustion exercises in a single MRI session. The newly proposed metrics for interpreting perfusion maps are promising for quantifying intermuscle vascular redistribution or a muscle's active hyperemia.
Collapse
Affiliation(s)
- Jeff L Zhang
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah
| | - Gwenael Layec
- Division of Geriatrics, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Christopher Hanrahan
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah
| | - Christopher C Conlin
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah
| | - Corey Hart
- Division of Endocrinology, Diabetes, Nutrition and Metabolism, Mayo Clinic , Rochester, Minnesota
| | - Nan Hu
- Division of Epidemiology, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Lillian Khor
- Division of Cardiology, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Michelle Mueller
- Division of Vascular Surgery, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | | |
Collapse
|
14
|
Wallace A, Pershad Y, Saini A, Alzubaidi S, Naidu S, Knuttinen G, Oklu R. Computed tomography angiography evaluation of acute limb ischemia. VASA 2018; 48:57-64. [PMID: 30376423 DOI: 10.1024/0301-1526/a000759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acute limb ischemia (ALI), a subclass of critical limb ischemia, is a medical emergency. The cause of ALI is usually thrombotic or embolic in nature, and the specific etiology often dictates the appropriate therapy. While the diagnosis is a clinical with common presenting symptoms, advances in ultrasound, computed tomography, and magnetic resonance technology have impacted the diagnosis and subsequent therapy. In ALI, the time to revascularization is critical and computed tomography angiography (CTA) provides a highly sensitive and specific technique for rapidly identifying occlusions and precisely defining vascular anatomy prior to interventions. In patients with significant renal disease, magnetic resonance angiography with or without contrast provides effective alternatives at the expense of imaging time. Treatment can include a variety of endovascular or surgical interventions, including thromboembolectomy, angioplasty, or bypass. Proper evaluation of the etiology of the ischemia, affected vasculature, and medical history is critical to select appropriate treatment and improve patient outcomes. Here, we examine the presentation, evaluation, and treatment of ALI and the role of CTA in diagnosis and therapy.
Collapse
|
15
|
Mastropietro A, Porcelli S, Cadioli M, Rasica L, Scalco E, Gerevini S, Marzorati M, Rizzo G. Triggered intravoxel incoherent motion MRI for the assessment of calf muscle perfusion during isometric intermittent exercise. NMR IN BIOMEDICINE 2018; 31:e3922. [PMID: 29637672 DOI: 10.1002/nbm.3922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
The main aim of this paper was to propose triggered intravoxel incoherent motion (IVIM) imaging sequences for the evaluation of perfusion changes in calf muscles before, during and after isometric intermittent exercise. Twelve healthy volunteers were involved in the study. The subjects were asked to perform intermittent isometric plantar flexions inside the MRI bore. MRI of the calf muscles was performed on a 3.0 T scanner and diffusion-weighted (DW) images were obtained using eight different b values (0 to 500 s/mm2 ). Acquisitions were performed at rest, during exercise and in the subsequent recovery phase. A motion-triggered echo-planar imaging DW sequence was implemented to avoid movement artifacts. Image quality was evaluated using the average edge strength (AES) as a quantitative metric to assess the motion artifact effect. IVIM parameters (diffusion D, perfusion fraction f and pseudo-diffusion D*) were estimated using a segmented fitting approach and evaluated in gastrocnemius and soleus muscles. No differences were observed in quality of IVIM images between resting state and triggered exercise, whereas the non-triggered images acquired during exercise had a significantly lower value of AES (reduction of more than 20%). The isometric intermittent plantar-flexion exercise induced an increase of all IVIM parameters (D by 10%; f by 90%; D* by 124%; fD* by 260%), in agreement with the increased muscle perfusion occurring during exercise. Finally, IVIM parameters reverted to the resting values within 3 min during the recovery phase. In conclusion, the IVIM approach, if properly adapted using motion-triggered sequences, seems to be a promising method to investigate muscle perfusion during isometric exercise.
Collapse
Affiliation(s)
- Alfonso Mastropietro
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Simone Porcelli
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Marcello Cadioli
- Dipartimento di Neuroradiologia, Ospedale San Raffaele, Milan, Italy
- Philips Healthcare, Monza, Italy
| | - Letizia Rasica
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Elisa Scalco
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | | | - Mauro Marzorati
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Giovanna Rizzo
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Italy
| |
Collapse
|
16
|
Liotta F, Annunziato F, Castellani S, Boddi M, Alterini B, Castellini G, Mazzanti B, Cosmi L, Acquafresca M, Bartalesi F, Dilaghi B, Dorigo W, Graziani G, Bartolozzi B, Bellandi G, Carli G, Bartoloni A, Fargion A, Fassio F, Fontanari P, Landini G, Lucente EAM, Michelagnoli S, Orsi Battaglini C, Panigada G, Pigozzi C, Querci V, Santarlasci V, Parronchi P, Troisi N, Baggiore C, Romagnani P, Mannucci E, Saccardi R, Pratesi C, Gensini G, Romagnani S, Maggi E. Therapeutic Efficacy of Autologous Non-Mobilized Enriched Circulating Endothelial Progenitors in Patients With Critical Limb Ischemia - The SCELTA Trial. Circ J 2018; 82:1688-1698. [PMID: 29576595 DOI: 10.1253/circj.cj-17-0720] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The therapeutic efficacy of bone marrow mononuclear cells (BM-MNC) autotransplantation in critical limb ischemia (CLI) has been reported. Variable proportions of circulating monocytes express low levels of CD34 (CD14+CD34lowcells) and behave in vitro as endothelial progenitor cells (EPCs). The aim of the present randomized clinical trial was to compare the safety and therapeutic effects of enriched circulating EPCs (ECEPCs) with BM-MNC administration. METHODS AND RESULTS ECEPCs (obtained from non-mobilized peripheral blood by immunomagnetic selection of CD14+and CD34+cells) or BM-MNC were injected into the gastrocnemius of the affected limb in 23 and 17 patients, respectively. After a mean of 25.2±18.6-month follow-up, both groups showed significant and progressive improvement in muscle perfusion (primary endpoint), rest pain, consumption of analgesics, pain-free walking distance, wound healing, quality of life, ankle-brachial index, toe-brachial index, and transcutaneous PO2. In ECEPC-treated patients, there was a positive correlation between injected CD14+CD34lowcell counts and the increase in muscle perfusion. The safety profile was comparable between the ECEPC and BM-MNC treatment arms. In both groups, the number of deaths and major amputations was lower compared with eligible untreated patients and historical reference patients. CONCLUSIONS This study supports previous trials showing the efficacy of BM-MNC autotransplantation in CLI patients and demonstrates comparable therapeutic efficacy between BM-MNC and EPEPCs.
Collapse
Affiliation(s)
- Francesco Liotta
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Francesco Annunziato
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Sergio Castellani
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Maria Boddi
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | | | | | | | - Lorenzo Cosmi
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | | | | | | | | | | | | | | | - Giulia Carli
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | | | | | | | | | | | | | | | - Carolina Orsi Battaglini
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | | | | | - Valentina Querci
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Veronica Santarlasci
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Paola Parronchi
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | | | | | - Paola Romagnani
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | | | | | | | - Gianfranco Gensini
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Sergio Romagnani
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| | - Enrico Maggi
- Careggi University Hospital
- Department of Experimental and Clinical Medicine, Center of Excellence Denothe, University of Florence
| |
Collapse
|
17
|
Hou XX, Chu GH, Yu Y. Prospects of Contrast-Enhanced Ultrasonography for the Diagnosis of Peripheral Arterial Disease: A Meta-analysis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:1081-1090. [PMID: 29064120 DOI: 10.1002/jum.14451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/03/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES Contrast-enhanced ultrasonography (CEUS) is a modern diagnostic method that can also be used to study microperfusion. This study compared the time to peak intensity measured by CEUS in patients with peripheral arterial disease (PAD) and healthy control participants. METHODS After a comprehensive literature search in multiple electronic databases and study selection, a random-effect meta-analysis was performed to compare the time to peak intensity measured by CEUS in patients with PAD and healthy controls, which followed meta-regression analyses for identification of factors affecting the outcomes. RESULTS Fourteen studies (data for 322 patients with PAD and 314 healthy individuals) were used for the meta-analysis. The age of this sample of patients with PAD was 64.92 (95% confidence interval, 62.53, 67.31) years, and that of the healthy controls was 55.32 (51.67, 58.98) years. The times to peak intensity were 18.55 (15.62, 21.48) seconds in healthy controls, 33.40 (27.65, 39.15) seconds in patients with PAD, and 76.22 (36.23, 116.22) seconds in patients with PAD and diabetes mellitus. The difference between patients with PAD and healthy controls in the time to peak intensity was statistically significant (mean difference, 24.80 [10.16, 39.44] seconds; P < .00009). The ABI was not significantly associated with the time to peak intensity in patients with PAD. Age and sex were also not significantly associated with the time to peak intensity. CONCLUSIONS Contrast-enhanced ultrasonography is a valuable tool for the diagnosis of PAD based on its ability to differentiate the time to peak intensity between patients with PAD and healthy individuals, but little data are yet available to assess its diagnostic ability in clinical practice.
Collapse
Affiliation(s)
- Xiao-Xia Hou
- Department of Medical Ultrasound Center, Northwest Women and Children's Hospital, Xi'an, China
| | - Guang-Hua Chu
- Department of Gynecology, Northwest Women and Children's Hospital, Xi'an, China
| | - Yuan Yu
- Department of Hand and Foot Micro-Surgery, Ankang Central Hospital of Shaanxi Province, Ankang, China
| |
Collapse
|
18
|
Bredahl K, Mestre XM, Coll RV, Ghulam QM, Sillesen H, Eiberg J. Contrast-Enhanced Ultrasound in Vascular Surgery: Review and Update. Ann Vasc Surg 2017; 45:287-293. [DOI: 10.1016/j.avsg.2017.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 01/24/2023]
|
19
|
Cheung WK, Williams KJ, Christensen-Jeffries K, Dharmarajah B, Eckersley RJ, Davies AH, Tang MX. A Temporal and Spatial Analysis Approach to Automated Segmentation of Microbubble Signals in Contrast-Enhanced Ultrasound Images: Application to Quantification of Active Vascular Density in Human Lower Limbs. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2221-2234. [PMID: 28693905 DOI: 10.1016/j.ultrasmedbio.2017.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 05/17/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents has shown great promise in visualising and quantifying active vascular density. Most existing approaches for vascular density quantification using CEUS are calculated based on image intensity and are susceptible to confounding factors and imaging artefact. Poor reproducibility is a key challenge to clinical translation. In this study, a new automated temporal and spatial signal analysis approach is developed for reproducible microbubble segmentation and quantification of contrast enhancement in human lower limbs. The approach is evaluated in vitro on phantoms and in vivo in lower limbs of healthy volunteers before and after physical exercise. In this approach, vascular density is quantified based on the relative areas microbubbles occupy instead of their image intensity. Temporal features of the CEUS image sequences are used to identify pixels that contain microbubble signals. A microbubble track density (MTD) measure, the ratio of the segmented microbubble area to the whole tissue area, is calculated as a surrogate for active capillary density. In vitro results reveal a good correlation (r2 = 0.89) between the calculated MTD measure and the known bubble concentration. For in vivo results, a significant increase (129% in average) in the MTD measure is found in lower limbs of healthy volunteers after exercise, with excellent repeatability over a series of days (intra-class correlation coefficient = 0.96). This compares to the existing state-of-the-art approach of destruction and replenishment analysis on the same patients (intra-class correlation coefficient ≤0.78). The proposed new approach shows great potential as an accurate and highly reproducible clinical tool for quantification of active vascular density.
Collapse
Affiliation(s)
| | | | | | | | - Robert J Eckersley
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - Alun H Davies
- Section of Surgery, Imperial College, Charing Cross Hospital, London, UK
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College, London, UK.
| |
Collapse
|
20
|
Vascular applications of contrast-enhanced ultrasound imaging. J Vasc Surg 2017; 66:266-274. [DOI: 10.1016/j.jvs.2016.12.133] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/16/2016] [Indexed: 01/29/2023]
|
21
|
Davidson BP, Belcik JT, Landry G, Linden J, Lindner JR. Exercise versus vasodilator stress limb perfusion imaging for the assessment of peripheral artery disease. Echocardiography 2017; 34:1187-1194. [PMID: 28664576 DOI: 10.1111/echo.13601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Our aim was to determine whether pharmacologic vasodilation is an alternative to exercise stress during limb perfusion imaging for peripheral artery disease (PAD). METHODS Quantitative contrast-enhanced ultrasound (CEU) perfusion imaging of the bilateral anterior thigh and calf was performed in nine control subjects and nine patients with moderate to severe PAD at rest and during vasodilator stress with dipyridamole. For those who were able, CEU of the calf was then performed during modest plantar flexion exercise (20 watts). CEU time-intensity data were analyzed to quantify microvascular blood flow (MBF) and its parametric components of microvascular blood volume and flux rate. RESULTS Thigh and calf skeletal muscle MBF at rest was similar between control and PAD patients. During dipyridamole, MBF increased minimally (<twofold) for all groups and there were only nonsignificant trends for a reduction in calf MBF in those with PAD (13.5±6.9, 10.0±4.7, and 8.2±6.1 IU/s, for controls, moderate, and severe PAD, respectively; P=.11). In contrast, MBF during modest planar flexion exercise increased markedly in controls but not PAD patients (87.9±79.9 vs 15.2±12.9 IU/s, P<.05). In three moderate PAD patients restudied after undergoing surgical revascularization, MBF during dipyridamole did not change, whereas exercise MBF increased by an average of sevenfold. CONCLUSIONS Resting limb skeletal muscle MBF in patients with moderate to severe PAD is similar to that in normal subjects. However, differences in hyperemic flow during contractile exercise but not during dipyridamole allow evaluation of the degree of flow impairment from PAD and the degree of improvement with revascularization.
Collapse
Affiliation(s)
- Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.,VA Portland Health Care System, Portland, OR, USA
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Gregory Landry
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joel Linden
- La Jolla Institute for Allergy and Immunology, UCSD, San Diego, CA, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
22
|
Klenze H, Köhler TC, Farquharson F, Walterspacher S, Duerschmied D, Roecker K, Kabitz HJ, Walker DJ. Resting limb muscle perfusion during inspiratory muscle loading in hypoxia and normoxia. Respir Physiol Neurobiol 2017. [PMID: 28625661 DOI: 10.1016/j.resp.2017.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Fatiguing of respiratory muscles reduces peripheral muscle perfusion. Further, acute hypoxia enhances respiratory muscle fatigue. This study investigated the effects of inspiratory muscle loading (IML) on resting locomotor muscle perfusion in hypoxia compared to normoxia. METHODS Ten subjects completed two study days of fatiguing IML (blinded, randomized) in normobaric hypoxia (targeted oxygen saturation 80%) and normoxia, respectively. Contrast-enhanced ultrasound (CEUS) of the gastrocnemius muscle and popliteal doppler ultrasonography were used to monitor muscle perfusion. Based on CEUS and monitored cardiac output, perfusion surrogate parameters (CLPaer and CLPap) were established. RESULTS Muscle perfusion declines early during IML in normoxia (CLPaer: -54±25%, p<0.01; CLPap: -58±32%, p<0.01) and hypoxia (CLPaer: -43±23%, p<0.01; CLPap: -41±20%, p<0.01). Hypoxia compared to normoxia increased cardiac output before (+23±19%, p<0.01 ANOVA) and during (+22±20%, p<0.01 ANOVA) IML, while local muscle perfusion during IML remained unchanged (CLPaer: p=0.41 ANOVA; CLPap: p=0.29 ANOVA). CONCLUSION Acute hypoxia compared to normoxia does not affect locomotor muscle perfusion during fatiguing IML.
Collapse
Affiliation(s)
- Hannes Klenze
- Department of Pneumology and Intensive Care Medicine, Academic Teaching Hospital Klinikum Konstanz, Germany.
| | | | - Franziska Farquharson
- Department of Pneumology and Intensive Care Medicine, Academic Teaching Hospital Klinikum Konstanz, Germany
| | - Stephan Walterspacher
- Department of Pneumology and Intensive Care Medicine, Academic Teaching Hospital Klinikum Konstanz, Germany; Department of Medicine/Pneumology, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Daniel Duerschmied
- Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen and Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Kai Roecker
- Department of Applied Public Health (AGW), Furtwangen University, Germany
| | - Hans-Joachim Kabitz
- Department of Pneumology and Intensive Care Medicine, Academic Teaching Hospital Klinikum Konstanz, Germany
| | - David Johannes Walker
- Department of Pneumology and Intensive Care Medicine, Academic Teaching Hospital Klinikum Konstanz, Germany; Department of Medicine/Pneumology, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
23
|
Davidson BP, Hodovan J, Belcik JT, Moccetti F, Xie A, Ammi AY, Lindner JR. Rest-Stress Limb Perfusion Imaging in Humans with Contrast Ultrasound Using Intermediate-Power Imaging and Microbubbles Resistant to Inertial Cavitation. J Am Soc Echocardiogr 2017; 30:503-510.e1. [PMID: 28238588 PMCID: PMC5573794 DOI: 10.1016/j.echo.2016.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Contrast-enhanced ultrasound (CEU) limb perfusion imaging is a promising approach for evaluating peripheral artery disease (PAD). However, low signal enhancement in skeletal muscle has necessitated high-power intermittent imaging algorithms, which are not clinically feasible. We hypothesized that CEU using a combination of intermediate power and a contrast agent resistant to inertial cavitation would allow real-time limb stress perfusion imaging. METHODS In normal volunteers, CEU of the calf skeletal muscle was performed on separate days with Sonazoid, Optison, or Definity. Progressive reduction in the ultrasound pulsing interval was used to assess the balance between signal enhancement and agent destruction at escalating mechanical indices (MI, 0.1-0.4). Real-time perfusion imaging at MI 0.1-0.4 using postdestructive replenishment kinetics was performed at rest and during 25 W plantar flexion contractile exercise. RESULTS For Optison, limb perfusion imaging was unreliable at rest due to very low signal enhancement generated at all MIs and was possible during exercise-induced hyperemia only at MI 0.1 due to agent destruction at higher MIs. For Definity, signal intensity progressively increased with MI but was offset by microbubble destruction, which resulted in modest signal enhancement during CEU perfusion imaging and distortion of replenishment curves at MI ≥ 0.2. For Sonazoid, there strong signal enhancement at MI ≥ 0.2, with little destruction detected only at MI 0.4. Accordingly, high signal intensity and nondistorted perfusion imaging was possible at MI 0.2-0.3 and detected an 8.0- ± 5.7-fold flow reserve. CONCLUSIONS Rest-stress limb perfusion imaging in humans with real-time CEU, which requires only seconds to perform, is possible using microbubbles with viscoelastic properties that produce strong nonlinear signal generation without destruction at intermediate acoustic pressures.
Collapse
Affiliation(s)
- Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Portland VA Medical Center, Portland, Oregon
| | - James Hodovan
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Federico Moccetti
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Aris Xie
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Azzdine Y Ammi
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
24
|
Kundi R, Prior SJ, Addison O, Lu M, Ryan AS, Lal BK. Contrast-Enhanced Ultrasound Reveals Exercise-Induced Perfusion Deficits in Claudicants. ACTA ACUST UNITED AC 2017; 2. [PMID: 28691118 PMCID: PMC5501290 DOI: 10.21767/2573-4482.100041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Contrast-Enhanced Ultrasonography (CEUS) is an imaging modality allowing
perfusion quantification in targeted regions of interest of the lower extremity that has
not been possible with color-flow imaging or with measurement of ankle brachial indices.
We developed a protocol to quantify lower extremity muscle perfusion impairment in PAD
patients in response to exercise. Methods and findings Thirteen patients with Rutherford Class I-III Peripheral Arterial Disease (PAD)
and no prior revascularization procedures were recruited from the Baltimore Veterans
Affairs Medical Center and compared with eight control patients without PAD. CEUS
interrogation of the index limb gastrocnemius muscle was performed using an intravenous
bolus of lipid-stabilized microsphere contrast before and after a standardized treadmill
protocol. Peak perfusion (PEAK) and time to peak perfusion (TTP) were measured before
and after exercise. Between and within group differences were assessed. Control subjects
demonstrated a more rapid TTP (p<0.01) and an increase in peak perfusion (PEAK,
p=0.02) after exercise, when compared to their baseline measures. Patients with
PAD demonstrated TTP and PEAK measures equivalent to controls at baseline
(p=0.39, p=0.71, respectively). However, they exhibited no significant
exercise-induced changes in perfusion (TTP p=0.49 and PEAK 0.67, respectively
compared to baseline). After exercise, normal subjects had significantly shorter TTP
(p=0.04) and greater PEAK (p=0.02) than PAD patients. Conclusion Consistent with their lack of ischemic symptoms at rest, class I to III
claudicant PAD patients showed similar perfusion measures (TTP and PEAK) at rest. PAD
patients, however, were unable to increase perfusion in response to exercise, whereas
controls increased perfusion significantly. This corresponds with claudication and
limited walking capacity observed in PAD. CEUS with bolus injection offers a convenient,
objective, quantitative and visual physiologic assessment of perfusion limitation in
specific muscle groups of PAD patients. This has the potential for substantial clinical
and research utility.
Collapse
Affiliation(s)
- Rishi Kundi
- Department of Surgery, Division of Vascular Surgery, Baltimore VA Medical Center, University of Maryland School of Medicine, Baltimore, USA
| | - Steven J Prior
- Department of Veterans Affairs and Baltimore Veterans Affairs Medical Center Geriatric Research, Education and Clinical Center (GRECC), USA.,Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Odessa Addison
- Department of Veterans Affairs and Baltimore Veterans Affairs Medical Center Geriatric Research, Education and Clinical Center (GRECC), USA.,Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Michael Lu
- Department of Veterans Affairs and Baltimore Veterans Affairs Medical Center Geriatric Research, Education and Clinical Center (GRECC), USA.,Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Alice S Ryan
- Department of Veterans Affairs and Baltimore Veterans Affairs Medical Center Geriatric Research, Education and Clinical Center (GRECC), USA.,Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Brajesh K Lal
- Department of Surgery, Division of Vascular Surgery, Baltimore VA Medical Center, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
25
|
Nguyen A, Ledoux JB, Omoumi P, Becce F, Forget J, Federau C. Application of intravoxel incoherent motion perfusion imaging to shoulder muscles after a lift-off test of varying duration. NMR IN BIOMEDICINE 2016; 29:66-73. [PMID: 26684052 DOI: 10.1002/nbm.3449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/06/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Intravoxel incoherent motion (IVIM) MRI is a method to extract microvascular blood flow information out of diffusion-weighted images acquired at multiple b-values. We hypothesized that IVIM can identify the muscles selectively involved in a specific task, by measuring changes in activity-induced local muscular perfusion after exercise. We tested this hypothesis using a widely used clinical maneuver, the lift-off test, which is known to assess specifically the subscapularis muscle functional integrity. Twelve shoulders from six healthy male volunteers were imaged at 3 T, at rest, as well as after a lift-off test hold against resistance for 30 s, 1 and 2 min respectively, in three independent sessions. IVIM parameters, consisting of perfusion fraction (f), diffusion coefficient (D), pseudo-diffusion coefficient D* and blood flow-related fD*, were estimated within outlined muscles of the rotator cuff and the deltoid bundles. The mean values at rest and after the lift-off tests were compared in each muscle using a one-way ANOVA. A statistically significant increase in fD* was measured in the subscapularis, after a lift-off test of any duration, as well as in D. A fD* increase was the most marked (30 s, +103%; 1 min, +130%; 2 min, +156%) and was gradual with the duration of the test (in 10(-3) mm(2) /s: rest, 1.41 ± 0.50; 30 s, 2.86 ± 1.17; 1 min, 3.23 ± 1.22; 2 min, 3.60 ± 1.21). A significant increase in fD* and D was also visible in the posterior bundle of the deltoid. No significant change was consistently visible in the other investigated muscles of the rotator cuff and the other bundles of the deltoid. In conclusion, IVIM fD* allows the demonstration of a task-related microvascular perfusion increase after a specific task and suggests a direct relationship between microvascular perfusion and the duration of the effort. It is a promising method to investigate non-invasively skeletal muscle physiology and clinical perfusion-related muscular disorders.
Collapse
Affiliation(s)
- Audrey Nguyen
- Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Jean-Baptiste Ledoux
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Fabio Becce
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Joachim Forget
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Christian Federau
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
- Department of Radiology, Division of Neuroradiology, Stanford University, 300 Pasteur Drive, Room S039, Stanford, CA, 94305-5105, United States
| |
Collapse
|
26
|
Arici V, Perotti C, Fabrizio C, Del Fante C, Ragni F, Alessandrino F, Viarengo G, Pagani M, Moia A, Tinelli C, Bozzani A. Autologous immuno magnetically selected CD133+ stem cells in the treatment of no-option critical limb ischemia: clinical and contrast enhanced ultrasound assessed results in eight patients. J Transl Med 2015; 13:342. [PMID: 26526721 PMCID: PMC4630831 DOI: 10.1186/s12967-015-0697-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 10/14/2015] [Indexed: 01/10/2023] Open
Abstract
Objectives Demonstrate the safety and effectiveness of highly purified CD133+ autologous stem cells in critical limb ischemia (CLI). Design Prospective single-center not randomized. Clinicaltrials.gov identifier: NCT01595776 Methods Eight patients with a history of stable CLI were enrolled in a period of 2 years. After bone marrow stimulation and single leukapheresis collection, CD133+ immunomagnetic cell selection was performed. CD133+ cells in buffer phosphate suspension was administered intramuscularly. Muscular and arterial contrast enhanced ultra sound (CEUS), lesion evolution and pain management were assessed preoperatively and 3, 6 and 12 months after the implant. Results No patient had early or late complications related to the procedure. Two patients (25 %) didn’t get any relief from the treatment and underwent major amputation. Six patients (75 %) had a complete healing of the wounds, rest pain cessation and walking recovery. An increase in CEUS values was shown in all eight patients at 6 months and in the six clinical healed patients at 12 months and had statistical relevance. Conclusions Highly purified autologous CD133+ cells can stimulate neo-angiogenesis, as based on clinical and CEUS data. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0697-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vittorio Arici
- Vascular Surgery Unit, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Cesare Perotti
- Haemotransfusional Service, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Calliada Fabrizio
- Radiology Service, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Claudia Del Fante
- Haemotransfusional Service, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Franco Ragni
- Vascular Surgery Unit, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Francesco Alessandrino
- Radiology Service, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Gianluca Viarengo
- Haemotransfusional Service, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Michele Pagani
- Anesthesiology and Intensive Care Unit 2, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Alessia Moia
- Vascular Surgery Unit, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Carmine Tinelli
- Statistics and Epidemiology Service, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Antonio Bozzani
- Vascular Surgery Unit, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy.
| |
Collapse
|
27
|
Effect of Peripheral Artery Sympathetic Denervation on Muscle Microperfusion and Macroperfusion in an Animal Peripheral Artery Disease Model Using Contrast-Enhanced Ultrasound and Doppler Flow Measurement. J Vasc Interv Radiol 2015; 26:1396-402.e2. [PMID: 26190189 DOI: 10.1016/j.jvir.2015.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/03/2015] [Accepted: 06/08/2015] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To determine the effects of catheter-based peripheral sympathetic denervation (CPSD) on peripheral artery sympathetic tone and peripheral microperfusion (PMP). MATERIALS AND METHODS The effects of bilateral CPSD in common iliac arteries on PMP of the biceps femoris were determined in pigs using contrast-enhanced ultrasound, and mean transit time (mTT) and wash-in rate (WiR) were calculated during steady-state infusion of INN-sulfur-hexafluoride. Measurements were performed bilaterally at rest and during infusion of adenosine 70 μg/kg/min after unilateral moderate left external iliac artery stenosis. RESULTS Before CPSD, PMP decreased significantly (P < .05) under adenosine stress compared with resting conditions, with right mTT of 7.5 seconds ± 3.6 versus 16.9 seconds ± 11.9 and WiR of 63.1 arbitrary units (AU) ± 49.0 versus 25.0 AU ± 17.5 and left mTT of 29.2 seconds ± 18.0 versus 56.3 seconds ± 38.7 and WiR of 13.6 AU ± 8.4 versus 6.0 AU ± 4.1. After CPSD, PMP did not differ significantly (P > .05) between conditions of adenosine stress and rest, with right mTT of 19.9 seconds ± 24.7 versus 23.2 seconds ± 21.0 and WiR of 16.2 AU ± 25.0 versus 20.5 AU ± 19.7 and left mTT of 23.3 seconds ± 23.1 versus 25.8 seconds ± 21.7 and WiR of 12.5 AU ± 6.2 versus 20.0 AU ± 12.1. CONCLUSIONS CPSD reduced peripheral artery sympathetic tone and may be an alternative to surgical or computed tomography-guided sympathectomy for the treatment of end-stage peripheral artery disease and Raynaud phenomenon.
Collapse
|
28
|
Seol SH, Davidson BP, Belcik JT, Mott BH, Goodman RM, Ammi A, Lindner JR. Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles. J Am Soc Echocardiogr 2015; 28:718-26.e2. [PMID: 25769666 DOI: 10.1016/j.echo.2015.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Indexed: 10/23/2022]
Abstract
BACKGROUND There is growing interest in limb contrast-enhanced ultrasound (CEU) perfusion imaging for the evaluation of peripheral artery disease. Because of low resting microvascular blood flow in skeletal muscle, signal enhancement during limb CEU is prohibitively low for real-time imaging. The aim of this study was to test the hypothesis that this obstacle can be overcome by intermediate- rather than low-power CEU when performed with an acoustically resilient microbubble agent. METHODS Viscoelastic properties of Definity and Sonazoid were assessed by measuring bulk modulus during incremental increases in ambient pressure to 200 mm Hg. Comparison of in vivo microbubble destruction and signal enhancement at a mechanical index (MI) of 0.1 to 0.4 was performed by sequential reduction in pulsing interval from 10 to 0.05 sec during limb CEU at 7 MHz in mice and 1.8 MHz in dogs. Destruction was also assessed by broadband signal generation during passive cavitation detection. Real-time CEU perfusion imaging with destruction-replenishment was then performed at 1.8 MHz in dogs using an MI of 0.1, 0.2, or 0.3. RESULTS Sonazoid had a higher bulk modulus than Definity (66 ± 12 vs 29 ± 2 kPa, P = .02) and exhibited less inertial cavitation (destruction) at MIs ≥ 0.2. On in vivo CEU, maximal signal intensity increased incrementally with MI for both agents and was equivalent between agents except at an MI of 0.1 (60% and 85% lower for Sonazoid at 7 and 1.8 MHz, respectively, P < .05). However, on progressive shortening of the pulsing interval, Definity was nearly completely destroyed at MIs ≥ 0.2 at 1.8 and 7 MHz, whereas Sonazoid was destroyed only at 1.8 MHz at MIs ≥ 0.3. As a result, real-time CEU perfusion imaging demonstrated approximately fourfold greater enhancement for Sonazoid at an MI of 0.3 to 0.4. CONCLUSIONS Robust signal enhancement during real-time CEU perfusion imaging of the limb is possible when using intermediate-power imaging coupled with a durable microbubble contrast agent.
Collapse
Affiliation(s)
- Sang-Hoon Seol
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Brian H Mott
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Reid M Goodman
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Azzdine Ammi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea.
| |
Collapse
|
29
|
Thomas KN, Cotter JD, Lucas SJE, Hill BG, van Rij AM. Reliability of contrast-enhanced ultrasound for the assessment of muscle perfusion in health and peripheral arterial disease. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:26-34. [PMID: 25308937 DOI: 10.1016/j.ultrasmedbio.2014.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 06/04/2023]
Abstract
We investigated the reliability of contrast-enhanced ultrasound (CEUS) in assessing calf muscle microvascular perfusion in health and disease. Response to a post-occlusive reactive hyperaemia test was repeated on two occasions >48 h apart in healthy young (28 ± 7 y) and elderly controls (70 ± 5 y), and in peripheral arterial disease patients (PAD, 69 ± 7 y; n = 10, 9 and 8 respectively). Overall, within-individual reliability was poor (coefficient of variation [CV] range: 15-87%); the most reliable parameter was time to peak (TTP, 15-48% CV). Nevertheless, TTP was twice as long in elderly controls and PAD compared to young (19.3 ± 10.4 and 22.0 ± 8.6 vs. 8.9 ± 6.2 s respectively; p < 0.01), and area under the curve for contrast intensity post-occlusion (a reflection of blood volume) was ∼50% lower in elderly controls (p < 0.01 versus PAD and young). Thus, CEUS assessment of muscle perfusion during reactive hyperaemia demonstrated poor reliability, yet still distinguished differences between PAD patients, elderly and young controls.
Collapse
Affiliation(s)
- Kate N Thomas
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Samuel J E Lucas
- Department of Physiology, University of Otago, Dunedin, New Zealand; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Brigid G Hill
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - André M van Rij
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
30
|
Bajwa A, Wesolowski R, Patel A, Saha P, Ludwinski F, Smith A, Nagel E, Modarai B. Assessment of tissue perfusion in the lower limb: current methods and techniques under development. Circ Cardiovasc Imaging 2014; 7:836-43. [PMID: 25227236 DOI: 10.1161/circimaging.114.002123] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Adnan Bajwa
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Roman Wesolowski
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Ashish Patel
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Prakash Saha
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Francesca Ludwinski
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Alberto Smith
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Eike Nagel
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Bijan Modarai
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.).
| |
Collapse
|
31
|
Quantification of residual limb skeletal muscle perfusion with contrast-enhanced ultrasound during application of a focal junctional tourniquet. J Vasc Surg 2014; 63:148-53. [PMID: 25065582 DOI: 10.1016/j.jvs.2014.06.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/12/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Focal junctional tourniquets (JTs) have been developed to control hemorrhage from proximal limb injuries. These devices may permit greater collateral perfusion than circumferential tourniquets. We hypothesized that JTs eliminate large-vessel pulse pressure yet allow a small amount of residual limb perfusion that could be useful for maintaining tissue viability. METHODS Ten healthy control subjects were studied. Transthoracic echocardiography, Doppler ultrasound of the femoral artery (FA) and posterior tibial artery, and contrast-enhanced ultrasound (CEU) perfusion imaging of the anterior thigh extensor and calf plantar flexor muscles were performed at baseline and during application of a JT over the common FA. Intramuscular arterial pulsatility index was also measured from CEU intensity variation during the cardiac cycle. RESULTS FA flow was eliminated by JTs in all subjects; posterior tibial flow was eliminated in all but one. Perfusion measured in the thigh and calf muscles was similar at baseline (0.33 ± 0.29 vs 0.29 ± 0.22 mL/min/g). Application of the JT resulted in a reduction of perfusion (P < .05) that was similar for the thigh and calf (0.08 ± 0.07 and 0.10 ± 0.03 mL/min/g). On CEU, microvascular flux rate was reduced by ≈55%, and functional microvascular blood volume was reduced by ≈35%. Arterial pulsatility index was reduced by ≈90% in the calf. JT inflation did not alter left ventricle dimensions, fractional shortening, cardiac output, or arterial elastance as a measure of total systolic load. CONCLUSIONS Application of a JT eliminates conduit arterial pulse and markedly reduces intramuscular pulse pressure, but thigh and calf skeletal muscle perfusion is maintained at 25% to 35% of basal levels. These data suggest that JTs that are used to control limb hemorrhage allow residual tissue perfusion even when pulse pressure is absent.
Collapse
|
32
|
Aschwanden M, Partovi S, Jacobi B, Fergus N, Schulte AC, Robbin MR, Bilecen D, Staub D. Assessing the end-organ in peripheral arterial occlusive disease-from contrast-enhanced ultrasound to blood-oxygen-level-dependent MR imaging. Cardiovasc Diagn Ther 2014; 4:165-72. [PMID: 24834413 DOI: 10.3978/j.issn.2223-3652.2014.03.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/26/2014] [Indexed: 11/14/2022]
Abstract
Peripheral arterial occlusive disease (PAOD) is a result of atherosclerotic disease which is currently the leading cause of morbidity and mortality in the western world. Patients with PAOD may present with intermittent claudication or symptoms related to critical limb ischemia. PAOD is associated with increased mortality rates. Stenoses and occlusions are usually detected by macrovascular imaging, including ultrasound and cross-sectional methods. From a pathophysiological view these stenoses and occlusions are affecting the microperfusion in the functional end-organs, such as the skin and skeletal muscle. In the clinical arena new imaging technologies enable the evaluation of the microvasculature. Two technologies currently under investigation for this purpose on the end-organ level in PAOD patients are contrast-enhanced ultrasound (CEUS) and blood-oxygen-level-dependent (BOLD) MR imaging (MRI). The following article is providing an overview about these evolving techniques with a specific focus on skeletal muscle microvasculature imaging in PAOD patients.
Collapse
Affiliation(s)
- Markus Aschwanden
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Sasan Partovi
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Bjoern Jacobi
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Nathan Fergus
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Anja-Carina Schulte
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Mark R Robbin
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Deniz Bilecen
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Daniel Staub
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| |
Collapse
|
33
|
Assessment of peripheral skeletal muscle microperfusion in a porcine model of peripheral arterial stenosis by steady-state contrast-enhanced ultrasound and Doppler flow measurement. J Vasc Surg 2014; 61:1312-20. [PMID: 24418637 DOI: 10.1016/j.jvs.2013.11.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Noninvasive measurement of peripheral muscle microperfusion could potentially improve diagnosis, management, and treatment of peripheral arterial disease (PAD) and thus improve patient care. Contrast-enhanced ultrasound (CEUS) as a noninvasive diagnostic tool allows quantification of muscle perfusion. Increasing data on bolus technique CEUS reflecting microperfusion are becoming available, but only limited data on steady-state CEUS for assessment of muscle microperfusion are available. Therefore, the aim of this study was to evaluate steady-state CEUS for assessment of peripheral muscle microperfusion in a PAD animal model. METHODS In a porcine animal model, peripheral muscle microperfusion was quantified by steady-state CEUS replenishment kinetics (mean transit time [mTT] and wash-in rate [WiR]) of the biceps femoris muscle during intravenous steady-state infusion of INN-sulfur hexafluoride (SonoVue; Bracco, Geneva, Switzerland). In addition, macroperfusion was quantified at the external femoral artery with a Doppler flow probe. Peripheral muscle microperfusion and Doppler flow measurements were performed bilaterally at rest and under adenosine stress (70 μg/kg body weight) before and after unilateral creation of a moderate external iliac artery stenosis. RESULTS All measurements could be performed completely in 10 pigs. Compared with baseline measurements, peripheral muscle microperfusion decreased significantly during adenosine stress (rest vs adenosine stress: mTT, 7.8 ± 3.3 vs 21.2 ± 17.8 s, P = .0006; WiR, 58.4 ± 38.1 vs 25.3 ± 15.6 arbitrary units [a.u.]/s, P < .0001; Doppler flow, 122.3 ± 31.4 vs 83.6 ± 28.1 mL/min, P = .0067) and after stenosis creation (no stenosis vs stenosis: mTT, 8.1 ± 3.1 vs 29.2 ± 18.0 s, P = .0469; WiR, 53.0 ± 22.7 vs 13.6 ± 8.4 a.u./s, P = .0156; Doppler flow, 124.2 ± 41.8 vs 65.9 ± 40.0 mL/min, P = .0313). After stenosis creation, adenosine stress led to a further significant decrease of peripheral muscle microperfusion but had no effect on macroperfusion (mTT, 29.2 ± 18.0 vs 56.3 ± 38.7 s, P = .0078; WiR, 13.6 ± 8.4 vs 6.0 ± 4.1 a.u./s, P = .0078; Doppler flow, 65.9 ± 40.0 vs 79.2 ± 29.6 mL/min, P = .8125). Receiver operating characteristic curves for the presence of inflow stenosis showed an excellent area under the curve of 0.93 for mTT at rest and 0.86 for Doppler flow. CONCLUSIONS Peripheral muscle microperfusion measurement by steady-state CEUS with replenishment kinetics is feasible and allows detection of muscle microperfusion changes caused by vasodilative stress alone or in combination with a moderate inflow stenosis. Steady-state CEUS offers superior diagnostic performance compared with Doppler flow measurements. Therefore, steady-state CEUS may prove to be a useful tool in diagnosis of PAD and for evaluation of new therapies.
Collapse
|
34
|
Jiji RS, Pollak AW, Epstein FH, Antkowiak PF, Meyer CH, Weltman AL, Lopez D, DiMaria JM, Hunter JR, Christopher JM, Kramer CM. Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease. J Cardiovasc Magn Reson 2013; 15:14. [PMID: 23343398 PMCID: PMC3562222 DOI: 10.1186/1532-429x-15-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose was to determine the reproducibility and utility of rest, exercise, and perfusion reserve (PR) measures by contrast-enhanced (CE) calf perfusion magnetic resonance imaging (MRI) of the calf in normal subjects (NL) and patients with peripheral arterial disease (PAD). METHODS Eleven PAD patients with claudication (ankle-brachial index 0.67 ±0.14) and 16 age-matched NL underwent symptom-limited CE-MRI using a pedal ergometer. Tissue perfusion and arterial input were measured at rest and peak exercise after injection of 0.1 mM/kg of gadolinium-diethylnetriamine pentaacetic acid (Gd-DTPA). Tissue function (TF) and arterial input function (AIF) measurements were made from the slope of time-intensity curves in muscle and artery, respectively, and normalized to proton density signal to correct for coil inhomogeneity. Perfusion index (PI) = TF/AIF. Perfusion reserve (PR) = exercise TF/ rest TF. Intraclass correlation coefficient (ICC) was calculated from 11 NL and 10 PAD with repeated MRI on a different day. RESULTS Resting TF was low in NL and PAD (mean ± SD 0.25 ± 0.18 vs 0.35 ± 0.71, p = 0.59) but reproducible (ICC 0.76). Exercise TF was higher in NL than PAD (5.5 ± 3.2 vs. 3.4 ± 1.6, p = 0.04). Perfusion reserve was similar between groups and highly variable (28.6 ± 19.8 vs. 42.6 ± 41.0, p = 0.26). Exercise TF and PI were reproducible measures (ICC 0.63 and 0.60, respectively). CONCLUSION Although rest measures are reproducible, they are quite low, do not distinguish NL from PAD, and lead to variability in perfusion reserve measures. Exercise TF and PI are the most reproducible MRI perfusion measures in PAD for use in clinical trials.
Collapse
Affiliation(s)
- Ronny S Jiji
- Departments of Medicine and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Amy W Pollak
- Departments of Medicine and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Frederick H Epstein
- Departments of Radiology and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
- Biomedical Engineering and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Patrick F Antkowiak
- Biomedical Engineering and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Craig H Meyer
- Biomedical Engineering and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Arthur L Weltman
- Departments of Medicine and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - David Lopez
- Departments of Medicine and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Joseph M DiMaria
- Departments of Radiology and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Jennifer R Hunter
- Departments of Radiology and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - John M Christopher
- Departments of Radiology and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Christopher M Kramer
- Departments of Medicine and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
- Departments of Radiology and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
- Departments of Medicine and Radiology, University of Virginia Health System, Lee Street, Box 800170, Charlottesville, VA, 22908, USA
| |
Collapse
|
35
|
Dynamic contrast-enhanced ultrasound and transient arterial occlusion for quantification of arterial perfusion reserve in peripheral arterial disease. Eur J Radiol 2012; 81:3332-8. [PMID: 22285606 DOI: 10.1016/j.ejrad.2011.12.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/25/2011] [Accepted: 12/26/2011] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To quantify muscular micro-perfusion and arterial perfusion reserve in peripheral arterial disease (PAD) with dynamic contrast-enhanced ultrasound (CEUS) and transient arterial occlusion. MATERIALS AND METHODS This study had local institutional review board approval and written informed consent was obtained from all subjects. We examined the dominant lower leg of 40 PAD Fontaine stage IIb patients (mean age, 65 years) and 40 healthy volunteers (mean age, 54 years) with CEUS (7 MHz; MI, 0.28) during continuous intravenous infusion of 4.8 mL microbubbles. Transient arterial occlusion at mid-thigh level simulated physical exercise. With time-CEUS-intensity curves obtained from regions of interest within calf muscles, we derived the maximum CEUS signal after occlusion (max) and its time (tmax), slope to maximum (m), vascular response after occlusion (AUC(post)), and analysed accuracy, receiver operating characteristic (ROC) curves, and correlations with ankle-brachial index (ABI) and walking distance. RESULTS All parameters differed in PAD and volunteers (p<0.014). In PAD, tmax was delayed (31.2±13.6 vs. 16.7±8.5 s, p<0.0001) and negatively correlated with ankle-brachial-index (r=-0.65). m was decreased in PAD (4.3±4.6 mL/s vs. 13.1±8.4 mL/s, p<0.0001) and had highest diagnostic accuracy (sensitivity/specificity, 75%/93%) for detection of diminished muscular micro-perfusion in PAD (cut-off value, m<5∼mL/s). Discriminant analysis and ROC curves revealed m, and AUC(post) as optimal parameter combination for diagnosing PAD and therefore impaired arterial perfusion reserve. CONCLUSIONS Dynamic CEUS with transient arterial occlusion quantifies muscular micro-perfusion and arterial perfusion reserve. The technique is accurate to diagnose PAD.
Collapse
|
36
|
Significance of ankle brachial index and collaterals for prediction of critical limb ischemia in infrainguinal peripheral arterial occlusive disease. Adv Med Sci 2011; 56:249-54. [PMID: 21940262 DOI: 10.2478/v10039-011-0035-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Chronic limb ischemia (CLI) is a clinical diagnosis, but should be approved by technical tests like the ankle-brachial index (ABI). Although the ABI is well established, less is known about the influence of collateralization on clinical stage. MATERIAL/METHODS Magnetic resonance angiographies (MRA) of 129 lower extremities were searched for morphological changes and for the number of collateral vessels according to Sorlie. Ankle pressures were recorded as higher (APmax) and lower (APmin) systolic blood pressures of the two ankle arteries with consecutive calculation of ABImax and ABImin. RESULTS In comparisons of ROC curves, APmax (AUC=0.749) did significantly better as a prognostic marker than APmin (AUC=0.642) (p=0.005) and ABImax (AUC=0.744) did significantly better than ABImin (AUC=0.650) (p=0.019). APmax showed a positive likelihood ratio (+LR) of 5.79 and a negative likelihood ratio (-LR) of 0.47 (cutoff ≤55 mmHg). For the number of collateral vessels a +LR 2.27 and a -LR of 0.09 and in patients with an APmax ≤55 mmHg a +LR of 5.50 and a -LR of 0.00 were calculated (cutoff ≤1 collateral vessel). CONCLUSION Whereas APmax is more eligible for verification of CLI, collateral count is better in exclusion of CLI. Both seem to be independent factors for validating the clinical diagnosis of CLI.
Collapse
|
37
|
Dynamic contrast-enhanced ultrasound for assessment of skeletal muscle microcirculation in peripheral arterial disease. Invest Radiol 2011; 46:504-8. [PMID: 21487300 DOI: 10.1097/rli.0b013e3182183a77] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE : This feasibility study was performed to assess whether dynamic contrast-enhanced ultrasound (CEUS) and transient arterial occlusion are able to detect alterations in the microvascular perfusion and arterial perfusion reserve in patients suffering from peripheral arterial disease (PAD) in comparison with healthy volunteers. MATERIALS AND METHODS : Twenty patients with PAD, Rutherford classification grade I, category III (mean age, 64 years; mean height, 173 cm; mean weight, 81.8 kg), and 20 volunteers (mean age, 50 years; mean height, 174 cm; mean weight, 77.8 kg) participated in the study. Low-mechanical index CEUS (7 MHz; MI, 0.28) was performed to the dominant lower leg after start of a continuous automatic intravenous injection of 4.8 mL suspension with microbubbles containing sulfur hexafluoride (SonoVue) within 5 minutes. Perfusion of the calf muscle was monitored by CEUS before, during, and after release of arterial occlusion at the thigh level lasting for 60 seconds. Several parameters, especially the time to maximum enhancement after release of occlusion (tmax), the maximum enhancement after release of occlusion (maxenh), the total vascular response after release of occlusion (AUCpost), and the resulting slope (m2) to maximum enhancement were calculated. RESULTS : After release of the occlusion, a significantly delayed increase of the CEUS signal to maxenh was observed in the patients with PAD (32 ± 17 seconds) compared with volunteers (17 ± 8 seconds, P = 0.0009). maxenh was 66.5 ± 36.6 (∼mL) in PAD versus 135.6 ± 75.1 (∼mL) in volunteers (P = 0.0016). AUCpost was 3016.5 ± 1825.8 (∼mL·s) in PAD versus 5906.4 ± 3173.1 (∼mL·s) in volunteers (P = 0.0013), and m2 was significantly lower in PAD (3.8 ± 5.2 vs. 14.8 ± 9.7 [∼mL/s], P = 0.0001). CONCLUSIONS : Microvascular perfusion deficits and reduced arterial perfusion reserve in patients with PAD are clearly detectable with dynamic CEUS after transient arterial occlusion.
Collapse
|
38
|
Marshall G, Sykes A, Berry J, Jonker L. The “humble” bubble: Contrast-enhanced ultrasound. Radiography (Lond) 2011. [DOI: 10.1016/j.radi.2011.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
|
40
|
Hehrlein C. Quantitative myocardial blush grade: prepped for a core lab standardization. Catheter Cardiovasc Interv 2010; 76:511-2. [PMID: 20882654 DOI: 10.1002/ccd.22780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Success of arterial revascularization determined by contrast ultrasound muscle perfusion imaging. J Vasc Surg 2010; 52:1531-6. [PMID: 20843628 DOI: 10.1016/j.jvs.2010.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the early postoperative evaluation of the success of arterial revascularization, ankle-brachial index (ABI) and other noninvasive tests lack reliability, especially in patients with incompressible arteries or local edema. Contrast-enhanced ultrasound (CEUS) imaging of limb muscle perfusion may be an alternative to standard tests if it detects treatment success reliably. METHODS We compared a simplified CEUS method with clinical staging, pulse volume recording (PVR), and ABI in patients with lifestyle-limiting peripheral arterial disease undergoing revascularization by percutaneous transluminal angioplasty (PTA) or bypass surgery. Patients underwent staging, PVR, ABI, and CEUS before, directly after, and 3 to 5 months after successful PTA (n = 20) or successful bypass grafting (n = 14). For CEUS, contrast agent was injected into an antecubital vein, and the time from beginning to peak intensity of contrast enhancement (TTP) in the calf muscle was measured. RESULTS Successful revascularization by both PTA and bypass was associated with a significant improvement in staging, PVR, ABI, and TTP directly after intervention and at follow-up. Median ABI increased from 0.60 to 0.85 (P = .001) after PTA and from 0.36 to 0.76 (P = .003) after bypass surgery. Median TTP decreased from 45 seconds to 24 seconds (P = .015) and from 30 seconds to 27 seconds (P = .041), respectively. McNemar analysis revealed unidirectional changes in both ABI and TTP (P = .625 after PTA and P = 1.000 after bypass surgery), and equivalence analysis showed 95% confidence intervals within clinical indifference, indicating that TTP was equivalent to standard tests in detecting successful revascularization. CONCLUSIONS Contrast ultrasound perfusion imaging of calf muscle after arterial revascularization may be a valuable alternative to standard noninvasive tests such as ABI or PVR to determine the success of an arterial revascularization.
Collapse
|
42
|
Zimmermann A, Roenneberg C, Wendorff H, Holzbach T, Giunta RE, Eckstein HH. Early postoperative detection of tissue necrosis in amputation stumps with indocyanine green fluorescence angiography. Vasc Endovascular Surg 2010; 44:269-73. [PMID: 20356863 DOI: 10.1177/1538574410362109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Amputations of the lower extremity due to irreversible ischemic tissue loss are performed as distally as possible. Therefore, oftentimes wound-healing disorders develop, requiring additional surgical treatment. METHODS The amputations stumps of 10 patients with irreversible ischemic tissue loss due to arteriosclerosis were investigated within 72 hours postoperatively with indocyanine green (ICG) fluorescence. RESULTS For 6 of the investigated stumps, no perfusion deficit could be seen through fluorescence angiography. All stumps displayed primary healing. In the fluorescence angiography of 3 amputations, stump perfusions deficits predicted later tissue necrosis and had to be amputated again in a second operation. One amputation wound showed a small ICG perfusion deficit that represented a blood clot. CONCLUSION Indocyanine green fluorescence angiography allows a perfusion analysis of amputation stumps and therefore a prediction of the expected tissue necrosis. This tool may allow reliable prediction of amputation level.
Collapse
Affiliation(s)
- Alexander Zimmermann
- Clinic of Vascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | | | | |
Collapse
|