1
|
Hyperphosphatemia-induced degradation of transcription factor EB exacerbates vascular calcification. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166323. [PMID: 34921974 DOI: 10.1016/j.bbadis.2021.166323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022]
Abstract
AIMS Chronic kidney disease (CKD) and subsequent hyperphosphatemia causes vascular calcification (VC), a strong predictor of mortality. Dysregulation of the autophagy-lysosomal pathway in vascular smooth muscle cells (VSMCs) mediates hyperphosphatemia-dependent VC. However, the process through which lysosomes become dysfunctional remains unknown. Transcription factor EB (TFEB) is a master regulator of lysosome biogenesis. The present study examined the hypothesis that TFEB dysfunction causes VC progression. METHODS AND RESULTS Inorganic phosphate (Pi) dose-dependently promoted VC in mouse aorta ex vivo, in rat VSMCs in vitro, and in human aortic smooth muscle cells in vitro, all accompanied by a decrease in TFEB protein. Lysosomal inhibitors or TFEB knockdown using small interfering RNA exacerbated Pi-induced VC in VSMCs. Conversely, TFEB downregulation was not observed in the hypercalcemia-sensitive VC model induced by excessive vitamin D dosages. Feeding rats an adenine-containing diet caused CKD and hyperphosphatemia. VC occurred in the adenine-fed rat aorta and regressed after adenine cessation. In this CKD model, aortic TFEB expression decreased at VC onset but recovered to average levels during recovery from VC after adenine cessation. The calcified area of the CKD rat aorta exhibited lysosomal damage and enhanced TFEB ubiquitination. Hyperphosphatemia in vitro increased insoluble TFEB and decreased soluble TFEB in VSMCs, both of which were abrogated by the proteasome inhibitor, MG-132. CONCLUSION Hyperphosphatemia caused VC via TFEB downregulation in VSMCs. Under hyperphosphatemia, TFEB was insolubilized and degraded via the ubiquitin-proteasome system. Our results suggest a new mechanism for the pathogenesis of VC under CKD and hyperphosphatemia.
Collapse
|
2
|
Yanagisawa H, Yokoyama U. Extracellular matrix-mediated remodeling and mechanotransduction in large vessels during development and disease. Cell Signal 2021; 86:110104. [PMID: 34339854 DOI: 10.1016/j.cellsig.2021.110104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023]
Abstract
The vascular extracellular matrix (ECM) is synthesized and secreted during embryogenesis and facilitates the growth and remodeling of large vessels. Proper interactions between the ECM and vascular cells are pivotal for building the vasculature required for postnatal dynamic circulation. The ECM serves as a structural component by maintaining the integrity of the vessel wall while also regulating intercellular signaling, which involves cytokines and growth factors. The major ECM component in large vessels is elastic fibers, which include elastin and microfibrils. Elastin is predominantly synthesized by vascular smooth muscle cells (SMCs) and uses microfibrils as a scaffold to lay down and assemble cross-linked elastin. The absence of elastin causes developmental defects that result in the subendothelial proliferation of SMCs and inward remodeling of the vessel wall. Notably, elastic fiber formation is attenuated in the ductus arteriosus and umbilical arteries. These two vessels function during embryogenesis and close after birth via cellular proliferation, migration, and matrix accumulation. In dynamic postnatal mechano-environments, the elastic fibers in large vessels also serve an essential role in proper signal transduction as a component of elastin-contractile units. Disrupted mechanotransduction in SMCs leads to pathological conditions such as aortic aneurysms that exhibit outward remodeling. This review discusses the importance of the ECM-mainly the elastic fiber matrix-in large vessels during developmental remodeling and under pathological conditions. By dissecting the role of the ECM in large vessels, we aim to provide insights into the role of ECM-mediated signal transduction that can provide a basis for seeking new targets for intervention in vascular diseases.
Collapse
Affiliation(s)
- Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
3
|
Akashi M, Akagi T. Composite Materials by Building Block Chemistry Using Weak Interaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mitsuru Akashi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takami Akagi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Saito J, Kaneko M, Ishikawa Y, Yokoyama U. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. CYBORG AND BIONIC SYSTEMS 2021; 2021:1532103. [PMID: 36285145 PMCID: PMC9494692 DOI: 10.34133/2021/1532103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/19/2021] [Indexed: 10/06/2023] Open
Abstract
There is urgent demand for biologically compatible vascular grafts for both adult and pediatric patients. The utility of conventional nonbiodegradable materials is limited because of their thrombogenicity and inability to grow, while autologous vascular grafts involve considerable disadvantages, including the invasive procedures required to obtain these healthy vessels from patients and insufficient availability in patients with systemic atherosclerosis. All of these issues could be overcome by tissue-engineered vascular grafts (TEVGs). A large body of evidence has recently emerged in support of TEVG technologies, introducing diverse cell sources (e.g., somatic cells and stem cells) and novel fabrication methods (e.g., scaffold-guided and self-assembled approaches). Before TEVG can be applied in a clinical setting, however, several aspects of the technology must be improved, such as the feasibility of obtaining cells, their biocompatibility and mechanical properties, and the time needed for fabrication, while the safety of supplemented materials, the patency and nonthrombogenicity of TEVGs, their growth potential, and the long-term influence of implanted TEVGs in the body must be assessed. Although recent advances in TEVG fabrication have yielded promising results, more research is needed to achieve the most feasible methods for generating optimal TEVGs. This article reviews multiple aspects of TEVG fabrication, including mechanical requirements, extracellular matrix components, cell sources, and tissue engineering approaches. The potential of periodic hydrostatic pressurization in the production of scaffold-free TEVGs with optimal elasticity and stiffness is also discussed. In the future, the integration of multiple technologies is expected to enable improved TEVG performance.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Makoto Kaneko
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Nakatsuji H, Kitano S, Irie S, Matsusaki M. Preparation of Extracellular Matrix Paper and Construction of Multi-Layered 3D Tissue Model. ACTA ACUST UNITED AC 2020; 88:e112. [PMID: 32776707 DOI: 10.1002/cpcb.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Construction of organized three-dimensional (3D) tissue with extracellular matrix (ECM) and multiple types of cells is important for tissue engineering to enable tissue function and enhance cellular function. However, the concentration of ECM and the thickness of the 3D tissue have been limited in previous methods due to a lack of permeability to nutrients and oxygen. Besides, it is difficult to use matured natural ECM as a cell scaffold without chemical modification due to its insolubility. In this article, we focus on multi-layered structure, which is commonly found in living tissue such as skin, blood vessels, and other organs. Here, we describe the preparation of a paper-like scaffold (ECM paper) from micro-fibered natural ECM and the construction of 3D multi-layered tissue composed of cell layers and ECM layers by stacking cell-seeded ECM papers. The thickness and components of the ECM layers are easily controllable by changing the composition of the ECM papers, and the fibrous structure of ECM paper shows high permeability and permits cell migration. Additionally, the ECM microfiber, which is physically defiberized from natural ECM, has a high ECM concentration equal to that of living tissue and high stability under physiological conditions. Therefore, this set of protocols enables construction of multi-layered 3D tissue composed of precisely controlled ECM layers and cell layers that may contribute to the assembly of tissue models. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Preparation of extracellular matrix paper Basic Protocol 2: Evaluation of cellular function of cells on extracellular matrix paper Basic Protocol 3: Construction of multi-layered 3D tissue.
Collapse
Affiliation(s)
- Hirotaka Nakatsuji
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Shiro Kitano
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.,Toppan Printing Co., Ltd., Tokyo, Japan
| | - Shinji Irie
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.,Toppan Printing Co., Ltd., Tokyo, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.,Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Saito J, Ishikawa Y, Yokoyama U. Role of Tissue-Type Plasminogen Activator in Remodeling of the Ductus Arteriosus. Circ Rep 2020; 2:211-217. [PMID: 33693232 PMCID: PMC7921361 DOI: 10.1253/circrep.cr-20-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vascular remodeling (e.g., intimal thickening) is necessary for complete closure of the ductus arteriosus (DA). Smooth muscle cells are reported to contribute to DA remodeling. In contrast, the contribution of endothelial cells remains largely unknown. Recent data showed that tissue-type plasminogen activator (t-PA) was highly expressed in the endothelial cells of rat and human DA. It is well known that t-PA is an activator of the blood fibrinolytic system, but t-PA-induced localized proteolysis has been reported to play an important role in vascular development. We found that t-PA-induced plasminogen-plasmin conversion promoted matrix metalloproteinase-2 activation in endothelial cells of rat DA. Gelatinase activity was noted at the internal elastic laminae (IEL) of rat and human DA on in situ gelatin zymography. The in vivo injection of plasminogen to pre-term rats increased gelatinase activation, IEL disruption, and the subsequent intimal thickening formation in the pre-term rat DA. Human DA results partly supported the rat DA findings, suggesting that t-PA-mediated DA remodeling may also be present in the human DA. Current pharmacotherapy for patent DA (PDA) mainly focuses on increasing vascular constriction. Elucidating the molecular mechanisms of DA remodeling may help to expand the range of therapeutic strategies for PDA.
Collapse
Affiliation(s)
- Junichi Saito
- Cardiovascular Research Institute, School of Medicine, Yokohama City University Yokohama Japan.,Department of Cardiovascular Medicine, School of Medicine, Yale University New Haven, CT USA
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, School of Medicine, Yokohama City University Yokohama Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, School of Medicine, Yokohama City University Yokohama Japan.,Department of Physiology, School of Medicine, Tokyo Medical University Tokyo Japan
| |
Collapse
|
7
|
Tanaka R, Umemura M, Narikawa M, Fujita T, Yokoyama U, Ishigami T, Kimura K, Tamura K, Ishikawa Y. Hydrostatic pressure suppresses fibrotic changes via Akt/GSK-3 signaling in human cardiac fibroblasts. Physiol Rep 2019; 6:e13687. [PMID: 29722156 PMCID: PMC5932570 DOI: 10.14814/phy2.13687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Mechanical stresses play important roles in the process of constructing and modifying heart structure. It has been well established that stretch force acting on cardiac fibroblasts induces fibrosis. However, the effects of compressive force, that is, hydrostatic pressure (HP), have not been well elucidated. We thus evaluated the effects of HP using a pressure‐loading apparatus in human cardiac fibroblasts (HCFs) in vitro. In this study, high HP (200 mmHg) resulted in significant phosphorylation of Akt in HCFs. HP then greatly inhibited glycogen synthase kinase 3 (GSK‐3)α, which acts downstream of the PI3K/Akt pathway. Similarly, HP suppressed mRNA transcription of inflammatory cytokine‐6, collagen I and III, and matrix metalloproteinase 1, compared with an atmospheric pressure condition. Furthermore, HP inhibited collagen matrix production in a three‐dimensional HCF culture. Taken together, high HP suppressed the differentiation of fibroblasts into the myofibroblast phenotype. HP under certain conditions suppressed cardiac fibrosis via Akt/GSK‐3 signaling in HCFs. These results might help to elucidate the pathology of some types of heart disease.
Collapse
Affiliation(s)
- Ryo Tanaka
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan.,Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan.,Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masatoshi Narikawa
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan.,Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Tomoaki Ishigami
- Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kazuo Kimura
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Kouichi Tamura
- Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
8
|
Nakatsuji H, Matsusaki M. Extracellular Matrix Microfiber Papers for Constructing Multilayered 3D Composite Tissues. ACS Biomater Sci Eng 2019; 5:5610-5614. [DOI: 10.1021/acsbiomaterials.9b00090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hirotaka Nakatsuji
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Galbraith T, Roy V, Bourget JM, Tsutsumi T, Picard-Deland M, Morin JF, Gauvin R, Ismail AA, Auger FA, Gros-Louis F. Cell Seeding on UV-C-Treated 3D Polymeric Templates Allows for Cost-Effective Production of Small-Caliber Tissue-Engineered Blood Vessels. Biotechnol J 2018; 14:e1800306. [PMID: 30488607 DOI: 10.1002/biot.201800306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/05/2018] [Indexed: 01/28/2023]
Abstract
There is a strong clinical need to develop small-caliber tissue-engineered blood vessels for arterial bypass surgeries. Such substitutes can be engineered using the self-assembly approach in which cells produce their own extracellular matrix (ECM), creating a robust vessel without exogenous material. However, this approach is currently limited to the production of flat sheets that need to be further rolled into the final desired tubular shape. In this study, human fibroblasts and smooth muscle cells were seeded directly on UV-C-treated cylindrical polyethylene terephthalate glycol-modified (PETG) mandrels of 4.8 mm diameter. UV-C treatment induced surface modification, confirmed by Fourier-transform infrared spectroscopy (FTIR) analysis, was necessary to ensure proper cellular attachment and optimized ECM secretion/assembly. This novel approach generated solid tubular conduits with high level of cohesion between concentric cellular layers and enhanced cell-driven circumferential alignment that can be manipulated after 21 days of culture. This simple and cost-effective mandrel-seeded approach also allowed for endothelialization of the construct and the production of perfusable trilayered tissue-engineered blood vessels with a closed lumen. This study lays the foundation for a broad field of possible applications enabling custom-made reconstructed tissues of specialized shapes using a surface treated 3D structure as a template for tissue engineering.
Collapse
Affiliation(s)
- Todd Galbraith
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center, Enfant-Jésus Hospital, 1401, 18e rue, Québec, G1J 1Z4, Canada
| | - Vincent Roy
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center, Enfant-Jésus Hospital, 1401, 18e rue, Québec, G1J 1Z4, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada
| | - Jean-Michel Bourget
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center, Enfant-Jésus Hospital, 1401, 18e rue, Québec, G1J 1Z4, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada
| | - Tamao Tsutsumi
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montréal, QC, Canada
| | - Maxime Picard-Deland
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center, Enfant-Jésus Hospital, 1401, 18e rue, Québec, G1J 1Z4, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada
| | - Jean-François Morin
- Department of Chemistry, Faculty of Science and Engineering, Laval University, Québec, QC, Canada
| | - Robert Gauvin
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center, Enfant-Jésus Hospital, 1401, 18e rue, Québec, G1J 1Z4, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada
| | - Ashraf A Ismail
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montréal, QC, Canada
| | - François A Auger
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center, Enfant-Jésus Hospital, 1401, 18e rue, Québec, G1J 1Z4, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada
| | - François Gros-Louis
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center, Enfant-Jésus Hospital, 1401, 18e rue, Québec, G1J 1Z4, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada
| |
Collapse
|
10
|
Masuda T, Ukiki M, Yamagishi Y, Matsusaki M, Akashi M, Yokoyama U, Arai F. Fabrication of engineered tubular tissue for small blood vessels via three-dimensional cellular assembly and organization ex vivo. J Biotechnol 2018; 276-277:46-53. [PMID: 29689281 DOI: 10.1016/j.jbiotec.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022]
Abstract
Although there is a great need for suitable vascular replacements in clinical practice, much progress needs to be made toward the development of a fully functional tissue-engineered construct. We propose a fabrication method of engineered tubular tissue for small blood vessels via a layer-by-layer cellular assembly technique using mouse smooth muscle cells, the construction of a poly-(l-lactide-co-ε-caprolactone) (PLCL) scaffold, and integration in a microfluidic perfusion culture system. The cylindrical PLCL scaffold is incised, expanded, and its surface is laminated with the cell layers. The construct confirms into tubular structures due to residual stress imposed by the cylindrical PLCL scaffold. The perfusion culture system allows simulation of static, perfusion (laminar flow), and perfusion with pulsatile pressure (Pulsatile flow) conditions in which mimicking the in vivo environments. The aim of this evaluation was to determine whether fabricated tubular tissue models developed their mechanical properties. The cellular response to hemodynamic stimulus imposed by the dynamic culture system is monitored through expression analysis of fibrillin-1 and fibrillin-2, elastin and smooth muscle myosin heavy chains isoforms transcription factors, which play an important role in tissue elastogenesis. Among the available materials for small blood vessel construction, these cellular hybrid vascular scaffolds hold much potential due to controllability of the mechanical properties of synthetic polymers and biocompatibility of integrated cellular components.
Collapse
Affiliation(s)
- Taisuke Masuda
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Mitsuhiro Ukiki
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuka Yamagishi
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Mitsuru Akashi
- Building Block Science, Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
11
|
Saito J, Yokoyama U, Nicho N, Zheng YW, Ichikawa Y, Ito S, Umemura M, Fujita T, Ito S, Taniguchi H, Asou T, Masuda M, Ishikawa Y. Tissue-type plasminogen activator contributes to remodeling of the rat ductus arteriosus. PLoS One 2018; 13:e0190871. [PMID: 29304073 PMCID: PMC5755942 DOI: 10.1371/journal.pone.0190871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023] Open
Abstract
AIMS The ductus arteriosus (DA) closes after birth to adapt to the robust changes in hemodynamics, which require intimal thickening (IT) to occur. The smooth muscle cells of the DA have been reported to play important roles in IT formation. However, the roles of the endothelial cells (ECs) have not been fully investigated. We herein focused on tissue-type plasminogen activator (t-PA), which is a DA EC dominant gene, and investigated its contribution to IT formation in the DA. METHODS AND RESULTS ECs from the DA and aorta were isolated from fetal rats using fluorescence-activated cell sorting. RT-PCR showed that the t-PA mRNA expression level was 2.7-fold higher in DA ECs than in aortic ECs from full-term rat fetuses (gestational day 21). A strong immunoreaction for t-PA was detected in pre-term and full-term rat DA ECs. t-PA-mediated plasminogen-plasmin conversion activates gelatinase matrix metalloproteinases (MMPs). Gelatin zymography revealed that plasminogen supplementation significantly promoted activation of the elastolytic enzyme MMP-2 in rat DA ECs. In situ zymography demonstrated that marked gelatinase activity was observed at the site of disruption in the internal elastic laminae (IEL) in full-term rat DA. In a three-dimensional vascular model, EC-mediated plasminogen-plasmin conversion augmented the IEL disruption. In vivo administration of plasminogen to pre-term rat fetuses (gestational day 19), in which IT is poorly formed, promoted IEL disruption accompanied by gelatinase activation and enhanced IT formation in the DA. Additionally, experiments using five human DA tissues demonstrated that the t-PA expression level was 3.7-fold higher in the IT area than in the tunica media. t-PA protein expression and gelatinase activity were also detected in the IT area of the human DAs. CONCLUSION t-PA expressed in ECs may help to form IT of the DA via activation of MMP-2 and disruption of IEL.
Collapse
Affiliation(s)
- Junichi Saito
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Naoki Nicho
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Yokohama City University, Yokohama, Japan
| | - Yasuhiro Ichikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Satoko Ito
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University, Yokohama, Japan
| | - Toshihide Asou
- Department of Cardiovascular Surgery, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| |
Collapse
|
12
|
Abstract
Shortage of autologous blood vessel sources and disadvantages of synthetic grafts have increased interest in the development of tissue-engineered vascular grafts. However, tunica media, which comprises layered elastic laminae, largely determines arterial elasticity, and is difficult to synthesize. Here, we describe a method for fabrication of arterial grafts with elastic layer structure from cultured human vascular SMCs by periodic exposure to extremely high hydrostatic pressure (HP) during repeated cell seeding. Repeated slow cycles (0.002 Hz) between 110 and 180 kPa increased stress-fiber polymerization and fibronectin fibrillogenesis on SMCs, which is required for elastic fiber formation. To fabricate arterial grafts, seeding of rat vascular SMCs and exposure to the periodic HP were repeated alternatively ten times. The obtained medial grafts were highly elastic and tensile rupture strength was 1451 ± 159 mmHg, in which elastic fibers were abundantly formed. The patch medial grafts were sutured at the rat aorta and found to be completely patent and endothelialized after 2.5 months, although tubular medial constructs implanted in rats as interpositional aortic grafts withstood arterial blood pressure only in early acute phase. This novel organized self-assembly method would enable mass production of scaffold-free arterial grafts in vitro and have potential therapeutic applications for cardiovascular diseases.
Collapse
|
13
|
Chetprayoon P, Matsusaki M, Yokoyama U, Tejima T, Ishikawa Y, Akashi M. Use of Three-Dimensional Arterial Models To Predict the In Vivo Behavior of Nanoparticles for Drug Delivery. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Paninee Chetprayoon
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Yamadaoka, Suita Osaka 565-0871 Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Yamadaoka, Suita Osaka 565-0871 Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute; Yokohama City University; Graduate School of Medicine; 3-9 Fukuura, Kanazawa-ku Yokohama, Kanagawa 236-0004 Japan
| | - Takanori Tejima
- Cardiovascular Research Institute; Yokohama City University; Graduate School of Medicine; 3-9 Fukuura, Kanazawa-ku Yokohama, Kanagawa 236-0004 Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute; Yokohama City University; Graduate School of Medicine; 3-9 Fukuura, Kanazawa-ku Yokohama, Kanagawa 236-0004 Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
14
|
Chetprayoon P, Matsusaki M, Yokoyama U, Tejima T, Ishikawa Y, Akashi M. Use of Three-Dimensional Arterial Models To Predict the In Vivo Behavior of Nanoparticles for Drug Delivery. Angew Chem Int Ed Engl 2016; 55:4461-6. [DOI: 10.1002/anie.201509752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/02/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Paninee Chetprayoon
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Yamadaoka, Suita Osaka 565-0871 Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Yamadaoka, Suita Osaka 565-0871 Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute; Yokohama City University; Graduate School of Medicine; 3-9 Fukuura, Kanazawa-ku Yokohama, Kanagawa 236-0004 Japan
| | - Takanori Tejima
- Cardiovascular Research Institute; Yokohama City University; Graduate School of Medicine; 3-9 Fukuura, Kanazawa-ku Yokohama, Kanagawa 236-0004 Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute; Yokohama City University; Graduate School of Medicine; 3-9 Fukuura, Kanazawa-ku Yokohama, Kanagawa 236-0004 Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
15
|
3D-fibroblast tissues constructed by a cell-coat technology enhance tight-junction formation of human colon epithelial cells. Biochem Biophys Res Commun 2015; 457:363-9. [DOI: 10.1016/j.bbrc.2014.12.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/30/2014] [Indexed: 11/18/2022]
|
16
|
Yamagishi Y, Masuda T, Matsusaki M, Akashi M, Yokoyama U, Arai F. Microfluidic perfusion culture system for multilayer artery tissue models. BIOMICROFLUIDICS 2014; 8:064113. [PMID: 25553190 PMCID: PMC4257967 DOI: 10.1063/1.4903210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
We described an assembly technique and perfusion culture system for constructing artery tissue models. This technique differed from previous studies in that it does not require a solid biodegradable scaffold; therefore, using sheet-like tissues, this technique allowed the facile fabrication of tubular tissues can be used as model. The fabricated artery tissue models had a multilayer structure. The assembly technique and perfusion culture system were applicable to many different sizes of fabricated arteries. The shape of the fabricated artery tissue models was maintained by the perfusion culture system; furthermore, the system reproduced the in vivo environment and allowed mechanical stimulation of the arteries. The multilayer structure of the artery tissue model was observed using fluorescent dyes. The equivalent Young's modulus was measured by applying internal pressure to the multilayer tubular tissues. The aim of this study was to determine whether fabricated artery tissue models maintained their mechanical properties with developing. We demonstrated both the rapid fabrication of multilayer tubular tissues that can be used as model arteries and the measurement of their equivalent Young's modulus in a suitable perfusion culture environment.
Collapse
Affiliation(s)
- Yuka Yamagishi
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University , 1 Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taisuke Masuda
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University , 1 Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , 2-1 Yamadaoka, Suita, Osaka 562-0871, Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , 2-1 Yamadaoka, Suita, Osaka 562-0871, Japan
| | - Utako Yokoyama
- Department of Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University , 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Fumihito Arai
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University , 1 Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
17
|
Bu M, Li L, Zhang Y, Xu Y, An S, Hou F, Jie X. Lysyl oxidase genetic variants affect gene expression in cervical cancer. DNA Cell Biol 2014; 33:787-92. [PMID: 24945327 DOI: 10.1089/dna.2014.2490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lysyl oxidase (LOX) is a copper-dependent amine oxidase that plays important roles in the homeostasis of tumors. The aim of this study was to investigate the association between LOX polymorphisms and cervical cancer, and the effect of these polymorphisms on gene expression. We evaluated two polymorphisms of LOX, rs1800449G/A (G473A) and rs2278226C/G, in 262 cervical cancer cases and 298 healthy controls in the Chinese population. Results showed that the prevalence of rs1800449AA genotype was significantly increased in cases than in controls (p=0.004). Individuals who carried the rs1800449A allele had a 1.56-fold increased risk for cervical cancer than those with the rs1800449G allele (p=0.003). The rs2278226CG genotype also revealed a significantly higher proportion in cases (20.6%) than in controls (7.7%, p<0.001). Interestingly, when analyzing these two polymorphisms with the serum level of LOX, we identified that cervical cancer patients carrying the rs2278226CG genotype had a significantly elevated level of LOX than those with rs2278226CC wild type, whereas the same phenomenon was not observed in controls. The rs1800449 polymorphism did not affect the LOX serum level in either controls or patients. These results suggest that the polymorphisms in the LOX gene may be involved in the development of cervical cancer through various mechanisms.
Collapse
Affiliation(s)
- Meimei Bu
- 1 The Maternal and Child Health Hospital of Jinan City , Jinan, Shandong, China
| | | | | | | | | | | | | |
Collapse
|