1
|
Xie HG, Jiang LP, Tai T, Ji JZ, Mi QY. The Complement System and C4b-Binding Protein: A Focus on the Promise of C4BPα as a Biomarker to Predict Clopidogrel Resistance. Mol Diagn Ther 2024; 28:189-199. [PMID: 38261250 DOI: 10.1007/s40291-023-00691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
The complement system plays a dual role in the body, either as a first-line defense barrier when balanced between activation and inhibition or as a potential driver of complement-associated injury or diseases when unbalanced or over-activated. C4b-binding protein (C4BP) was the first circulating complement regulatory protein identified and it functions as an important complement inhibitor. C4BP can suppress the over-activation of complement components and prevent the complement system from attacking the host cells through the binding of complement cleavage products C4b and C3b, working in concert as a cofactor for factor I in the degradation of C4b and C3b, and consequently preventing or reducing the assembly of C3 convertase and C5 convertase, respectively. C4BP, particularly C4BP α-chain (C4BPα), exerts its unique inhibitory effects on complement activation and opsonization, systemic inflammation, and platelet activation and aggregation. It has long been acknowledged that crosstalk or interplay exists between the complement system and platelets. Our unpublished preliminary data suggest that circulating C4BPα exerts its antiplatelet effects through inhibition of both complement activity levels and complement-induced platelet reactivity. Plasma C4BPα levels appear to be significantly higher in patients sensitive to, rather than resistant to, clopidogrel, and we suggest that a plasma C4BPα measurement could be used to predict clopidogrel resistance in the clinical settings.
Collapse
Affiliation(s)
- Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| | - Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| |
Collapse
|
2
|
Xiao M, Tang D, Luan S, Hu B, Gong W, Pommer W, Dai Y, Yin L. Dysregulated coagulation system links to inflammation in diabetic kidney disease. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1270028. [PMID: 38143793 PMCID: PMC10748384 DOI: 10.3389/fcdhc.2023.1270028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Diabetic kidney disease (DKD) is a significant contributor to end-stage renal disease worldwide. Despite extensive research, the exact mechanisms responsible for its development remain incompletely understood. Notably, patients with diabetes and impaired kidney function exhibit a hypercoagulable state characterized by elevated levels of coagulation molecules in their plasma. Recent studies propose that coagulation molecules such as thrombin, fibrinogen, and platelets are interconnected with the complement system, giving rise to an inflammatory response that potentially accelerates the progression of DKD. Remarkably, investigations have shown that inhibiting the coagulation system may protect the kidneys in various animal models and clinical trials, suggesting that these systems could serve as promising therapeutic targets for DKD. This review aims to shed light on the underlying connections between coagulation and complement systems and their involvement in the advancement of DKD.
Collapse
Affiliation(s)
- Mengyun Xiao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Donge Tang
- Shenzhen People’s Hospital/The Second Clinical School of Jinan University, Shenzhen, Guangdong, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Bo Hu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wenyu Gong
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wolfgang Pommer
- KfH Kuratoriumfuer Dialyse und Nierentransplantatione.V., Bildungszentrum, Neu-Isenburg, Germany
| | - Yong Dai
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Ihedioha OC, Sivakoses A, Beverley SM, McMahon-Pratt D, Bothwell ALM. Leishmania major-derived lipophosphoglycan influences the host's early immune response by inducing platelet activation and DKK1 production via TLR1/2. Front Immunol 2023; 14:1257046. [PMID: 37885890 PMCID: PMC10598878 DOI: 10.3389/fimmu.2023.1257046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Background Platelets are rapidly deployed to infection sites and respond to pathogenic molecules via pattern recognition receptors (TLR, NLRP). Dickkopf1 (DKK1) is a quintessential Wnt antagonist produced by a variety of cell types including platelets, endothelial cells, and is known to modulate pro-inflammatory responses in infectious diseases and cancer. Moreover, DKK1 is critical for forming leukocyte-platelet aggregates and induction of type 2 cell-mediated immune responses. Our previous publication showed activated platelets release DKK1 following Leishmania major recognition. Results Here we probed the role of the key surface virulence glycoconjugate lipophosphoglycan (LPG), on DKK1 production using null mutants deficient in LPG synthesis (Δlpg1- and Δlpg2-). Leishmania-induced DKK1 production was reduced to control levels in the absence of LPG in both mutants and was restored upon re-expression of the cognate LPG1 or LPG2 genes. Furthermore, the formation of leukocyte-platelet aggregates was dependent on LPG. LPG mediated platelet activation and DKK1 production occurs through TLR1/2. Conclusion Thus, LPG is a key virulence factor that induces DKK1 production from activated platelets, and the circulating DKK1 promotes Th2 cell polarization. This suggests that LPG-activated platelets can drive innate and adaptive immune responses to Leishmania infection.
Collapse
Affiliation(s)
- Olivia C. Ihedioha
- 1Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Anutr Sivakoses
- 1Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, MI, United States
| | - Diane McMahon-Pratt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Alfred L. M. Bothwell
- 1Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
4
|
Nording H, Baron L, Lübken A, Emami H, von Esebeck J, Meusel M, Sadik C, Schanze N, Duerschmied D, Köhl J, Münch G, Langer HF. The Platelet Anaphylatoxin Receptor C5aR1 (CD88) Is a Promising Target for Modulating Vessel Growth in Response to Ischemia a. TH OPEN 2023; 7:e289-e293. [PMID: 37868192 PMCID: PMC10586890 DOI: 10.1055/a-2156-8048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Antje Lübken
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Hossein Emami
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Jacob von Esebeck
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Moritz Meusel
- Medical Clinic II, University Hospital, University Heart Center Lübeck, Lübeck, Germany
| | - Christian Sadik
- Clinic for Dermatology, University of Lübeck, University Hospital, Lübeck, Germany
| | - Nancy Schanze
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jörg Köhl
- ISEF, University of Lübeck, Lübeck, Germany
| | | | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Clinic for Dermatology, University of Lübeck, University Hospital, Lübeck, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
| |
Collapse
|
5
|
Landsem A, Emblem Å, Lau C, Christiansen D, Gerogianni A, Karlsen BO, Mollnes TE, Nilsson PH, Brekke OL. Complement C3b contributes to Escherichia coli-induced platelet aggregation in human whole blood. Front Immunol 2022; 13:1020712. [PMID: 36591264 PMCID: PMC9797026 DOI: 10.3389/fimmu.2022.1020712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Platelets have essential functions as first responders in the immune response to pathogens. Activation and aggregation of platelets in bacterial infections can lead to life-threatening conditions such as arterial thromboembolism or sepsis-associated coagulopathy. Methods In this study, we investigated the role of complement in Escherichia coli (E. coli)-induced platelet aggregation in human whole blood, using Multiplate® aggregometry, flow cytometry, and confocal microscopy. Results and Discussion We found that compstatin, which inhibits the cleavage of complement component C3 to its components C3a and C3b, reduced the E. coli-induced platelet aggregation by 42%-76% (p = 0.0417). This C3-dependent aggregation was not C3a-mediated as neither inhibition of C3a using a blocking antibody or a C3a receptor antagonist, nor the addition of purified C3a had any effects. In contrast, a C3b-blocking antibody significantly reduced the E. coli-induced platelet aggregation by 67% (p = 0.0133). We could not detect opsonized C3b on platelets, indicating that the effect of C3 was not dependent on C3b-fragment deposition on platelets. Indeed, inhibition of glycoprotein IIb/IIIa (GPIIb/IIIa) and complement receptor 1 (CR1) showed that these receptors were involved in platelet aggregation. Furthermore, aggregation was more pronounced in hirudin whole blood than in hirudin platelet-rich plasma, indicating that E. coli-induced platelet aggregation involved other blood cells. In conclusion, the E. coli-induced platelet aggregation in human whole blood is partly C3b-dependent, and GPIIb/IIIa and CR1 are also involved in this process.
Collapse
Affiliation(s)
- Anne Landsem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,*Correspondence: Anne Landsem,
| | - Åse Emblem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Corinna Lau
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Dorte Christiansen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Alexandra Gerogianni
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Bård Ove Karlsen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Tom Eirik Mollnes
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Per H. Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ole-Lars Brekke
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Sauter M, Langer HF. Targeting Cell-Specific Molecular Mechanisms of Innate Immunity in Atherosclerosis. Front Physiol 2022; 13:802990. [PMID: 35432000 PMCID: PMC9010538 DOI: 10.3389/fphys.2022.802990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms of innate immunity contribute to inflammation, one of the major underlying causes of atherogenesis and progression of atherosclerotic vessel disease. How immune cells exactly contribute to atherosclerosis and interact with molecules of cholesterol homeostasis is still a matter of intense research. Recent evidence has proposed a potential role of previously underappreciated cell types in this chronic disease including platelets and dendritic cells (DCs). The pathophysiology of atherosclerosis is studied in models with dysfunctional lipid homeostasis and several druggable molecular targets are derived from these models. Specific therapeutic approaches focussing on these immune mechanisms, however, have not been successfully introduced into everyday clinical practice, yet. This review highlights molecular insights into immune processes related to atherosclerosis and potential future translational approaches targeting these molecular mechanisms.
Collapse
Affiliation(s)
- M. Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - H. F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- Department of Cardiology, University Heart Center Luebeck, University Hospital, Luebeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- *Correspondence: H. F. Langer,
| |
Collapse
|
7
|
Apostolidis SA, Sarkar A, Giannini HM, Goel RR, Mathew D, Suzuki A, Baxter AE, Greenplate AR, Alanio C, Abdel-Hakeem M, Oldridge DA, Giles JR, Wu JE, Chen Z, Huang YJ, Belman J, Pattekar A, Manne S, Kuthuru O, Dougherty J, Weiderhold B, Weisman AR, Ittner CAG, Gouma S, Dunbar D, Frank I, Huang AC, Vella LA, Reilly JP, Hensley SE, Rauova L, Zhao L, Meyer NJ, Poncz M, Abrams CS, Wherry EJ. Signaling Through FcγRIIA and the C5a-C5aR Pathway Mediate Platelet Hyperactivation in COVID-19. Front Immunol 2022; 13:834988. [PMID: 35309299 PMCID: PMC8928747 DOI: 10.3389/fimmu.2022.834988] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibited higher basal levels of activation measured by P-selectin surface expression and had poor functional reserve upon in vitro stimulation. To investigate this question in more detail, we developed an assay to assess the capacity of plasma from COVID-19 patients to activate platelets from healthy donors. Platelet activation was a common feature of plasma from COVID-19 patients and correlated with key measures of clinical outcome including kidney and liver injury, and APACHEIII scores. Further, we identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions. These data identified these potentially actionable pathways as central for platelet activation and/or vascular complications and clinical outcomes in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect.
Collapse
Affiliation(s)
- Sokratis A. Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Amrita Sarkar
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Heather M. Giannini
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Rishi R. Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Aae Suzuki
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Amy E. Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Allison R. Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Cécile Alanio
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Mohamed Abdel-Hakeem
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Derek A. Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Josephine R. Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Jennifer E. Wu
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Zeyu Chen
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Yinghui Jane Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Jonathan Belman
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ajinkya Pattekar
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Sasikanth Manne
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Brittany Weiderhold
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Ariel R. Weisman
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Caroline A. G. Ittner
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Debora Dunbar
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ian Frank
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander C. Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Laura A. Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - John P. Reilly
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Scott E. Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Lubica Rauova
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liang Zhao
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Mortimer Poncz
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Charles S. Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Barratt J, Weitz I. Complement Factor D as a Strategic Target for Regulating the Alternative Complement Pathway. Front Immunol 2021; 12:712572. [PMID: 34566967 PMCID: PMC8458797 DOI: 10.3389/fimmu.2021.712572] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
The complement system is central to first-line defense against invading pathogens. However, excessive complement activation and/or the loss of complement regulation contributes to the development of autoimmune diseases, systemic inflammation, and thrombosis. One of the three pathways of the complement system, the alternative complement pathway, plays a vital role in amplifying complement activation and pathway signaling. Complement factor D, a serine protease of this pathway that is required for the formation of C3 convertase, is the rate-limiting enzyme. In this review, we discuss the function of factor D within the alternative pathway and its implication in both healthy physiology and disease. Because the alternative pathway has a role in many diseases that are characterized by excessive or poorly mediated complement activation, this pathway is an enticing target for effective therapeutic intervention. Nonetheless, although the underlying disease mechanisms of many of these complement-driven diseases are quite well understood, some of the diseases have limited treatment options or no approved treatments at all. Therefore, in this review we explore factor D as a strategic target for advancing therapeutic control of pathological complement activation.
Collapse
Affiliation(s)
- Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Ilene Weitz
- Jane Anne Nohl Division of Hematology, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
9
|
Henes JK, Groga-Bada P, Schaeffeler E, Winter S, Hack L, Zdanyte M, Mueller K, Droppa M, Stimpfle F, Gawaz M, Langer H, Schwab M, Geisler T, Rath D. C5 Variant rs10985126 is Associated with Mortality in Patients with Symptomatic Coronary Artery Disease. Pharmgenomics Pers Med 2021; 14:893-903. [PMID: 34321906 PMCID: PMC8312322 DOI: 10.2147/pgpm.s307827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Complement component 5a (C5a) is a highly potent anaphylatoxin with a variety of pro-inflammatory effects. C5a contributes to progression of atherosclerosis and inhibition of the receptor (C5aR) might offer a therapeutic strategy in this regard. Single nucleotide polymorphisms (SNPs) of the C5 gene may modify protein expression levels and therefore function of C5a and C5aR. This study aimed to examine associations between clinically relevant C5a SNPs and the prognosis of patients with symptomatic coronary artery disease (CAD). Furthermore, we sought to investigate the influence of C5 SNPs on C5aR platelet surface expression and circulating C5a levels. METHODS C5 variants (rs25681, rs17611, rs17216529, rs12237774, rs41258306, and rs10985126) were analyzed in a consecutive cohort of 833 patients suffering from symptomatic coronary artery disease (CAD). Circulating C5a levels were determined in 116 patients whereas C5aR platelet surface expression was measured in 473 CAD patients. Endpoints included all-cause mortality, myocardial infarction (MI), and ischemic stroke (IS). Homozygous carriers (HC) of the minor allele (rs10985126) showed significantly higher all-cause mortality than major allele carriers. While we could not find significant associations between rs10985126 allele frequency and C5aR platelet surfazl ce expression, significantly elevated levels of circulating C5a were found in HC of the minor allele of the respective genotype. rs17216529 allele frequency correlated with the composite combined endpoint and bleeding events. However, since the number of HC of the minor allele of this genotype was low, we cannot draw a robust conclusion about the observed associations. CONCLUSION In this study, we provide evidence for the prognostic relevance of rs10985126 in CAD patients. C5 rs10985126 may serve as a prognostic biomarker for risk stratification in high-risk CAD patients and consequently promote tailored therapies.
Collapse
Affiliation(s)
| | - Patrick Groga-Bada
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Luis Hack
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Monika Zdanyte
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karin Mueller
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Michal Droppa
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Fabian Stimpfle
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Harald Langer
- Department of Cardiology, Angiology and Intensive Care, University Hospital Luebeck, Luebeck, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Department of Clinical Pharmacology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Tobias Geisler
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Dominik Rath
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
10
|
Alternative Complement Pathway Activation Provokes a Hypercoagulable State with Diminished Fibrinolysis. Shock 2021; 53:560-565. [PMID: 31441792 DOI: 10.1097/shk.0000000000001437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Several disease processes trigger prolonged activation of the alternative complement pathway. Crosslinks between complement activation and physiologic changes in platelets and neutrophils have been identified, but how this interplay alters the hemostatic potential in humans remains undefined. We hypothesize that activation of the alternative pathway triggers a hypercoagulable state. METHODS C3/C5 convertase Cobra Venom Factor (CVF, 10 Units/mL) was employed to activate the alternative complement pathway in whole blood. Complement inhibition was completed with inhibitors for C3/C3b (Compstatin, 25 and 50 μM), C3a receptor (SB290157, 300 nM, C3aR), and C5a receptor (W54011, 6 nM, C5aR). Coagulation was assessed using native thrombelastography which produces the following: reaction time (R time); angle; maximum amplitude (MA); percent fibrinolysis at 30-min post-MA (LY30). RESULTS Inhibition with C3aR and C5aR inhibitors did not alter clot formation (R time, 11.2 vs 11.6 min, P = 0.36), clot strength (MA, 52.0 vs 52.3 mm, P = 0.43), or fibrinolysis (LY30, 1.6 vs 4.0%, P = 0.19). Compstatin did not influence clot formation or clot strength but did induce a dose-dependent increase in fibrinolysis (control LY30 3.0 vs 7.8% and 12.4% for 25 and 50 μM respectively, P = 0.0002). CVF increased MA (58.0 vs 62.8 mm, P < 0.0001), decreased LY30 (2.3 vs 1.4%, P = 0.004), and increased R time (8.4 vs 9.9 min, P = 0.008). Compstatin reversed the effects of CVF, while C5a reversed only the change in LY30. CONCLUSIONS C3 contributes to fibrinolysis, as inhibition with Compstatin enhanced fibrinolysis, and CVF cleavage of C3 decreased fibrinolysis. CVF also induced a hypercoagulable state with increased clot strength.
Collapse
|
11
|
Nording H, Baron L, Haberthür D, Emschermann F, Mezger M, Sauter M, Sauter R, Patzelt J, Knoepp K, Nording A, Meusel M, Meyer-Saraei R, Hlushchuk R, Sedding D, Borst O, Eitel I, Karsten CM, Feil R, Pichler B, Erdmann J, Verschoor A, Chavakis E, Chavakis T, von Hundelshausen P, Köhl J, Gawaz M, Langer HF. The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nat Commun 2021; 12:3352. [PMID: 34099640 PMCID: PMC8185003 DOI: 10.1038/s41467-021-23499-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1-/- mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo.In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - David Haberthür
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Frederic Emschermann
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Matthias Mezger
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Johannes Patzelt
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Kai Knoepp
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Anne Nording
- grid.10392.390000 0001 2190 1447Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Moritz Meusel
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Meyer-Saraei
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ruslan Hlushchuk
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Daniel Sedding
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Oliver Borst
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Ingo Eitel
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Robert Feil
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Bernd Pichler
- grid.10392.390000 0001 2190 1447Institute for Preclinical Imaging, Eberhard Karls University, Tübingen, Germany
| | - Jeanette Erdmann
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Admar Verschoor
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Emmanouil Chavakis
- grid.411088.40000 0004 0578 8220Department for Internal Medicine III/Cardiology, University Hospital of the Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Triantafyllos Chavakis
- grid.4488.00000 0001 2111 7257Department of Clinical Pathobiochemistry, Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Philipp von Hundelshausen
- grid.5252.00000 0004 1936 973XInstitute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
| | - Jörg Köhl
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany ,grid.239573.90000 0000 9025 8099Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Meinrad Gawaz
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Rawish E, Sauter M, Sauter R, Nording H, Langer HF. Complement, inflammation and thrombosis. Br J Pharmacol 2021; 178:2892-2904. [PMID: 33817781 DOI: 10.1111/bph.15476] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
A mutual relationship exists between immune activation and mechanisms of thrombus formation. In particular, elements of the innate immune response such as the complement system can modulate platelet activation and subsequently thrombus formation. Several components of the complement system including C3 or the membrane attack complex have been reported to be associated with platelets and become functionally active in the micromilieu of platelet activation. The exact mechanisms how this interplay is regulated and its consequences for tissue inflammation, damage or recovery remain to be defined. This review addresses the current state of knowledge on this topic and puts it into context with diseases featuring both thrombosis and complement activation. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Apostolidis SA, Sarkar A, Giannini HM, Goel RR, Mathew D, Suzuki A, Baxter AE, Greenplate AR, Alanio C, Abdel-Hakeem M, Oldridge DA, Giles J, Wu JE, Chen Z, Huang YJ, Pattekar A, Manne S, Kuthuru O, Dougherty J, Weiderhold B, Weisman AR, Ittner CAG, Gouma S, Dunbar D, Frank I, Huang AC, Vella LA, The UPenn COVID Processing Unit, Reilly JP, Hensley SE, Rauova L, Zhao L, Meyer NJ, Poncz M, Abrams CS, Wherry EJ. Signaling through FcγRIIA and the C5a-C5aR pathway mediates platelet hyperactivation in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.01.442279. [PMID: 33972943 PMCID: PMC8109205 DOI: 10.1101/2021.05.01.442279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibit higher basal levels of activation measured by P-selectin surface expression, and have a poor functional reserve upon in vitro stimulation. Correlating clinical features to the ability of plasma from COVID-19 patients to stimulate control platelets identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions, thus identifying these potentially actionable pathways as central for platelet activation and/or vascular complications in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect. These studies have implications for the role of platelet hyperactivation in complications associated with SARS-CoV-2 infection. COVER ILLUSTRATION ONE-SENTENCE SUMMARY The FcγRIIA and C5a-C5aR pathways mediate platelet hyperactivation in COVID-19.
Collapse
Affiliation(s)
- Sokratis A. Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amrita Sarkar
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heather M. Giannini
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rishi R. Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aae Suzuki
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Amy E. Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R. Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cécile Alanio
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mohamed Abdel-Hakeem
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Derek A. Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Josephine Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jennifer E. Wu
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zeyu Chen
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yinghui Jane Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sasikanth Manne
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brittany Weiderhold
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ariel R. Weisman
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caroline A. G. Ittner
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Debora Dunbar
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian Frank
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C. Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura A. Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - John P. Reilly
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E. Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lubica Rauova
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liang Zhao
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mortimer Poncz
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles S. Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
14
|
Kluge KE, Langseth MS, Bratseth V, Pettersen AÅ, Arnesen H, Tønnessen T, Seljeflot I, Helseth R. Circulating levels of the terminal complement complex are associated with hypercoagulability in patients with stable coronary artery disease. Thromb Res 2020; 196:106-108. [DOI: 10.1016/j.thromres.2020.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/26/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
15
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
16
|
Deshmukh H, Speth C, Sheppard DC, Neurauter M, Würzner R, Lass-Flörl C, Rambach G. Aspergillus-Derived Galactosaminogalactan Triggers Complement Activation on Human Platelets. Front Immunol 2020; 11:550827. [PMID: 33123129 PMCID: PMC7573070 DOI: 10.3389/fimmu.2020.550827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Invasive fungal infections caused by Aspergillus (A.) and Mucorales species still represent life-threatening diseases in immunocompromised individuals, and deeper knowledge about fungal interactions with elements of innate immunity, such as complement and platelets, appears essential for optimized therapy. Previous studies showed that galactosaminogalactan secreted by A. fumigatus and A. flavus is deposited on platelets, thereby inducing their activation. Since the altered platelet surface is a putative trigger for complement activation, we aimed to study the interplay of platelets with complement in the presence of fungal GAG. Culture supernatants (SN) of A. fumigatus and A. flavus both induced not only GAG deposition but also subsequent deposition of complement C3 fragments on the platelet surface. The SN of a Δuge3 mutant of A. fumigatus, which is unable to synthesize GAG, did not induce complement deposition on platelets, nor did the SN of other Aspergillus species and all tested Mucorales. Detailed analysis revealed that GAG deposition itself triggered the complement cascade rather than the GAG-induced phosphatidylserine exposure. The lectin pathway of complement could be shown to be crucially involved in this process. GAG-induced complement activation on the platelet surface was revealed to trigger processes that might contribute to the pathogenesis of invasive aspergillosis by A. fumigatus or A. flavus. Both pro-inflammatory anaphylatoxins C3a and C5a arose when platelets were incubated with SN of these fungal species; these processes might favor excessive inflammation after fungal infection. Furthermore, platelets were stimulated to shed microparticles, which are also known to harbor pro-inflammatory and pro-coagulant properties. Not only did early processes of the complement cascade proceed on platelets, but also the formation of the terminal complement C5b-9 complex was detected on platelets after incubation with fungal SN. Subsequently, reduced viability of the platelets could be shown, which might contribute to the lowered platelet numbers found in infected patients. In summary, fungal GAG initiates an interplay between complement and platelets that can be supposed to contribute to excessive inflammation, thrombocytopenia, and thrombosis, which are important hallmarks of fatal invasive mycoses.
Collapse
Affiliation(s)
- Hemalata Deshmukh
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Magdalena Neurauter
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| | - Günter Rambach
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| |
Collapse
|
17
|
Nording H, Baron L, Langer HF. Platelets as therapeutic targets to prevent atherosclerosis. Atherosclerosis 2020; 307:97-108. [DOI: 10.1016/j.atherosclerosis.2020.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
|
18
|
Pan Y, Yu C, Huang J, Rong Y, Chen J, Chen M. Bioinformatics analysis of vascular RNA-seq data revealed hub genes and pathways in a novel Tibetan minipig atherosclerosis model induced by a high fat/cholesterol diet. Lipids Health Dis 2020; 19:54. [PMID: 32213192 PMCID: PMC7098151 DOI: 10.1186/s12944-020-01222-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Atherosclerosis is a major contributor to cardiovascular events, however, its molecular mechanism remains poorly known. Animal models of atherosclerosis can be a valuable tool to provide insights into the etiology, pathophysiology, and complications of atherosclerosis. In particular, Tibetan minipigs are a feasible model for studying diet-related metabolic and atherosclerotic diseases. METHODS We used vascular transcriptomics to identify differentially expressed genes (DEGs) in high fat/cholesterol (HFC) diet-fed Tibetan minipig atherosclerosis models, analyzed the DEGs gene ontology (GO) terms, pathways and protein-protein interactions (PPI) networks, and identified hub genes and key modules using molecular complex detection (MCODE), Centiscape and CytoHubba plugin. The identified genes were validated using the human carotid atherosclerosis database (GSEA 43292) and RT-PCR methods. RESULTS Our results showed that minipigs displayed obvious dyslipidemia, oxidative stress, inflammatory response, atherosclerotic plaques, as well as increased low-density lipoprotein (LDL) and leukocyte recruitment after 24 weeks of HFC diet feeding compared to those under a regular diet. Our RNA-seq results revealed 1716 DEGs in the atherosclerotic/NC group, of which 1468 genes were up-regulated and 248 genes were down-regulated. Functional enrichment analysis of DEGs showed that the HFC diet-induced changes are related to vascular immune-inflammatory responses, lipid metabolism and muscle contraction, indicating that hypercholesterolemia caused by HFC diet can activate innate and adaptive immune responses to drive atherosclerosis development. Furthermore, we identified four modules from the major PPI network, which are implicated in cell chemotaxis, myeloid leukocyte activation, cytokine production, and lymphocyte activation. Fifteen hub genes were discovered, including TNF, PTPRC, ITGB2, ITGAM, VCAM1, CXCR4, TYROBP, TLR4, LCP2, C5AR1, CD86, MMP9, PTPN6, C3, and CXCL10, as well as two transcription factors (TF), i.e. NF-ĸB1 and SPI1. These results are consistent with the expression patterns in human carotid plaque and were validated by RT-PCR. CONCLUSIONS The identified DEGs and their enriched pathways provide references for the development and progression mechanism of Tibetan minipig atherosclerosis model induced by the HFC diet.
Collapse
Affiliation(s)
- Yongming Pan
- Comparative Medical Research Institute, Experimental Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Chen Yu
- Comparative Medical Research Institute, Experimental Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Junjie Huang
- Comparative Medical Research Institute, Experimental Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Yili Rong
- Comparative Medical Research Institute, Experimental Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Jiaojiao Chen
- Comparative Medical Research Institute, Experimental Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Minli Chen
- Comparative Medical Research Institute, Experimental Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| |
Collapse
|
19
|
Sartain S, Shubert S, Wu MF, Wang T, Martinez C. The alternative complement pathway activation product Ba as a marker for transplant-associated thrombotic microangiopathy. Pediatr Blood Cancer 2020; 67:e28070. [PMID: 31774252 DOI: 10.1002/pbc.28070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/24/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Transplant-associated thrombotic microangiopathy (TA-TMA) occurs after hematopoietic stem cell transplantation (HSCT) and is characterized by microvascular thrombosis and end-organ injury particularly of the kidneys. TA-TMA is challenging to diagnose and treat, which can lead to long-term complications and death in patients with severe disease. Studies have shown that genetic abnormalities of the alternative complement pathway (AP) are associated with TA-TMA. We hypothesized that patients with TA-TMA may generate elevated levels of the AP activation product, Ba, compared with HSCT patients without TA-TMA. PROCEDURE We longitudinally measured plasma levels of complement activation products C3a, Ba, and C5a in 14 HSCT patients: 7 with TA-TMA and 7 without TA-TMA. We assessed renal function by calculating estimated glomerular filtration rate (eGFR) and correlated the extent of AP activation with renal dysfunction in both patient populations. RESULTS The median days from HSCT to study enrollment were 154 (39-237) in the TA-TMA group and 84 (39-253) in the HSCT group without TA-TMA. Median Ba levels (ng/mL) at enrollment were 1096.9 (826.5-1562.0) in the TA-TMA group and 725.7 (494.7-818.9) in the HSCT group without TA-TMA (P = 0.007). Over the study duration, Ba levels inversely correlated with eGFR. There were no differences in C3a, C5a, or sC5b9 levels between the two populations at any measured interval. CONCLUSIONS We conclude in this preliminary study that Ba protein may serve as a marker for TA-TMA, and furthermore, that components generated in the early phase of AP activation may be involved in the pathogenesis of renal endothelial injury in TA-TMA.
Collapse
Affiliation(s)
- Sarah Sartain
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Stacey Shubert
- Department of Pediatrics, Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Meng-Fen Wu
- Biostatistics Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Tao Wang
- Biostatistics Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Caridad Martinez
- Department of Pediatrics, Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
20
|
Kim H, Conway EM. Platelets and Complement Cross-Talk in Early Atherogenesis. Front Cardiovasc Med 2019; 6:131. [PMID: 31555668 PMCID: PMC6742699 DOI: 10.3389/fcvm.2019.00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis remains a ubiquitous and serious threat to human health. The initial formation of the atherosclerotic lesion (atheroma) is driven by pro-inflammatory signaling involving monocytes and vascular endothelial cells; later stages of the disease involve rupture of well-established atherosclerotic plaques, thrombosis, and blood vessel occlusion. While the central role of platelets in thrombosis is undisputed, platelets exhibit pro-inflammatory activities, and contribute to early-stage atheroma formation. Platelets also engage components of the complement system, an essential element of innate immunity that contributes to vascular inflammation. Here we provide an overview of the complex interplay between platelets and the complement system, with a focus on how the crosstalk between them may impact on the initiation of atheroma formation.
Collapse
Affiliation(s)
- Hugh Kim
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Liu X, Gorzelanny C, Schneider SW. Platelets in Skin Autoimmune Diseases. Front Immunol 2019; 10:1453. [PMID: 31333641 PMCID: PMC6620619 DOI: 10.3389/fimmu.2019.01453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and small vessel vasculitis are three autoimmune diseases frequently manifested in the skin. They share common pathogenic features, including production of autoantibodies, loss of tolerance to self-antigens, tissue necrosis and fibrosis, vasculopathy and activation of the coagulation system. Platelets occupy a central part within the coagulation cascade and are well-recognized for their hemostatic role. However, recent cumulative evidence implicates their additional and multifaceted immunoregulatory functions. Platelets express immune receptors and they store growth factors, cytokines, and chemokines in their granules enabling a significant contribution to inflammation. A plethora of activating triggers such as damage associated molecular patterns (DAMPs) released from damaged endothelial cells, immune complexes, or complement effector molecules can mediate platelet activation. Activated platelets further foster an inflammatory environment and the crosstalk with the endothelium and leukocytes by the release of immunoactive molecules and microparticles. Further insight into the pathogenic implications of platelet activation will pave the way for new therapeutic strategies targeting autoimmune diseases. In this review, we discuss the inflammatory functions of platelets and their mechanistic contribution to the pathophysiology of SSc, ANCA associated small vessel vasculitis and other autoimmune diseases affecting the skin.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Gravastrand CS, Steinkjer B, Halvorsen B, Landsem A, Skjelland M, Jacobsen EA, Woodruff TM, Lambris JD, Mollnes TE, Brekke OL, Espevik T, Rokstad AMA. Cholesterol Crystals Induce Coagulation Activation through Complement-Dependent Expression of Monocytic Tissue Factor. THE JOURNAL OF IMMUNOLOGY 2019; 203:853-863. [PMID: 31270150 DOI: 10.4049/jimmunol.1900503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 01/24/2023]
Abstract
Cholesterol crystals (CC) are strong activators of complement and could potentially be involved in thromboinflammation through complement-coagulation cross-talk. To explore the coagulation-inducing potential of CC, we performed studies in lepirudin-based human whole blood and plasma models. In addition, immunohistological examinations of brain thrombi and vulnerable plaque material from patients with advanced carotid atherosclerosis were performed using polarization filter reflected light microscopy to identify CC. In whole blood, CC exposure induced a time- and concentration-dependent generation of prothrombin fragment 1+2 (PTF1.2), tissue factor (TF) mRNA synthesis, and monocyte TF expression. Blocking Abs against TF abolished CC-mediated coagulation, thus indicating involvement of the TF-dependent pathway. Blockade of FXII by corn trypsin inhibitor had a significant inhibitory effect on CC-induced PTF1.2 in platelet-free plasma, although the overall activation potential was low. CC exposure did not induce platelet aggregation, TF microparticle induction, or TF on granulocytes or eosinophils. Inhibition of complement C3 by CP40 (compstatin), C5 by eculizumab, or C5aR1 by PMX53 blocked CC-induced PTF1.2 by 90% and reduced TF+ monocytes from 18-20 to 1-2%. The physiologic relevance was supported by birefringent CC structures adjacent to monocytes (CD14), TF, and activated complement iC3b and C5b-9 in a human brain thrombus. Furthermore, monocyte influx and TF induction in close proximity to CC-rich regions with activated complement were found in a vulnerable plaque. In conclusion, CC could be active, releasable contributors to thrombosis by inducing monocyte TF secondary to complement C5aR1 signaling.
Collapse
Affiliation(s)
- Caroline S Gravastrand
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Bjørg Steinkjer
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, 0424 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Anne Landsem
- Research Laboratory, Nordland Hospital, 8092 Bodo, Norway.,Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, The Arctic University of Norway, 9037 Tromso, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tom E Mollnes
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Research Laboratory, Nordland Hospital, 8092 Bodo, Norway.,Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, The Arctic University of Norway, 9037 Tromso, Norway.,Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; and
| | - Ole-Lars Brekke
- Research Laboratory, Nordland Hospital, 8092 Bodo, Norway.,Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, The Arctic University of Norway, 9037 Tromso, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Anne Mari A Rokstad
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway; .,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Centre for Obesity, Clinic of Surgery, St. Olav's University Hospital, 7006 Trondheim, Norway
| |
Collapse
|
23
|
Fan Z, Qin J, Wang D, Geng S. Complement C3a promotes proliferation, migration and stemness in cutaneous squamous cell carcinoma. J Cell Mol Med 2019; 23:3097-3107. [PMID: 30825266 PMCID: PMC6484302 DOI: 10.1111/jcmm.13959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Background Complement C3 has been shown to be highly expressed in cutaneous squamous cell carcinoma (cSCC) tumour tissues and is correlated with tumour cell growth. This study aimed to investigate the mechanism of C3 in cSCC malignant transformation. Methods C3 expression was analysed in cSCC cell lines A431, Tca8113, SCC13, HSC‐5 and HSC‐1 and in immortalized HaCaT keratinocytes. Proliferation and migration of cSCC were determined after C3a exposure. Expression of cyclin D1, cyclin E, vascular endothelial growth factor (VEGF), pro‐matrix metalloproteinase 1 (pro‐MMP1), pro‐matrix metalloproteinase 2 (pro‐MMP2), stemness factors, GSK‐3β, and β‐catenin were analyzed. Tumour growth was examined in a murine xenograft model. Results C3 expression was much more highly expressed in all cSCC cell lines than in HaCaT cells. C3a treatment significantly promoted cSCC cell proliferation and migration and upregulated cyclin D1, cyclin E, VEGF, pro‐MMP1 and pro‐MMP2 expression, which were impeded by the C3aR antagonist. Moreover, the expression of stemness factors Sox‐2, Nanog, Oct‐4, c‐Myc and CD‐44 was stimulated by C3a and slowed by C3aR disruption. Knockdown of Sox‐2 by siRNA transfection suppressed cell proliferation and migration, constrained VEGF secretion and inhibited pro‐MMP1 and pro‐MMP2 expression. C3a also activated the Wnt and β‐catenin pathway in cSCC cells. Disruption of C3aR expression dampened tumour growth and the expression of Wnt‐1, β‐catenin and Sox‐2 in the xenograft model. Conclusions C3a enhanced cell proliferation, migration and stemness in cSCC, and this activity was correlated with activation of the Wnt and β‐catenin pathway.
Collapse
Affiliation(s)
- Zhuo Fan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Dermatology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jingjing Qin
- Department of Dermatology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Dandan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
24
|
Complement links platelets to innate immunity. Semin Immunol 2018; 37:43-52. [DOI: 10.1016/j.smim.2018.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
|
25
|
Sartain SE, Turner NA, Moake JL. Brain microvascular endothelial cells exhibit lower activation of the alternative complement pathway than glomerular microvascular endothelial cells. J Biol Chem 2018; 293:7195-7208. [PMID: 29555686 DOI: 10.1074/jbc.ra118.002639] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 12/20/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) and bone marrow transplantation-associated thrombotic microangiopathy (TA-TMA) are associated with excessive activation of the alternative complement pathway (AP) and with severe renal, but rarely cerebral, microvascular damage. Here, we compared AP activation and regulation in human glomerular and brain microvascular endothelial cells (GMVECs and BMVECs, respectively) unstimulated or stimulated by the proinflammatory cytokine, tumor necrosis factor (TNF). Compared with GMVECs and under both experimental conditions, BMVECs had increased gene expression of the AP-related genes C3, CFB, and C5 and decreased expression of CFD This was associated with increased expression in BMVECs (relative to GMVECs) of the genes for surface and soluble regulatory molecules (CD46, THBD, CD55, CFI, and CFH) suppressing formation of the AP C3 and C5 convertases. Of note, unlike GMVECs, BMVECs generated extremely low levels of C3a and C5a and displayed decreased activation of the AP (as measured by a lower percentage of Ba generation than GMVECs). Moreover, BMVECs exhibited increased function of CD141, mediating activation of the natural anticoagulant protein C, compared with GMVECs. We also found that the C3a receptor (C3aR) is present on both cell types and that TNF greatly increases C3AR1 expression in GMVECs, but only slightly in BMVECs. Higher AP activation and C3a generation in GMVECs than in BMVECs, coupled with an increase in C3aR production in TNF-stimulated GMVECs, provides a possible explanation for the predominance of renal damage, and the absence of cerebral injury, in individuals with episodes of aHUS and TA-TMA.
Collapse
Affiliation(s)
- Sarah E Sartain
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas 77030.
| | - Nancy A Turner
- Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Joel L Moake
- Department of Bioengineering, Rice University, Houston, Texas 77005
| |
Collapse
|
26
|
The Controversial C5a Receptor C5aR2: Its Role in Health and Disease. J Immunol Res 2017; 2017:8193932. [PMID: 28706957 PMCID: PMC5494583 DOI: 10.1155/2017/8193932] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/11/2017] [Indexed: 01/24/2023] Open
Abstract
After the discovery of the C5a receptor C5aR1, C5aR2 is the second receptor found to bind C5a and its des-arginine form. As a heptahelical G protein-coupled receptor but devoid of the intracellular Gα signal, C5aR2 is special and confusing. Ramifications and controversies about C5aR2 are under debate since its identification, from putative ligands and cellular localization to intracellular signals and pathological roles in inflammation and immunity. The ruleless and even conflicting pro- or anti-inflammatory role of C5aR2 in animal models of diverse diseases makes one bewildered. This review summarizes reports on C5aR2, tries to clear up available evidence on these four controversial aspects, and delineates C5aR2 function(s). It also summarizes available toolboxes for C5aR2 study.
Collapse
|
27
|
Seilie ES, Bubeck Wardenburg J. Staphylococcus aureus pore-forming toxins: The interface of pathogen and host complexity. Semin Cell Dev Biol 2017; 72:101-116. [PMID: 28445785 DOI: 10.1016/j.semcdb.2017.04.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/22/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is a prominent human pathogen capable of infecting a variety of host species and tissue sites. This versatility stems from the pathogen's ability to secrete diverse host-damaging virulence factors. Among these factors, the S. aureus pore-forming toxins (PFTs) α-toxin and the bicomponent leukocidins, have garnered much attention for their ability to lyse cells at low concentrations and modulate disease severity. Although many of these toxins were discovered nearly a century ago, their host cell specificities have only been elucidated over the past five to six years, starting with the discovery of the eukaryotic receptor for α-toxin and rapidly followed by identification of the leukocidin receptors. The identification of these receptors has revealed the species- and cell type-specificity of toxin binding, and provided insight into non-lytic effects of PFT intoxication that contribute to disease pathogenesis.
Collapse
Affiliation(s)
- E Sachiko Seilie
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, United States; Department of Microbiology, The University of Chicago, Chicago, IL 60637, United States
| | | |
Collapse
|
28
|
Cheow ESH, Cheng WC, Lee CN, de Kleijn D, Sorokin V, Sze SK. Plasma-derived Extracellular Vesicles Contain Predictive Biomarkers and Potential Therapeutic Targets for Myocardial Ischemic (MI) Injury. Mol Cell Proteomics 2016; 15:2628-40. [PMID: 27234505 DOI: 10.1074/mcp.m115.055731] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 12/21/2022] Open
Abstract
Myocardial infarction (MI) triggers a potent inflammatory response via the release of circulatory mediators, including extracellular vesicles (EVs) by damaged cardiac cells, necessary for myocardial healing. Timely repression of inflammatory response are critical to prevent and minimize cardiac tissue injuries, nonetheless, progression in this aspect remains challenging. The ability of EVs to trigger a functional response upon delivery of carried bioactive cargos, have made them clinically attractive diagnostic biomarkers and vectors for therapeutic interventions. Using label-free quantitative proteomics approach, we compared the protein cargo of plasma EVs between patients with MI and from patients with stable angina (NMI). We report, for the first time, the proteomics profiling on 252 EV proteins that were modulated with >1.2-fold after MI. We identified six up-regulated biomarkers with potential for clinical applications; these reflected post-infarct pathways of complement activation (Complement C1q subcomponent subunit A (C1QA), 3.23-fold change, p = 0.012; Complement C5 (C5), 1.27-fold change, p = 0.087), lipoprotein metabolism (Apoliporotein D (APOD), 1.86-fold change, p = 0.033; Apolipoprotein C-III (APOCC3), 2.63-fold change, p = 0.029) and platelet activation (Platelet glycoprotein Ib alpha chain (GP1BA), 9.18-fold change, p < 0.0001; Platelet basic protein (PPBP), 4.72-fold change, p = 0.027). The data have been deposited to the ProteomeXchange with identifier PXD002950. This novel biomarker panel was validated in 43 patients using antibody-based assays (C1QA (p = 0.005); C5 (p = 0.0047), APOD (p = 0.0267); APOC3 (p = 0.0064); GP1BA (p = 0.0031); PPBP (p = 0.0465)). We further present that EV-derived fibrinogen components were paradoxically down-regulated in MI, suggesting that a compensatory mechanism may suppress post-infarct coagulation pathways, indicating potential for therapeutic targeting of this mechanism in MI. Taken together, these data demonstrated that plasma EVs contain novel diagnostic biomarkers and therapeutic targets that can be further developed for clinical use to benefit patients with coronary artery diseases (CADs).
Collapse
Affiliation(s)
- Esther Sok Hwee Cheow
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Woo Chin Cheng
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228
| | - Chuen Neng Lee
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228; ¶National University Heart Centre, Department of Cardiac, Thoracic & Vascular Surgery, Singapore 119228; ‖Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Dominique de Kleijn
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228; **Experimental Cardiology Laboratory, Cardiology, University Medical Center Utrecht, the Netherlands & Interuniversity Cardiovascular Institute of the Netherlands, Utrecht, the Netherlands
| | - Vitaly Sorokin
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228; ¶National University Heart Centre, Department of Cardiac, Thoracic & Vascular Surgery, Singapore 119228
| | - Siu Kwan Sze
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551;
| |
Collapse
|
29
|
Nording H, Giesser A, Patzelt J, Sauter R, Emschermann F, Stellos K, Gawaz M, Langer HF. Platelet bound oxLDL shows an inverse correlation with plasma anaphylatoxin C5a in patients with coronary artery disease. Platelets 2016; 27:593-597. [DOI: 10.3109/09537104.2016.1148807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Henry Nording
- Department of Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Annika Giesser
- Department of Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Johannes Patzelt
- Department of Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Reinhard Sauter
- Department of Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Frederic Emschermann
- Department of Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Konstantinos Stellos
- Department of Cardiology, Centre of Internal Medicine, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Harald F. Langer
- Department of Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Rittirsch D, Schoenborn V, Lindig S, Wanner E, Sprengel K, Günkel S, Schaarschmidt B, Märsmann S, Simmen HP, Cinelli P, Bauer M, Claus RA, Wanner GA. Improvement of prognostic performance in severely injured patients by integrated clinico-transcriptomics: a translational approach. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:414. [PMID: 26607226 PMCID: PMC4660831 DOI: 10.1186/s13054-015-1127-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/04/2015] [Indexed: 01/31/2023]
Abstract
Introduction Severe trauma triggers a systemic inflammatory response that contributes to secondary complications, such as nosocomial infections, sepsis or multi-organ failure. The present study was aimed to identify markers predicting complications and an adverse outcome of severely injured patients by an integrated clinico-transcriptomic approach. Methods In a prospective study, RNA samples from circulating leukocytes from severely injured patients (injury severity score ≥ 17 points; n = 104) admitted to a Level I Trauma Center were analyzed for dynamic changes in gene expression over a period of 21 days by quantitative RT-PCR. Transcriptomic candidates were selected based on whole genome screening of a representative discovery set (n = 10 patients) or known mechanisms of the immune response, including mediators of inflammation (IL-8, IL-10, TNF-α, MIF, C5, CD59, SPHK1), danger signaling (HMGB1, TLR2, CD14, IL-33, IL-1RL1), and components of the heme degradation pathway (HP, CD163, HMOX1, BLVRA, BLVRB). Clinical markers comprised standard physiological and laboratory parameters and scoring systems routinely determined in trauma patients. Results Leukocytes, thrombocytes and the expression of sphingosine kinase-1 (SPHK1), complement C5, and haptoglobin (HP) have been identified as markers with the best performance. Leukocytes showed a biphasic course with peaks on day 0 and day 11 after trauma, and patients with sepsis exhibited significantly higher leukocyte levels. Thrombocyte numbers showed a typical profile with initial thrombopenia and robust thrombocytosis in week 3 after trauma, ranging 2- to 3-fold above the upper normal value. ‘Relative thrombocytopenia’ was associated with multi-organ dysfunction, the development of sepsis, and mortality, the latter of which could be predicted within 3 days prior to the time point of death. SPHK1 expression at the day of admission indicated mortality with excellent performance. C5-expression on day 1 after trauma correlated with an increased risk for the development of nosocomial infections during the later course, while HP was found to be a marker for the development of sepsis. Conclusions The combination of clinical and transcriptomic markers improves the prognostic performance and may represent a useful tool for individual risk stratification in trauma patients. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-1127-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Rittirsch
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Veit Schoenborn
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Sandro Lindig
- Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany.
| | - Elisabeth Wanner
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Kai Sprengel
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Sebastian Günkel
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Barbara Schaarschmidt
- Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany.
| | - Sonja Märsmann
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Hans-Peter Simmen
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Paolo Cinelli
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Michael Bauer
- Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany.
| | - Ralf A Claus
- Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany.
| | - Guido A Wanner
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| |
Collapse
|
31
|
Speth C, Rambach G, Würzner R, Lass-Flörl C, Kozarcanin H, Hamad OA, Nilsson B, Ekdahl KN. Complement and platelets: Mutual interference in the immune network. Mol Immunol 2015; 67:108-18. [DOI: 10.1016/j.molimm.2015.03.244] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
|
32
|
Vlaicu SI, Tatomir A, Rus V, Mekala AP, Mircea PA, Niculescu F, Rus H. The role of complement activation in atherogenesis: the first 40 years. Immunol Res 2015; 64:1-13. [DOI: 10.1007/s12026-015-8669-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Hovland A, Jonasson L, Garred P, Yndestad A, Aukrust P, Lappegård KT, Espevik T, Mollnes TE. The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis. Atherosclerosis 2015; 241:480-94. [PMID: 26086357 DOI: 10.1016/j.atherosclerosis.2015.05.038] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/08/2015] [Accepted: 05/29/2015] [Indexed: 02/08/2023]
Abstract
Despite recent medical advances, atherosclerosis is a global burden accounting for numerous deaths and hospital admissions. Immune-mediated inflammation is a major component of the atherosclerotic process, but earlier research focus on adaptive immunity has gradually switched towards the role of innate immunity. The complement system and toll-like receptors (TLRs), and the crosstalk between them, may be of particular interest both with respect to pathogenesis and as therapeutic targets in atherosclerosis. Animal studies indicate that inhibition of C3a and C5a reduces atherosclerosis. In humans modified LDL-cholesterol activate complement and TLRs leading to downstream inflammation, and histopathological studies indicate that the innate immune system is present in atherosclerotic lesions. Moreover, clinical studies have demonstrated that both complement and TLRs are upregulated in atherosclerotic diseases, although interventional trials have this far been disappointing. However, based on recent research showing an intimate interplay between complement and TLRs we propose a model in which combined inhibition of both complement and TLRs may represent a potent anti-inflammatory therapeutic approach to reduce atherosclerosis.
Collapse
Affiliation(s)
- Anders Hovland
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, 8092 Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway.
| | - Lena Jonasson
- Department of Medical and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631 Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Arne Yndestad
- Research Institute of Internal Medicine and Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine and Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Knut T Lappegård
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, 8092 Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway
| | - Terje Espevik
- Norwegian University of Science and Technology, Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, 7491 Trondheim, Norway
| | - Tom E Mollnes
- Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway; Norwegian University of Science and Technology, Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, 7491 Trondheim, Norway; Research Laboratory, Nordland Hospital, 8092 Bodø, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, 0372 Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9019 Tromsø, Norway
| |
Collapse
|
34
|
Abstract
Throughout evolution, organisms have developed means to contain wounds by simultaneously limiting bleeding and eliminating pathogens and damaged host cells via the recruitment of innate defense mechanisms. Disease emerges when there is unchecked activation of innate immune and/or coagulation responses. A key component of innate immunity is the complement system. Concurrent excess activation of coagulation and complement - two major blood-borne proteolytic pathways - is evident in numerous diseases, including atherosclerosis, diabetes, venous thromboembolic disease, thrombotic microangiopathies, arthritis, cancer, and infectious diseases. Delineating the cross-talk between these two cascades will uncover novel therapeutic insights.
Collapse
Affiliation(s)
- E M Conway
- Centre for Blood Research, Life Sciences Institute, Division of Hematology, Department of Medicine, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
35
|
Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol 2015; 6:98. [PMID: 25798138 PMCID: PMC4351644 DOI: 10.3389/fimmu.2015.00098] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022] Open
Abstract
Platelets contribute to processes beyond thrombus formation and may play a so far underestimated role as an immune cell in various circumstances. This review outlines immune functions of platelets in host defense, but also how they may contribute to mechanisms of infectious diseases. A particular emphasis is placed on the interaction of platelets with other immune cells. Furthermore, this article outlines the features of atherosclerosis as an inflammatory vascular disease highlighting the role of platelet crosstalk with cellular and soluble factors involved in atheroprogression. Understanding, how platelets influence these processes of vascular remodeling will shed light on their role for tissue homeostasis beyond intravascular thrombosis. Finally, translational implications of platelet-mediated inflammation in atherosclerosis are discussed.
Collapse
Affiliation(s)
- Henry M. Nording
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Peter Seizer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Harald F. Langer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Patzelt J, Verschoor A, Langer HF. Platelets and the complement cascade in atherosclerosis. Front Physiol 2015; 6:49. [PMID: 25784879 PMCID: PMC4345806 DOI: 10.3389/fphys.2015.00049] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/04/2015] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis and its late sequels are still the number one cause of death in western societies. Platelets are a driving force not only during the genesis of atherosclerosis, but especially in its late stages, as evidenced by complications such as arterial thrombosis, myocardial infarction, and ischemic stroke. Atherosclerosis is increasingly recognized as an inflammatory disease, influenced by various immune mechanisms. The complement system is part of our innate immune system, and its diverse roles in atherosclerosis have become evident over the past years. In this review we identify points of intersection between platelets and the complement system and discuss their relevance for atherosclerosis. Specifically, we will focus on roles for platelets in the onset as well as progression of the disease, a possible dual role for complement in the genesis and development of atherosclerosis, and review emerging literature revealing previously unrecognized cross-talk between platelets and the complement system and discuss its possible impact for atherosclerosis. Finally, we identify limitations of current research approaches and discuss perspectives of complement modulation in the control of the disease.
Collapse
Affiliation(s)
- Johannes Patzelt
- University Clinic for Cardiovascular Medicine, University of Tuebingen Tuebingen, Germany
| | - Admar Verschoor
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München Munich, Germany
| | - Harald F Langer
- University Clinic for Cardiovascular Medicine, University of Tuebingen Tuebingen, Germany ; Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen Tuebingen, Germany
| |
Collapse
|