1
|
Zhu K, Liu C, Guo X, Zhang X, Xie J, Xie S, Qi Q, Yang B. Exosomal miR-126-3p: Potential protection against vascular damage by regulating the SLC7A5/mTOR Signalling pathway in human umbilical vein endothelial cells. Scand J Immunol 2024; 99:e13354. [PMID: 39008522 DOI: 10.1111/sji.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 07/17/2024]
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune connective tissue disease. Vascular damage is one of the important features of SSc, which affects the progression and prognosis of the disease. MiR-126-3p is an important microRNA (miRNA) that regulates vascular structure and function, which can be transported through exosomes. However, the role of miR-126-3p in vascular damage in SSc is still unclear. Therefore, we focused on the connection between miR-126-3p and vascular damage in SSc, as well as investigated the potential role of miR-126-3p in vascular damage in SSc. First, this study successfully extracted extracellular vesicles from clinical plasma samples and characterized the exosomes within them. Then, we predicted and screened the target pathway mammalian/mechanistic target of rapamycin (mTOR) and the target gene SLC7A5 of miR-126-3p through online databases. Next, we constructed SSc mice for in vivo studies. The results showed that the expression of miR-126-3p was decreased in the plasma exosomes, while the SLC7A5 expression, autophagy, and lipid peroxidation were increased in the aorta. Luciferase reporter gene assays demonstrated that miR-126-3p can bind to SLC7A5, resulting in a decrease in its expression. In vitro experiments have shown that exosomal miR-126-3p can be internalized by human umbilical vein endothelial cells (HUVECs). The miR-126-3p group exhibited enhanced cell viability and tube formation ability, along with increased expression of the vascular formation marker CD31. Additionally, miR-126-3p downregulated the protein expression of SLC7A5 and LC3 in HUVECs, while upregulating the protein expression of mTOR, P62, PPARγ, and CPT-1. However, the effects of miR-126-3p on HUVECs were counteracted by mTOR inhibitors and enhanced by mTOR activators. The results indicated that exosomal miR-126-3p has the potential to protect against vascular injury in SSc by regulating the SLC7A5/mTOR signalling pathway in HUVECs.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chen Liu
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaofang Guo
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuting Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Xie
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Songmiao Xie
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Qi
- Department of Dermatology, The Second Hospital Affiliated to Guangzhou Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Santhanam L, Liu G, Jandu S, Su W, Wodu BP, Savage W, Poe A, Liu X, Alexander LM, Cao X, Wan M. Skeleton-secreted PDGF-BB mediates arterial stiffening. J Clin Invest 2021; 131:e147116. [PMID: 34437300 PMCID: PMC8516464 DOI: 10.1172/jci147116] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Evidence links osteoporosis and cardiovascular disease but the cellular and molecular mechanisms are unclear. Here we identify skeleton-secreted platelet-derived growth factor-BB (PDGF-BB) as a key mediator of arterial stiffening in response to aging and metabolic stress. Aged mice and those fed high-fat diet (HFD), relative to young mice and those fed normal chow food diet, respectively, had higher serum PDGF-BB and developed bone loss and arterial stiffening. Bone/bone marrow preosteoclasts in aged mice and HFD mice secrete an excessive amount of PDGF-BB, contributing to the elevated PDGF-BB in blood circulation. Conditioned medium prepared from preosteoclasts stimulated proliferation and migration of the vascular smooth muscle cells. Conditional transgenic mice, in which PDGF-BB is overexpressed in preosteoclasts, had 3-fold higher serum PDGF-BB concentration and developed simultaneous bone loss and arterial stiffening spontaneously at a young age. Conversely, in conditional knockout mice, in which PDGF-BB is deleted selectively in preosteoclasts, HFD did not affect serum PDGF-BB concentration; as a result, HFD-induced bone loss and arterial stiffening were attenuated. These studies confirm that preosteoclasts are a main source of excessive PDGF-BB in blood circulation during aging and metabolic stress and establish the role of skeleton-derived PDGF-BB as an important mediator of vascular stiffening.
Collapse
Affiliation(s)
- Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine and
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Guanqiao Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine and
| | - Weiping Su
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bulouere P. Wodu
- Department of Biotechnology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - William Savage
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Alan Poe
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lacy M. Alexander
- Department of Kinesiology, Penn State University, University Park, Pennsylvania, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
González-Gay MÁ, Pina T, Prieto-Peña D, Calderon-Goercke M, Gualillo O, Castañeda S. Treatment of giant cell arteritis. Biochem Pharmacol 2019; 165:230-239. [DOI: 10.1016/j.bcp.2019.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022]
|
4
|
Yang Q, Fujii W, Kaji N, Kakuta S, Kada K, Kuwahara M, Tsubone H, Ozaki H, Hori M. The essential role of phospho‐T38 CPI‐17 in the maintenance of physiological blood pressure using genetically modified mice. FASEB J 2018; 32:2095-2109. [DOI: 10.1096/fj.201700794r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Qunhui Yang
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Shigeru Kakuta
- Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Kodai Kada
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Hirokazu Tsubone
- Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Hiroshi Ozaki
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| |
Collapse
|
5
|
Giant cell arteritis and polymyalgia rheumatica: current challenges and opportunities. Nat Rev Rheumatol 2017; 13:578-592. [PMID: 28905861 DOI: 10.1038/nrrheum.2017.142] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fields of giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) have advanced rapidly, resulting in a new understanding of these diseases. Fast-track strategies and improved awareness programmes that prevent irreversible sight loss through early diagnosis and treatment are a notable advance. Ultrasonography and other imaging techniques have been introduced into routine clinical practice and there have been promising reports on the efficacy of biologic agents, particularly IL-6 antagonists such as tocilizumab, in treating these conditions. Along with these developments, which should improve outcomes in patients with GCA and PMR, new questions and unmet needs have emerged; future research should address which pathogenetic mechanisms contribute to the different phases and clinical phenotypes of GCA, what role imaging has in the early diagnosis and monitoring of GCA and PMR, and in which patients and phases of these diseases novel biologic drugs should be used. This article discusses the implications of recent developments in our understanding of GCA and PMR, as well as the unmet needs concerning epidemiology, pathogenesis, imaging and treatment of these diseases.
Collapse
|
6
|
Shawky NM, Segar L. Sulforaphane inhibits platelet-derived growth factor-induced vascular smooth muscle cell proliferation by targeting mTOR/p70S6kinase signaling independent of Nrf2 activation. Pharmacol Res 2017; 119:251-264. [PMID: 28212891 DOI: 10.1016/j.phrs.2017.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022]
Abstract
Activation of nuclear factor erythroid 2-related factor 2 (Nrf2, a transcription factor) and/or inhibition of mammalian target of rapamycin (mTOR) are implicated in the suppression of vascular smooth muscle cell (VSMC) proliferation. The present study has examined the likely regulatory effects of sulforaphane (SFN, an antioxidant) on Nrf2 activation and platelet-derived growth factor (PDGF)-induced mTOR signaling in VSMCs. Using human aortic VSMCs, nuclear extraction and siRNA-mediated downregulation studies were performed to determine the role of Nrf2 on SFN regulation of PDGF-induced proliferative signaling. Immunoprecipitation and/or immunoblot studies were carried out to determine how SFN regulates PDGF-induced mTOR/p70S6K/S6 versus ERK and Akt signaling. Immunohistochemical analysis was performed to determine SFN regulation of S6 phosphorylation in the injured mouse femoral artery. SFN (5μM) inhibits PDGF-induced activation of mTOR without affecting mTOR association with raptor in VSMCs. While SFN inhibits PDGF-induced phosphorylation of p70S6K and 4E-BP1 (downstream targets of mTOR), it does not affect ERK or Akt phosphorylation. In addition, SFN diminishes exaggerated phosphorylation of S6 ribosomal protein (a downstream target of p70S6K) in VSMCs in vitro and in the neointimal layer of injured artery in vivo. Although SFN promotes Nrf2 accumulation to upregulate cytoprotective genes (e.g., heme oxygenase-1 and thioredoxin-1), downregulation of endogenous Nrf2 by target-specific siRNA reveals an Nrf2-independent effect for SFN-mediated inhibition of mTOR/p70S6K/S6 signaling and suppression of VSMC proliferation. Strategies that utilize local delivery of SFN at the lesion site may limit restenosis after angioplasty by targeting mTOR/p70S6K/S6 axis in VSMCs independent of Nrf2 activation.
Collapse
Affiliation(s)
- Noha M Shawky
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Lakshman Segar
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Vascular Biology Center, Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA, USA; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
7
|
Jasińska-Stroschein M, Orszulak-Michalak D. The current approach into signaling pathways in pulmonary arterial hypertension and their implication in novel therapeutic strategies. Pharmacol Rep 2014; 66:552-64. [PMID: 24948054 DOI: 10.1016/j.pharep.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 02/01/2023]
Abstract
Many mediators and signaling pathways, with their downstream effectors, have been implicated in the pathogenesis of pulmonary hypertension. Currently approved drugs, representing an option of specific therapy, target NO, prostacyclin or ET-1 pathways and provide a significant improvement in the symptomatic status of patients and a slower rate of clinical deterioration. However, despite such improvements in the treatment, PAH remains a chronic disease without a cure, the mortality associated with PAH remains high and effective therapeutic regimens are still required. Knowledge about the role of the pathways involved in PAH and their interactions provides a better understanding of the pathogenesis of the disease and may highlight directions for novel therapeutic strategies for PAH. This paper reviews some novel, promising PAH-associated signaling pathways, such as RAAS, RhoA/ROCK, PDGF, PPAR, and TGF, focusing also on their possible interactions with well-established ones such as NO, ET-1 and prostacyclin pathways.
Collapse
|
8
|
Addition of adult serum improves endothelium-dependent relaxation of organ-cultured rat mesenteric artery via inhibiting mitochondrial reactive oxygen species. Vascul Pharmacol 2013; 58:105-11. [DOI: 10.1016/j.vph.2012.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/31/2012] [Accepted: 08/26/2012] [Indexed: 11/24/2022]
|
9
|
Chaen T, Konno T, Egashira M, Bai R, Nomura N, Nomura S, Hirota Y, Sakurai T, Imakawa K. Estrogen-dependent uterine secretion of osteopontin activates blastocyst adhesion competence. PLoS One 2012; 7:e48933. [PMID: 23152823 PMCID: PMC3494704 DOI: 10.1371/journal.pone.0048933] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/02/2012] [Indexed: 01/02/2023] Open
Abstract
Embryo implantation is a highly orchestrated process that involves blastocyst-uterine interactions. This process is confined to a defined interval during gestation referred to as the "window of embryo implantation receptivity". In mice this receptive period is controlled by ovarian estrogen and involves a coordination of blastocyst adhesion competence and uterine receptivity. Mechanisms coordinating the acquisition of blastocyst adhesion competence and uterine receptivity are largely unknown. Here, we show that ovarian estrogen indirectly regulates blastocyst adhesion competence. Acquisition of blastocyst adhesion competence was attributed to integrin activation (e.g. formation of adhesion complexes) rather than de novo integrin synthesis. Osteopontin (OPN) was identified as an estrogen-dependent uterine endometrial gland secretory factor responsible for activating blastocyst adhesion competence. Increased adhesion complex assembly in OPN-treated blastocysts was mediated through focal adhesion kinase (FAK)- and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways. These findings define for the first time specific regulatory components of an estrogen-dependent pathway coordinating blastocyst adhesion competence and uterine receptivity.
Collapse
Affiliation(s)
- Takashi Chaen
- Laboratory of Animal Breeding, Department of Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshihiro Konno
- Laboratory of Animal Breeding, Department of Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Mahiro Egashira
- Laboratory of Animal Breeding, Department of Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Rulan Bai
- Laboratory of Animal Breeding, Department of Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nana Nomura
- Laboratory of Animal Breeding, Department of Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shintaro Nomura
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshihiro Sakurai
- Laboratory of Animal Breeding, Department of Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Department of Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) encompasses a rare potentially lethal group of diseases characterized by vasoconstriction, in situ thrombosis and vascular remodeling. Most of the existing therapies including endothelin receptor antagonists, prostacyclin and derivatives, or phsophodiesterase-5 inhibitors tackle mainly the endothelial dysfunction, leaving the remodeling suboptimally inhibited. This explains the disease progression that occurs even with combined therapies and the need for other therapies able to adequately inhibit the vascular remodeling. AREAS COVERED Platelet-derived growth factor (PDGF) signaling pathway was demonstrated to be involved in the vascular remodeling in PAH, and therefore, it might be a desirable therapeutic target in this setting. This review discusses the pathogenic role of this pathway in PAH and its potential inhibitory approaches, focusing on imatinib as well as on the existing preclinical data on this compound. EXPERT OPINION Preclinical studies demonstrated that PDGF inhibition with receptor antagonists such as imatinib reduces vascular remodeling. Therefore, PDGF might represent a plausible therapeutic target in this disease. However, compounds able to block this pathway via different mechanisms might also become potential PAH therapies.
Collapse
Affiliation(s)
- Sabina Antonela Antoniu
- Grigore T Popa, University of Medicine and Pharmacy Iaşi, Department of Medicine II -Pulmonary Disease, Pulmonary Disease University Hospital, 30 Dr I Cihac Str, 700115 Iasi, Romania.
| |
Collapse
|
11
|
Roberts RE. The extracellular signal-regulated kinase (ERK) pathway: a potential therapeutic target in hypertension. J Exp Pharmacol 2012; 4:77-83. [PMID: 27186119 PMCID: PMC4863547 DOI: 10.2147/jep.s28907] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypertension is a risk factor for myocardial infarction, stroke, renal failure, heart failure, and peripheral vascular disease. One feature of hypertension is a hyperresponsiveness to contractile agents, and inhibition of vasoconstriction forms the basis of some of the treatments for hypertension. Hypertension is also associated with an increase in the growth and proliferation of vascular smooth muscle cells, which can lead to a thickening of the smooth muscle layer of the blood vessels and a reduction in lumen diameter. Targeting both the enhanced contractile responses, and the increased vascular smooth muscle cell growth could potentially be important pharmacological treatment of hypertension. Extracellular signal-regulated kinase (ERK) is a member of the mitogen-activated protein kinase family that is involved in both vasoconstriction and vascular smooth muscle cell growth and this, therefore, makes it attractive therapeutic target for treatment of hypertension. ERK activity is raised in vascular smooth muscle cells from animal models of hypertension, and inhibition of ERK activation reduces both vascular smooth muscle cell growth and vasoconstriction. This review discusses the potential for targeting ERK activity in the treatment of hypertension.
Collapse
Affiliation(s)
- Richard E Roberts
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
12
|
Current World Literature. Curr Opin Nephrol Hypertens 2012; 21:106-18. [DOI: 10.1097/mnh.0b013e32834ee42b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Morita T, Okada M, Hara Y, Yamawaki H. Mechanisms underlying impairment of endothelium-dependent relaxation by fetal bovine serum in organ-cultured rat mesenteric artery. Eur J Pharmacol 2011; 668:401-6. [DOI: 10.1016/j.ejphar.2011.07.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/21/2011] [Accepted: 07/30/2011] [Indexed: 11/29/2022]
|