1
|
Niroshika KKH, Weerakoon K, Molagoda IMN, Samarakoon KW, Weerakoon HT, Jayasooriya RGPT. Exploring the dynamic role of circulating soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as a diagnostic and prognostic marker; a review. Biochem Biophys Res Commun 2025; 751:151415. [PMID: 39923464 DOI: 10.1016/j.bbrc.2025.151415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) is a TNF superfamily cytokine primarily acknowledged for its ability to selectively induce apoptosis in cancer cells. Beyond its antitumor effects, recent literature emphasizes the pleiotropic functions of TRAIL in physiological states and acute/chronic non-malignant diseases indicating its potential to be a breakthrough in diagnostics. This review explores the current understanding of the dynamic role of circulating soluble TRAIL (sTRAIL) and its potential as both a diagnostic and prognostic marker. Multiple in vitro, in vivo, and clinical studies in a wide range of neoplastic and non-neoplastic diseases including infectious diseases have been carried out to explore the potential role of sTRAIL in disease pathogenesis and as well as the possibilities of using it as a diagnostic and prognostic marker. The expression of sTRAIL seems to be context-dependent suggesting further research, particularly towards establishing disease-specific cutoff values. However, the lack of standardization in the serum sTRAIL estimation and the absence of reference intervals remain significant barriers to its clinical application. Addressing these challenges is essential for using circulating sTRAIL as an accurate diagnostic and prognostic marker in clinical practice.
Collapse
Affiliation(s)
- K K H Niroshika
- Faculty of Graduate Studies, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka; Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - K Weerakoon
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - I M N Molagoda
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - K W Samarakoon
- Institute for Combinatorial Advanced Research and Education, General Sir John Kotelawala Defense University, Ratmalana, Sri Lanka
| | - H T Weerakoon
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka.
| | - R G P T Jayasooriya
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka.
| |
Collapse
|
2
|
Li Z, Miao L, Zhang T, Thomas AM, Li S. Causal relationship of inflammatory cytokines and serum metabolites in cerebral small vessel disease: a two-step Mendelian randomization study. Eur J Neurol 2024; 31:e16443. [PMID: 39150083 PMCID: PMC11555141 DOI: 10.1111/ene.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND PURPOSE The aim was to investigate the causal relationships of inflammatory cytokines and serum metabolites in cerebral small vessel disease (CSVD). METHODS Bidirectional Mendelian randomization was first conducted to screen inflammatory cytokines and serum metabolites that were associated with imaging features of CSVD, including white matter hyperintensities, recent small subcortical infarcts, cortical cerebral microinfarcts, cerebral microbleeds, lacunes and enlarged perivascular spaces. Sensitivity analyses were performed to evaluate the robustness and pleiotropy of these results. Subsequently, inflammatory cytokines and serum metabolites that were associated with CSVD were subjected to functional enrichment. Finally, mediation analysis was employed to investigate whether inflammatory cytokines or serum metabolites acted as an intermediary for the other in their causal relationship with CSVD. RESULTS Of the inflammatory cytokines, five were risk factors (e.g., tumour-necrosis-factor-related apoptosis-inducing ligand) and five (e.g., fibroblast growth factor 19) were protective factors for CSVD. Eleven serum metabolites that increased CSVD risk and 13 metabolites that decreased CSVD risk were also identified. The majority of these markers of CSVD susceptibility were lipid metabolites. Natural killer cell receptor sub-type 2B4 was determined to act as a mediating factor of an unidentified metabolite for the enlargement of perivascular spaces. CONCLUSION Several inflammatory cytokines and serum metabolites had causal relationships with imaging features of CSVD. A natural killer cell receptor mediated in part the promotional effect of a metabolite on perivascular space enlargement.
Collapse
Affiliation(s)
- Zidong Li
- Department of Neurology and Psychiatry, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Lu Miao
- Shanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Tianyi Zhang
- School of Basic Medical SciencesShandong UniversityJinanChina
| | - Aline M. Thomas
- Russell H. Morgan Department of Radiology and Radiological SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
He Y, Zhu S, Zhang Y, Tan CP, Zhang J, Liu Y, Xu YJ. Effect of coffee, tea and alcohol intake on circulating inflammatory cytokines: a two sample-Mendelian randomization study. Eur J Clin Nutr 2024; 78:622-629. [PMID: 38609641 DOI: 10.1038/s41430-024-01438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Despite the abundance of research examining the effects of coffee, tea, and alcohol on inflammatory diseases, there is a notable absence of conclusive evidence regarding their direct causal influence on circulating inflammatory cytokines. Previous studies have primarily concentrated on established cytokines, neglecting the potential impact of beverage consumption on lesser-studied but equally important cytokines. METHODS Information regarding the consumption of coffee, tea, and alcohol was collected from the UK Biobank, with sample sizes of 428,860, 447,485, and 462,346 individuals, respectively. Data on 41 inflammatory cytokines were obtained from summary statistics of 8293 healthy participants from Finnish cohorts. RESULTS The consumption of coffee was found to be potentially associated with decreased levels of Macrophage colony-stimulating factor (β = -0.57, 95% CI -1.06 ~ -0.08; p = 0.022) and Stem cell growth factor beta (β = -0.64, 95% CI -1.16 ~ -0.12; p = 0.016), as well as an increase in TNF-related apoptosis-inducing ligand (β = 0.43, 95% CI 0.06 ~ 0.8; p = 0.023) levels. Conversely, tea intake was potentially correlated with a reduction in Interleukin-8 (β = -0.45, 95% CI -0.9 ~ 0; p = 0.045) levels. Moreover, our results indicated an association between alcohol consumption and decreased levels of Regulated on Activation, Normal T Cell Expressed and Secreted (β = -0.24, 95% CI -0.48 ~ 0; p = 0.047), as well as an increase in Stem cell factor (β = 0.17, 95% CI 0.02 ~ 0.31; p = 0.023) and Stromal cell-derived factor-1 alpha (β = 0.20, 95% CI 0.04 ~ 0.36; p = 0.013). CONCLUSION Revealing the interactions between beverage consumption and various inflammatory cytokines may lead to the discovery of novel therapeutic targets, thereby facilitating dietary interventions to complement clinical disease treatments.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shuang Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Seri Kembangan, Selangor, 410500, Malaysia
| | - Jianbin Zhang
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
4
|
Kuang N, Shu B, Yang F, Li S, Zhang M. TRAIL or TRAIL-R2 as a Predictive Biomarker for Mortality or Cardiovascular Events: A Systematic Review and Meta-analysis. J Cardiovasc Pharmacol 2023; 81:348-354. [PMID: 36888983 DOI: 10.1097/fjc.0000000000001415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/10/2023] [Indexed: 03/10/2023]
Abstract
ABSTRACT Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL-receptor-2 (TRAIL-R2) are associated with atherosclerosis. This meta-analysis aimed to investigate the potential association between TRAIL/TRAIL-R2 with mortality or cardiovascular (CV) events. PubMed, Embase, and Cochrane Library were searched for reports published up to May 2021. Reports were included when the association between TRAIL or TRAIL-R2 and mortality or CV events was reported. Considering the heterogeneity between studies, we used the random-effects model for all analyses. Ultimately, the meta-analysis included 18 studies (16,295 patients). The average follow-up ranged from 0.25 to 10 years. Decreased TRAIL levels were negatively associated with all-cause mortality [rank variable, hazard ratio (HR), 95% CI, 2.93, 1.94-4.42; I2 = 0.0%, Pheterogeneity = 0.835]. Increased TRAIL-R2 levels were positively associated with all-cause mortality (continuous variable, HR, 95% CI, 1.43, 1.23-1.65; I2 = 0.0%, Pheterogeneity = 0.548; rank variable, HR, 95% CI, 7.08, 2.70-18.56; I2 = 46.5%, Pheterogeneity = 0.154), CV mortality (continuous variable, HR, 95% CI, 1.33, 1.14-1.57; I2 = 0.0%, Pheterogeneity = 0.435), myocardial infarction (continuous variable, HR, 95% CI, 1.23, 1.02-1.49; rank variable, HR, 95% CI, 1.49, 1.26-1.76; I2 = 0.7%, Pheterogeneity = 0.402), and new-onset heart failure (rank variable, HR, 95% CI, 3.23, 1.32-7.87; I2 = 83.0%, Pheterogeneity = 0.003). In conclusion, decreased TRAIL was negatively associated with all-cause mortality, and increased TRAIL-R2 was positively associated with all-cause mortality, CV mortality, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
- Na Kuang
- Department of Cardiology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | | | | | | | | |
Collapse
|
5
|
Kelland E, Patil MS, Patel S, Cartland SP, Kavurma MM. The Prognostic, Diagnostic, and Therapeutic Potential of TRAIL Signalling in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24076725. [PMID: 37047698 PMCID: PMC10095395 DOI: 10.3390/ijms24076725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) was originally discovered, almost 20 years ago, for its ability to kill cancer cells. More recent evidence has described pleiotropic functions, particularly in the cardiovascular system. There is potential for TRAIL concentrations in the circulation to act as prognostic and/or diagnostic factors for cardiovascular diseases (CVD). Pre-clinical studies also describe the therapeutic capacity for TRAIL signals, particularly in the context of atherosclerotic disease and diseases of the myocardium. Because diabetes mellitus significantly contributes to the progression and pathogenesis of CVDs, in this review we highlight recent evidence for the prognostic, diagnostic, and therapeutic potential of TRAIL signals in CVDs, and where relevant, the impact of diabetes mellitus. A greater understanding of how TRAIL signals regulate cardiovascular protection and pathology may offer new diagnostic and therapeutic avenues for patients suffering from CVDs.
Collapse
Affiliation(s)
- Elaina Kelland
- Heart Research Institute, The University of Sydney, Sydney 2042, Australia
| | - Manisha S. Patil
- Heart Research Institute, The University of Sydney, Sydney 2042, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney 2042, Australia
- Royal Prince Alfred Hospital, Sydney 2006, Australia
| | - Siân P. Cartland
- Heart Research Institute, The University of Sydney, Sydney 2042, Australia
| | - Mary M. Kavurma
- Heart Research Institute, The University of Sydney, Sydney 2042, Australia
| |
Collapse
|
6
|
Tian Y, Niu HT, Li MH, Wang YZ. Effect of VEGF on neurological impairment and prognosis of acute cerebral infarction patients: A retrospective case-control study. Medicine (Baltimore) 2023; 102:e29835. [PMID: 36820574 PMCID: PMC9907990 DOI: 10.1097/md.0000000000029835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
OBJECTIVE Due to the complex pathological mechanism of acute cerebral infarction, the role of vascular endothelial growth factor (VEGF) on the disease is not clear. Therefore, a retrospective case-control study was performed to explore the effect of VEGF on neurological impairment and prognosis of acute cerebral infarction patients. METHOD A total of 100 patients with acute cerebral infarction admitted to our hospital from April 2021 to April 2022 were selected. Blood samples from all patients would be routinely collected to detect the expression of serum VEGF. Pearson chi-square, Spearman correlation and univariate Logistic regression were used to analyze the clinical data to explore the relationship between VEGF expression and basic information, stroke degree, quality of life, and prognosis of patients. To determine whether VEGF can provide relevant basis for the early prevention and prognostic treatment of acute cerebral infarction. And multivariate logistic regression was used to calculate the odds ratio between each variable and VEGF expression. RESULTS Pearson chi-square test and Spearman correlation coefficient showed that sex, degree of stroke, limb convulsions, loss of consciousness, hemiplegia, aphasia, mental functioning score, overall quality of life score, and short-term prognosis were significantly correlated with VEGF expression in 100 patients. Univariate logistic regression was used to describe the ORs and 95% confidence interval of subjects at the univariate level, and the degree of stroke (OR = 83.333, P < 0.001), tic of limbs (OR = 26.316, P < 0.001), loss of consciousness (OR = 23.256, P < 0.001), hemiplegia (OR = 62.500, P < 0.001), aphasia (OR = 76.923, P < 0.001), mental functioning score (OR = 7.937, P < 0.001), overall quality of life score (OR = 5.464, P < 0.001), short-term prognosis (OR = 37.037, P < 0.001) was significantly correlated with the high expression of VEGF. CONCLUSIONS The level of serum VEGF was positively correlated with neurological impairment degree and prognosis in patients with acute cerebral infarction, the more severe the degree of stroke and the worse the prognosis.
Collapse
Affiliation(s)
- Yong Tian
- Department of neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei province, P.R. China
- * Correspondence: Yong Tian, Department of neurosurgery, Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou, Hebei 061000, P.R. China (e-mail: )
| | - Hai-Tao Niu
- Department of neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei province, P.R. China
| | - Ming-Hang Li
- Department of neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei province, P.R. China
| | - Yang-Zhou Wang
- Department of neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei province, P.R. China
| |
Collapse
|
7
|
Ren P, Wang JY, Chen HL, Lin XW, Zhao YQ, Guo WZ, Zeng ZR, Li YF. Diagnostic model constructed by nine inflammation-related genes for diagnosing ischemic stroke and reflecting the condition of immune-related cells. Front Immunol 2022; 13:1046966. [PMID: 36582228 PMCID: PMC9792959 DOI: 10.3389/fimmu.2022.1046966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Background Ischemic cerebral infarction is the most common type of stroke with high rates of mortality, disability, and recurrence. However, the known diagnostic biomarkers and therapeutic targets for ischemic stroke (IS) are limited. In the current study, we aimed to identify novel inflammation-related biomarkers for IS using machine learning analysis and to explore their relationship with the levels of immune-related cells in whole blood samples. Methods Gene expression profiles of healthy controls and patients with IS were download from the Gene Expression Omnibus. Analysis of differentially expressed genes (DEGs) was performed in healthy controls and patients with IS. Single-sample gene set enrichment analysis was performed to calculate inflammation scores, and weighted gene co-expression network analysis was used to analyze genes in significant modules associated with inflammation scores. Key DEGs in significant modules were then analyzed using LASSO regression analysis for constructing a diagnostic model. The effectiveness and specificity of the diagnostic model was verified in healthy controls and patients with IS and with cerebral hemorrhage (CH) using qRT-PCR. The relationship between diagnostic score and the levels of immune-related cells in whole blood were analyzed using Pearson correlations. Results A total of 831 DEGs were identified. Both chronic and acute inflammation scores were higher in patients with IS, while 54 DEGs were also clustered in the gene modules associated with chronic and acute inflammation scores. Among them, a total of 9 genes were selected to construct a diagnostic model. Interestingly, RT-qPCR showed that the diagnostic model had better diagnostic value for IS but not for CH. The levels of lymphocytes were lower in blood of patients with IS, while the levels of monocytes and neutrophils were increased. The diagnostic score of the model was negatively associated with the levels of lymphocytes and positively associated with levels of monocytes and neutrophils. Conclusions Taken together, the diagnostic model constructed using the inflammation-related genes TNFSF10, ID1, PAQR8, OSR2, PDK4, PEX11B, TNIP1, FFAR2, and JUN exhibited high and specific diagnostic value for IS and reflected the condition of lymphocytes, monocytes, and neutrophils in the blood. The diagnostic model may contribute to the diagnosis of IS.
Collapse
Affiliation(s)
- Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China,Department of Anesthesiology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hong-Lei Chen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiao-Wan Lin
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yong-Qi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China,*Correspondence: Yun-Feng Li, ; Zhi-Rui Zeng, ; Wen-Zhi Guo, ; Yong-Qi Zhao,
| | - Wen-Zhi Guo
- Department of Anesthesiology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Yun-Feng Li, ; Zhi-Rui Zeng, ; Wen-Zhi Guo, ; Yong-Qi Zhao,
| | - Zhi-Rui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China,*Correspondence: Yun-Feng Li, ; Zhi-Rui Zeng, ; Wen-Zhi Guo, ; Yong-Qi Zhao,
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China,Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China,*Correspondence: Yun-Feng Li, ; Zhi-Rui Zeng, ; Wen-Zhi Guo, ; Yong-Qi Zhao,
| |
Collapse
|
8
|
Plasma Neurofilament Light Chain Is Associated with Cognitive Impairment after Posterior Circulation Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2466982. [PMID: 35800005 PMCID: PMC9256396 DOI: 10.1155/2022/2466982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/28/2022] [Indexed: 12/03/2022]
Abstract
Background Neurofilament light chain (NfL) is a biomarker for large-caliber axonal degeneration in the subcortex. The purpose of this research was to examine the relationship between plasma neurofilament light chain (pNfL) and cognitive impairment following a posterior circulation stroke. Methods Patients over the age of 18 with their first-ever acute ischemic stroke (AIS) of the posterior cerebral circulation within 24 h of symptom onset were included from July 1, 2017, to December 31, 2019. Blood samples were collected within 48 h after the stroke. The Montreal Cognitive Assessment (MOCA) (MOCA < 26) was adopted to define poststroke cognitive impairment (PSCI) 90 days after stroke onset. Results A total of 264 patients were analyzed in this research 101 (38.30%) patients were clinically diagnosed with PSCI. The PNfL concentration was significantly higher in the PSCI group compared with the non-PSCI group (p < 0.001). The pNfL concentration (OR 1.044; p < 0.001) remained to be a significant predictor for PSCI after a multivariable logistic regression analysis, even after adjusting for factors including age, sex, education background (OR 1.044; p < 0.001), baseline NIHSS, infarct volume, and TOAST classification (OR 1.035; p < 0.001). The diagnostic efficacy of pNfL concentration for PSCI was then explored with a ROC analysis. The optimum pNfL concentration threshold was 38.12 pg/ml, with a sensitivity of 78.20%, a specificity of 66.9%, and an AUC of 0.782 (p < 0.001). Conclusion This research showed that pNfL concentration, independent of established conventional risk factors, could predict the cognitive impairment in 90 days following posterior circulation stroke.
Collapse
|
9
|
Stanne TM, Angerfors A, Andersson B, Brännmark C, Holmegaard L, Jern C. Longitudinal Study Reveals Long-Term Proinflammatory Proteomic Signature After Ischemic Stroke Across Subtypes. Stroke 2022; 53:2847-2858. [PMID: 35686557 PMCID: PMC9389938 DOI: 10.1161/strokeaha.121.038349] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inflammation contributes both to the pathogenesis of stroke and the response to brain injury. We aimed to identify proteins reflecting the acute-phase response and proteins more likely to reflect proinflammatory processes present before stroke by broadly profiling inflammation-related plasma proteins in a longitudinal ischemic stroke study.
Collapse
Affiliation(s)
- Tara M Stanne
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Sweden (T.M.S., A.A., C.B., C.J.)
| | - Annelie Angerfors
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Sweden (T.M.S., A.A., C.B., C.J.)
| | - Björn Andersson
- Bioinformatics Core Facility, University of Gothenburg, Sweden (B.A.)
| | - Cecilia Brännmark
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Sweden (T.M.S., A.A., C.B., C.J.)
| | - Lukas Holmegaard
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, the Sahlgrenska Academy, University of Gothenburg, Sweden (L.H.).,Department of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden. (L.H.)
| | - Christina Jern
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Sweden (T.M.S., A.A., C.B., C.J.).,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden. (C.J.)
| |
Collapse
|
10
|
Mihalovic M, Mikulenka P, Línková H, Neuberg M, Štětkářová I, Peisker T, Lauer D, Tousek P. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) in Patients after Acute Stroke: Relation to Stroke Severity, Myocardial Injury, and Impact on Prognosis. J Clin Med 2022; 11:jcm11092552. [PMID: 35566677 PMCID: PMC9103556 DOI: 10.3390/jcm11092552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to be associated with poor prognosis after cardiovascular events. We aimed to assess the dynamic changes in TRAIL levels and the relation of TRAIL level to stroke severity, its impact on the short-term outcomes, and its association with markers of cardiac injury in patients after acute stroke. Methods: Between August 2020 and August 2021, 120 consecutive patients, 104 after acute ischemic stroke (AIS), 76 receiving reperfusion therapy, and 16 patients after intracerebral hemorrhage (ICH) were enrolled in our study. Blood samples were obtained from patients at the time of admission, 24 h later, and 48 h later to determine the plasma level of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), N-terminal prohormone of brain natriuretic peptide (NT-proBNP), and high-sensitive Troponin I (hs-TnI). Twelve-lead ECGs were obtained at the time of admission, 24 h later, 48 h later, and at the release of the patients. Evaluations were performed using the National Institutes of Health Stroke Scale (NIHSS) at the time of admission and using the modified Rankin Scale (mRS) 90 days following the patient’s discharge from the hospital. Results: We observed a connection between lower TRAIL levels and stroke severity evaluated using the NIHSS (p = 0.044) on the first day. Lower TRAIL showed an association with severe disability and death as evaluated using the mRS at 90 days, both after 24 (p = 0.0022) and 48 h (p = 0.044) of hospitalization. Moreover, we observed an association between lower TRAIL and NT-proBNP elevation at the time of admission (p = 0.039), after 24 (p = 0.043), and after 48 h (p = 0.023) of hospitalization. In the ECG analysis, lower TRAIL levels were associated with the occurrence of premature ventricular extrasystoles (p = 0.043), and there was an association with prolonged QTc interval (p = 0.052). Conclusions: The results show that lower TRAIL is associated with stroke severity, unfavorable functional outcome, and short-term mortality in patients after acute ischemic stroke. Moreover, we described the association with markers of cardiac injury and ECG changes.
Collapse
Affiliation(s)
- Michal Mihalovic
- Cardiocenter, Third Faculty of Medicine, Charles University, 100 34 Prague, Czech Republic
| | - Petr Mikulenka
- Department of Neurology, Third Faculty of Medicine, University Hospital Kralovske Vinohrady, Charles University, 100 34 Prague, Czech Republic
| | - Hana Línková
- Cardiocenter, Third Faculty of Medicine, Charles University, 100 34 Prague, Czech Republic
| | - Marek Neuberg
- Medtronic Czechia, Partner of INTERCARDIS Project, 190 00 Prague, Czech Republic
| | - Ivana Štětkářová
- Department of Neurology, Third Faculty of Medicine, University Hospital Kralovske Vinohrady, Charles University, 100 34 Prague, Czech Republic
| | - Tomáš Peisker
- Department of Neurology, Third Faculty of Medicine, University Hospital Kralovske Vinohrady, Charles University, 100 34 Prague, Czech Republic
| | - David Lauer
- Department of Neurology, Third Faculty of Medicine, University Hospital Kralovske Vinohrady, Charles University, 100 34 Prague, Czech Republic
| | - Petr Tousek
- Cardiocenter, Third Faculty of Medicine, Charles University, 100 34 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
11
|
The effectiveness of serum S100B, TRAIL, and adropin levels in predicting clinical outcome, final infarct core, and stroke subtypes of acute ischemic stroke patients. BIOMÉDICA 2022; 42:55-63. [PMID: 35866730 PMCID: PMC9424101 DOI: 10.7705/biomedica.5943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 11/21/2022]
Abstract
Introduction: More than half of all worldwide deaths and disabilities were caused by stroke. Large artery atherosclerosis is identified as a high etiological risk factor because it accounts for 20% of ischemic stroke. Objectives: To identify the significance of TRAIL and adropin release and the relative changes related to S100B levels, as well as the relationship between these biomarkers and the final infarct core, the clinical outcome, and the presence of large artery atherosclerosis in acute stroke patients. Materials and methods: Over a one-year period, demographic, clinical, and neuroimaging findings of 90 consecutive patients with acute ischemic stroke were evaluated. Results: The mean age of participants was 69.28 ± 10 and 39 patients were female. The increased level of S100B and the decreased levels of sTRAIL with adropin were significantly associated with moderate to severe neurologic presentation (p=0.0001, p=0.002, p=0.002, respectively). On the control CT, a large infarct core was significantly associated with decreased serum levels of sTRAIL and adropin (p=0.001 and p=0.000, respectively); however, the levels of S100B were not significantly associated with good ASPECTS score (p=0.684). Disability and an unfavorable outcome were significantly related to the decreased level of sTRAIL and adropin (p=0.001 and p=0.000 for THRIVE score>5, respectively). Decreased sTRAIL and adropin levels and an increased S100B level were correlated with the presence of large artery atherosclerotic etiologic factors (p=0.000, p=0.000, p=0.036, respectively). Conclusion: TRAIL and adropin serum levels were associated with poor clinical outcomes and greater infarcted area in acute ischemic stroke patients.
Collapse
|
12
|
Koliaki C, Katsilambros N. Repositioning the Role of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) on the TRAIL to the Development of Diabetes Mellitus: An Update of Experimental and Clinical Evidence. Int J Mol Sci 2022; 23:ijms23063225. [PMID: 35328646 PMCID: PMC8949963 DOI: 10.3390/ijms23063225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF protein superfamily, represents a multifaceted cytokine with unique biological features including both proapoptotic and pro-survival effects in different cell types depending on receptor interactions and local stimuli. Beyond its extensively studied anti-tumor and immunomodulatory properties, a growing body of experimental and clinical evidence over the past two decades suggests a protective role of TRAIL in the development of type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. This evidence can be briefly summarized by the following observations: (i) acceleration and exacerbation of T1DM and T2DM by TRAIL blockade or genetic deficiency in animal models, (ii) prevention and amelioration of T1DM and T2DM with recombinant TRAIL treatment or systemic TRAIL gene delivery in animal models, (iii) significantly reduced circulating soluble TRAIL levels in patients with T1DM and T2DM both at disease onset and in more advanced stages of diabetes-related complications such as cardiovascular disease and diabetic nephropathy, (iv) increase of serum TRAIL levels in diabetic patients after initiation of antidiabetic treatment and metabolic improvement. To explore the underlying mechanisms and provide mechanistic links between TRAIL and diabetes, a number of animal and in vitro studies have reported direct effects of TRAIL on several tissues involved in diabetes pathophysiology such as pancreatic islets, skeletal muscle, adipose tissue, liver, kidney, and immune and vascular cells. Residual controversy remains regarding the effects of TRAIL on adipose tissue homeostasis. Although the existing evidence is encouraging and paves the way for investigating TRAIL-related interventions in diabetic patients with cardiometabolic abnormalities, caution is warranted in the extrapolation of animal and in vitro data to the clinical setting, and further research in humans is imperative in order to uncover all aspects of the TRAIL-diabetes relationship and delineate its therapeutic implications in metabolic disease.
Collapse
|
13
|
Prevention of Non-Cardiogenic Ischemic Stroke: Towards Personalized Stroke Care. Stroke 2021. [DOI: 10.36255/exonpublications.stroke.personalizedcare.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Kakareko K, Rydzewska-Rosołowska A, Zbroch E, Hryszko T. TRAIL and Cardiovascular Disease-A Risk Factor or Risk Marker: A Systematic Review. J Clin Med 2021; 10:jcm10061252. [PMID: 33803523 PMCID: PMC8002847 DOI: 10.3390/jcm10061252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic protein showing broad biological functions. Data from animal studies indicate that TRAIL may possibly contribute to the pathophysiology of cardiomyopathy, atherosclerosis, ischemic stroke and abdominal aortic aneurysm. It has been also suggested that TRAIL might be useful in cardiovascular risk stratification. This systematic review aimed to evaluate whether TRAIL is a risk factor or risk marker in cardiovascular diseases (CVDs) focusing on major adverse cardiovascular events. Two databases (PubMed and Cochrane Library) were searched until December 2020 without a year limit in accordance to the PRISMA guidelines. A total of 63 eligible original studies were identified and included in our systematic review. Studies suggest an important role of TRAIL in disorders such as heart failure, myocardial infarction, atrial fibrillation, ischemic stroke, peripheral artery disease, and pulmonary and gestational hypertension. Most evidence associates reduced TRAIL levels and increased TRAIL-R2 concentration with all-cause mortality in patients with CVDs. It is, however, unclear whether low TRAIL levels should be considered as a risk factor rather than a risk marker of CVDs. Further studies are needed to better define the association of TRAIL with cardiovascular diseases.
Collapse
Affiliation(s)
- Katarzyna Kakareko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; (A.R.-R.); (T.H.)
- Correspondence:
| | - Alicja Rydzewska-Rosołowska
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; (A.R.-R.); (T.H.)
| | - Edyta Zbroch
- Department of Internal Medicine and Hypertension, Medical University of Białystok, 15-276 Białystok, Poland;
| | - Tomasz Hryszko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; (A.R.-R.); (T.H.)
| |
Collapse
|
15
|
Gao S, Fang Y, Tu S, Chen H, Shao A. Insight into the divergent role of TRAIL in non-neoplastic neurological diseases. J Cell Mol Med 2020; 24:11070-11083. [PMID: 32827246 PMCID: PMC7576257 DOI: 10.1111/jcmm.15757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Tumour necrosis factor–related apoptosis‐inducing ligand (TRAIL) is a member of the tumour necrosis factor (TNF) superfamily which mainly induces apoptosis of tumour cells and transformed cell lines with no systemic toxicity, whereas they share high sequence homology with TNF and CD95L. These unique effects of TRAIL have made it an important molecule in oncology research. However, the research on TRAIL‐related antineoplastic agents has lagged behind and has been limited by the extensive drug resistance in cancer cells. Given the several findings showing that TRAIL is involved in immune regulation and other pleiotropic biological effects in non‐malignant cells, TRAIL and its receptors have attracted widespread attention from researchers. In the central nervous system (CNS), TRAIL is highly correlated with malignant tumours such as glioma and other non‐neoplastic disorders such as acute brain injury, CNS infection and neurodegenerative disease. Many clinical and animal studies have revealed the dual roles of TRAIL in which it causes damage by inducing cell apoptosis, and confers protection by enhancing both pro‐ and non‐apoptosis effects in different neurological disorders and at different sites or stages. Its pro‐apoptotic effect produces a pro‐survival effect that cannot be underestimated. This review extensively covers in vitro and in vivo experiments and clinical studies investigating TRAIL. It also provides a summary of the current knowledge on the TRAIL signalling pathway and its involvement in pathogenesis, diagnosis and therapeutics of CNS disorders as a basis for future research.
Collapse
Affiliation(s)
- Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huaijun Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Sargent L, Nalls M, Amella EJ, Slattum PW, Mueller M, Bandinelli S, Tian Q, Swift‐Scanlan T, Lageman SK, Singleton A. Shared mechanisms for cognitive impairment and physical frailty: A model for complex systems. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12027. [PMID: 32685657 PMCID: PMC7362211 DOI: 10.1002/trc2.12027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION We describe findings from a large study that provide empirical support for the emerging construct of cognitive frailty and put forth a theoretical framework that may advance the future study of complex aging conditions. While cognitive impairment and physical frailty have long been studied as separate constructs, recent studies suggest they share common etiologies. We aimed to create a population predictive model to gain an understanding of the underlying biological mechanisms for the relationship between physical frailty and cognitive impairment. METHODS Data were obtained from the longitudinal "Invecchaiare in Chianti" (Aging in Chianti, InCHIANTI Study) with a representative sample (n = 1453) of older adults from two small towns in Tuscany, Italy. Our previous work informed the candidate 132 single nucleotide polymorphisms (SNPs) and 155 protein biomarkers we tested in association with clinical outcomes using a tree boosting, machine learning (ML) technique for supervised learning analysis. RESULTS We developed two highly accurate predictive models, with a Model I area under the curve (AUC) of 0.88 (95% confidence interval [CI] 0.83-0.90) and a Model II AUC of 0.86 (95% CI 0.80-0.90). These models indicate cognitive frailty is driven by dysregulation across multiple cellular processes including genetic alterations, nutrient and lipid metabolism, and elevated levels of circulating pro-inflammatory proteins. DISCUSSION While our results establish a foundation for understanding the underlying biological mechanisms for the relationship between cognitive decline and physical frailty, further examination of the molecular pathways associated with our predictive biomarkers is warranted. Our framework is in alignment with other proposed biological underpinnings of Alzheimer's disease such as genetic alterations, immune system dysfunction, and neuroinflammation.
Collapse
Affiliation(s)
- Lana Sargent
- Laboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
- Virginia Commonwealth University School of NursingRichmondVirginiaUSA
- Medical University of South Carolina School of NursingCharlestonNorth CarolinaUSA
| | - Mike Nalls
- Laboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
- Data Tecnica InternationalGlen EchoMarylandUSA
| | - Elaine J. Amella
- Medical University of South Carolina School of NursingCharlestonNorth CarolinaUSA
| | - Patricia W. Slattum
- Department of Pharmacotherapy & Outcomes ScienceGeriatric Pharmacotherapy Program, School of PharmacyVirginia Commonwealth UniversityRichmondVAUSA
| | - Martina Mueller
- Medical University of South Carolina School of NursingCharlestonNorth CarolinaUSA
| | - Stefania Bandinelli
- Laboratory of Clinical EpidemiologyInCHIANTI Study GroupLocal Health Unit Tuscany CenterFlorenceItaly
| | - Qu Tian
- Longitudinal Studies SectionTranslational Gerontology BranchNational Institute on AgingBaltimoreMarylandUSA
| | | | - Sarah K. Lageman
- Department of NeurologyVirginia Commonwealth School of MedicineRichmondVirginiaUSA
| | - Andrew Singleton
- Laboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
17
|
Peng T, Jiang Y, Farhan M, Lazarovici P, Chen L, Zheng W. Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy. Front Pharmacol 2019; 10:204. [PMID: 30930774 PMCID: PMC6423897 DOI: 10.3389/fphar.2019.00204] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Acquired brain ischemia-and reperfusion-injury (IRI), including both Ischemic stroke (IS) and Traumatic Brain injury (TBI), is one of the most common causes of disability and death in adults and represents a major burden in both western and developing countries worldwide. China’s clinical neurological therapeutic experience in the use of traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, TCM formulations and decoction, in brain IRI diseases indicated a trend of significant improvement in patients’ neurological deficits, calling for blind, placebo-controlled and randomized clinical trials with careful meta-analysis evaluation. There are many TCMs in use for brain IRI therapy in China with significant therapeutic effects in preclinical studies using different brain IRI-animal. The basic hypothesis in this field claims that in order to avoid the toxicity and side effects of the complex TCM formulas, individual isolated and identified compounds that exhibited neuroprotective properties could be used as lead compounds for the development of novel drugs. China’s efforts in promoting TCMs have contributed to an explosive growth of the preclinical research dedicated to the isolation and identification of TCM-derived neuroprotective lead compounds. Tanshinone, is a typical example of TCM-derived lead compounds conferring neuroprotection toward IRI in animals with brain middle cerebral artery occlusion (MCAO) or TBI models. Recent reports show the significance of the inflammatory response accompanying brain IRI. This response appears to contribute to both primary and secondary ischemic pathology, and therefore anti-inflammatory strategies have become popular by targeting pro-inflammatory and anti-inflammatory cytokines, other inflammatory mediators, reactive oxygen species, nitric oxide, and several transcriptional factors. Here, we review recent selected studies and discuss further considerations for critical reevaluation of the neuroprotection hypothesis of TCMs in IRI therapy. Moreover, we will emphasize several TCM’s mechanisms of action and attempt to address the most promising compounds and the obstacles to be overcome before they will enter the clinic for IRI therapy. We hope that this review will further help in investigations of neuroprotective effects of novel molecular entities isolated from Chinese herbal medicines and will stimulate performance of clinical trials of Chinese herbal medicine-derived drugs in IRI patients.
Collapse
Affiliation(s)
- Tangming Peng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Yizhou Jiang
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mohd Farhan
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Philip Lazarovici
- Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
18
|
He X, Bao Y, Shen Y, Wang E, Hong W, Ke S, Jin X. Longitudinal evaluation of serum periostin levels in patients after large-artery atherosclerotic stroke: A prospective observational study. Sci Rep 2018; 8:11729. [PMID: 30082879 PMCID: PMC6079094 DOI: 10.1038/s41598-018-30121-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/25/2018] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence supports the involvement of periostin in the pathophysiological processes of stroke and atherosclerosis. The aim of this study was to assess circulating periostin levels at different times after large-artery atherosclerotic (LAA) stroke and their association with stroke. Serum periostin levels were measured using enzyme-linked immunosorbent assay on day 1 in 162 patients with LAA stroke and in 108 age- and sex-matched controls, on day 6 after stroke in 134 patients, and during the 4th week after stroke in 46 of the 162 patients. Stroke severity was determined using the National Institutes of Health Stroke Scale (NIHSS), and the stroke volume was measured. Outcome at 3 months was measured using the modified Rankin Scale (mRS). Our results indicated that periostin levels increased significantly on day 6 after stroke, and this increasing trend persisted for at least 4 weeks after the event. In addition, the increase in periostin levels was positively correlated with the NIHSS scores and stroke volume, but not with the mRS scores after adjusting for the NIHSS scores. In conclusion, these findings suggest that the increase in serum periostin levels observed after stroke may be associated with the stroke severity in patients with LAA stroke.
Collapse
Affiliation(s)
- Xinwei He
- Department of Neurology, Taizhou Hospital, Wenzhou Medical University, Zhejiang, 317000, China
| | - Yuyan Bao
- Department of Neurology, Taizhou Hospital, Wenzhou Medical University, Zhejiang, 317000, China
| | - Yuguang Shen
- Department of Neurology, Taizhou Hospital, Wenzhou Medical University, Zhejiang, 317000, China
| | - En Wang
- Department of Neurology, Taizhou Hospital, Wenzhou Medical University, Zhejiang, 317000, China
| | - Weijun Hong
- Department of Neurology, Taizhou Hospital, Wenzhou Medical University, Zhejiang, 317000, China
| | - Shaofa Ke
- Department of Neurology, Taizhou Hospital, Wenzhou Medical University, Zhejiang, 317000, China
| | - Xiaoping Jin
- Department of Neurology, Taizhou Hospital, Wenzhou Medical University, Zhejiang, 317000, China.
| |
Collapse
|
19
|
Tufekci KU, Vurgun U, Yigitaslan O, Keskinoglu P, Yaka E, Kutluk K, Genc S. Follow-up Analysis of Serum TNF-Related Apoptosis-Inducing Ligand Protein and mRNA Expression in Peripheral Blood Mononuclear Cells from Patients with Ischemic Stroke. Front Neurol 2018; 9:102. [PMID: 29556210 PMCID: PMC5844938 DOI: 10.3389/fneur.2018.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/13/2018] [Indexed: 11/24/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is TNF receptor superfamily member, contributes to several diseases pathogenesis. The aim of this research was to investigate the relevance of serum TRAIL protein levels and mRNA expression in peripheral blood mononuclear cells (PBMC) of patients with stroke through 6 months follow-up. We enrolled patients with first-ever acute ischemic stroke (n = 95) and healthy controls (n = 95) in this study. Follow-up blood samples were collected from patients at day 7, 28, and 180 after the onset. The stroke severity was evaluated by National Institutes of Health Stroke Scale score. TRAIL protein levels were quantified by using ELISA kits and TRAIL mRNA expression by quantitative real-time PCR. Our study showed that stroke patients have statistically significant lower levels of serum TRAIL protein (p < 0.0001) and elevated TRAIL mRNA expression (p < 0.0001) in PBMC at the disease onset. Our follow-up study revealed that TRAIL protein levels were increased while mRNA expression levels were downregulated in later periods. Overall, our findings suggest that serum TRAIL levels and mRNA expression in PBMC could reliably serve as a predictor of stroke outcome. Additionally, our study supports that TRAIL plays a role in pathogenesis and progression of ischemic stroke.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey.,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, İzmir, Turkey
| | - Ufuk Vurgun
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey.,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, İzmir, Turkey
| | - Onur Yigitaslan
- Department of Neurology, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Pembe Keskinoglu
- Department of Biostatistics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Erdem Yaka
- Department of Neurology, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Kursad Kutluk
- Department of Neurology, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Sermin Genc
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey.,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
20
|
High Serum Levels of Malondialdehyde and 8-OHdG are both Associated with Early Cognitive Impairment in Patients with Acute Ischaemic Stroke. Sci Rep 2017; 7:9493. [PMID: 28842715 PMCID: PMC5573400 DOI: 10.1038/s41598-017-09988-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
Post-stroke cognitive impairment (PSCI) is an increasingly prevalent sequel after stroke that may associate with poor functional outcome and increased risk of recurrent stroke. We aimed to explore the relationship between oxidative stress biomarkers and the presence of PSCI. 193 first-ever acute ischaemic stroke patients were consecutively enrolled in the current study. The oxidative stress biomarkers malondialdehyde (MDA) and 8-hydroxydeoxyquanosine (8-OHdG) were measured within 24 h after admission. Cognition function was evaluated by the Mini-Mental State Examination (MMSE) at 1 month after stroke. Serum levels of 8-OHdG and MDA were both significantly higher in the PSCI (p < 0.001) compared with the non-PSCI group. Both the serum levels of both 8-OHdG and MDA were negatively correlated with the MMSE score. Receiver operating characteristic curve analysis was used to evaluate 8-OHdG and MDA as markers of a high risk of PSCI and produced area under curve values of 0.700 and 0.793. Adjusted logistic regression showed that serum 8-OHdG and MDA levels remained as independent markers of PSCI. High serum levels of malondialdehyde and 8-OHdG are associated with the presence of PSCI at 1 month after stroke.
Collapse
|
21
|
Tisato V, Gonelli A, Voltan R, Secchiero P, Zauli G. Clinical perspectives of TRAIL: insights into central nervous system disorders. Cell Mol Life Sci 2016; 73:2017-27. [PMID: 26910728 PMCID: PMC4834097 DOI: 10.1007/s00018-016-2164-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/01/2022]
Abstract
The TNF-related apoptosis inducing ligand TRAIL is a member of the TNF superfamily that has been firstly studied and evaluated for its anti-cancer activity, and the insights into its biology have already led to the identification of several TRAIL-based anticancer strategies with strong clinical therapeutic potentials. Nonetheless, the TRAIL system is far more complex and it can lead to a wider range of biological effects other than the ability of inducing apoptosis in cancer cells. By virtue of the different receptors and the different signalling pathways involved, TRAIL plays indeed a role in the regulation of different processes of the innate and adaptive immune system and this feature makes it an intriguing molecule under consideration in the development/progression/treatment of several immunological disorders. In this context, central nervous system represents a peculiar anatomic site where, despite its "status" of immune-privileged site, both innate and adaptive inflammatory responses occur and are involved in several pathological conditions. A number of studies have evaluated the role of TRAIL and of TRAIL-related pathways as pro-inflammatory or protective stimuli, depending on the specific pathological condition, confirming a twofold nature of this molecule. In this light, the aim of this review is to summarize the main preclinical evidences of the potential/involvement of TRAIL molecule and TRAIL pathways for the treatment of central nervous system disorders and the key suggestions coming from their assessment in preclinical models as proof of concept for future clinical studies.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy.
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| |
Collapse
|
22
|
Forde H, Harper E, Davenport C, Rochfort KD, Wallace R, Murphy RP, Smith D, Cummins PM. The beneficial pleiotropic effects of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) within the vasculature: A review of the evidence. Atherosclerosis 2016; 247:87-96. [DOI: 10.1016/j.atherosclerosis.2016.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/19/2023]
|