1
|
Chamoieva AE, Mirmanova ZZ, Zhalbinova MR, Rakhimova SE, Daniyarov AZ, Kairov UY, Baigalkanova AI, Mukarov MA, Bekbossynova MS, Akilzhanova AR. Targeted NGS Revealed Pathogenic Mutation in a 13-Year-Old Patient with Homozygous Familial Hypercholesterolemia: A Case Report. Int J Mol Sci 2024; 25:11882. [PMID: 39595952 PMCID: PMC11593385 DOI: 10.3390/ijms252211882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Familial hypercholesterolemia is an autosomal hereditary disease defined by an increased level of low-density lipoprotein cholesterol (LDL-C), which predisposes significant risks for premature cardiovascular disorders. We present a family trio study: proband, a 13-year-old Kazakh girl with homozygous familial hypercholesterolemia (HoFH) and her parents. HoFH is much more rare and severe than a heterozygous form of the disorder. HoFH patients generally present with LDL-C levels exceeding 13 mmol/L, resulting in early and life-threatening cardiovascular events within the first decades of life. In cases of neglected treatment, young patients have a risk of death from coronary diseases before the age of 30. The aim of this research was to identify genetic mutations in the affected patient and her parents. Genetic testing was necessary due to highly elevated LDL-C levels and the presence of multiple xanthomas. Targeted next-generation sequencing (NGS) was performed in this study using the Illumina TruSight cardio panel, which targets 174 genes related to cardiac disorders. The girl was diagnosed with HoFH based on the results of genetic testing. A biallelic mutation was observed in exon 3 of the low-density lipoprotein receptor (LDLR): c. 295 G>A (p.Glu99Lys). Sanger sequencing confirmed that the mutant gene was inherited from both parents. After confirming the genetic diagnosis of HoFH, the patient was treated with LDL apheresis and statins. This case report is the first study of HoFH in a pediatric patient from the Central Asian region. Globally, it emphasizes the need for increased clinical awareness among healthcare providers, as early detection and intervention are important for improving outcomes, particularly in pediatric patients with this rare genetic disorder.
Collapse
Affiliation(s)
| | - Zhanel Z. Mirmanova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Saule E. Rakhimova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
- Eurasian Society of Personalized Medicine, Astana 010000, Kazakhstan
| | - Asset Z. Daniyarov
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev, Eurasian National University, Astana 010008, Kazakhstan
| | - Ulykbek Y. Kairov
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
- Eurasian Society of Personalized Medicine, Astana 010000, Kazakhstan
| | - Almira I. Baigalkanova
- Corporate Fund “University Medical Center”, National Research Cardiac Surgery Center, Astana 010000, Kazakhstan
| | - Murat A. Mukarov
- Corporate Fund “University Medical Center”, National Research Cardiac Surgery Center, Astana 010000, Kazakhstan
| | - Makhabbat S. Bekbossynova
- Corporate Fund “University Medical Center”, National Research Cardiac Surgery Center, Astana 010000, Kazakhstan
| | - Ainur R. Akilzhanova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
- Eurasian Society of Personalized Medicine, Astana 010000, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev, Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
2
|
Mănescu IB, Gabor MR, Moldovan GV, Hadadi L, Huțanu A, Bănescu C, Dobreanu M. An 8-SNP LDL Cholesterol Polygenic Score: Associations with Cardiovascular Risk Traits, Familial Hypercholesterolemia Phenotype, and Premature Coronary Heart Disease in Central Romania. Int J Mol Sci 2024; 25:10038. [PMID: 39337524 PMCID: PMC11432653 DOI: 10.3390/ijms251810038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Familial hypercholesterolemia (FH) is the most significant inherited risk factor for coronary heart disease (CHD). Current guidelines focus on monogenic FH, but the polygenic form is more common and less understood. This study aimed to assess the clinical utility of an 8-SNP LDLC polygenic score in a central Romanian cohort. The cohort included 97 healthy controls and 125 patients with premature (P)CHD. The weighted LDLC polygenic risk score (wPRS) was analyzed for associations with relevant phenotypic traits, PCHD risk, and clinical FH diagnosis. The wPRS positively correlated with LDLC and DLCN scores, and LDLC concentrations could be predicted by wPRS. A trend of increasing LDLC and DLCN scores with wPRS deciles was observed. A +1 SD increase in wPRS was associated with a 36% higher likelihood of having LDLC > 190 mg/dL and increases in LDLC (+0.20 SD), DLCN score (+0.16 SD), and BMI (+0.15 SD), as well as a decrease in HDLC (-0.14 SD). Although wPRS did not predict PCHD across the entire spectrum of values, individuals above the 90th percentile were three times more likely to have PCHD compared to those within the 10th or 20th percentiles. Additionally, wPRS > 45th percentile identified "definite" clinical FH (DLCN score > 8) with 100% sensitivity and 45% specificity. The LDLC polygenic score correlates with key phenotypic traits, and individuals with high scores are more likely to have PCHD. Implementing this genetic tool may enhance risk prediction and patient stratification. These findings, the first of their kind in Romania, are consistent with the existing literature.
Collapse
Affiliation(s)
- Ion Bogdan Mănescu
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.H.); (M.D.)
| | - Manuela Rozalia Gabor
- Department of Economic Science, Faculty of Economics and Law, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540566 Targu Mures, Romania;
- Department of Economic Research, Centre for Law, Economics and Business Studies, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540566 Targu Mures, Romania
| | - George Valeriu Moldovan
- Clinical Laboratory, Emergency County Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
| | - László Hadadi
- Emergency Institute for Cardiovascular Diseases and Transplantation, 540136 Targu Mures, Romania;
| | - Adina Huțanu
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.H.); (M.D.)
- Clinical Laboratory, Emergency County Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
| | - Claudia Bănescu
- Department of Genetics, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Minodora Dobreanu
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.H.); (M.D.)
- Clinical Laboratory, Emergency County Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
- Immunology Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
3
|
Lima IR, Tada MT, Oliveira TG, Jannes CE, Bensenor I, Lotufo PA, Santos RD, Krieger JE, Pereira AC. Polygenic risk score for hypercholesterolemia in a Brazilian familial hypercholesterolemia cohort. ATHEROSCLEROSIS PLUS 2022; 49:47-55. [PMID: 36644206 PMCID: PMC9833269 DOI: 10.1016/j.athplu.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 01/18/2023]
Abstract
Background and aims Familial hypercholesterolemia (FH) is a genetic disorder characterized by high levels of LDL-C leading to premature cardiovascular disease (CAD). Only about 40% of individuals with a clinical diagnosis of FH have a causative genetic variant identified, and a proportion of genetically negative cases may have a polygenic cause rather than a still unidentified monogenic cause. This work aims to evaluate and validate the role of a polygenic risk score (PRS) associated with hypercholesterolemia in a Brazilian FH cohort and its clinical implications. Methods We analyzed a previously derived PRS of 12 and 6 SNPs (Single Nucleotide Polymorphism) in 684 FH individuals (491 mutation-negative [FH/M-], 193 mutation-positive [FH/M+]) and in 1605 controls. Coronary artery calcium (CAC) score was also evaluated. Results The PRS was independently associated with LDL-C in control individuals (p < 0.001). Within this group, in individuals in the highest quartile of the 12 SNPs PRS, the odds ratio for CAC score >100 was 1.7 (95% CI: 1.01-2.88, p = 0.04) after adjustment for age and sex. Subjects in the FH/M- group had the highest mean score in both 12 and 6 SNPs PRS (38.25 and 27.82, respectively) when compared to the other two groups (p = 2.2 × 10-16). Both scores were also higher in the FH/M+ group (36.48 and 26.26, respectively) when compared to the control group (p < 0.001 for the two scores) but inferior to the FH/M- group. Within FH individuals, the presence of a higher PRS score was not associated with LDL-C levels or with CAD risk. Conclusion A higher PRS is associated with significantly higher levels of LDL-C and it is independently associated with higher CAC in the Brazilian general population. A polygenic cause can explain a fraction of FH/M- individuals but does not appear to be a modulator of the clinical phenotype among FH individuals, regardless of mutation status.
Collapse
Affiliation(s)
- Isabella Ramos Lima
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil,Corresponding author.
| | - Mauricio Teruo Tada
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Theo G.M. Oliveira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Cinthia Elim Jannes
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Isabela Bensenor
- Center for Clinical and Epidemiologic Research, University of São Paulo, São Paulo, Brazil
| | - Paulo A. Lotufo
- Center for Clinical and Epidemiologic Research, University of São Paulo, São Paulo, Brazil
| | - Raul D. Santos
- Lipid Clinic, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Jose E. Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil,Genetics Department, Harvard Medical School, Boston, MA, USA,Corresponding author. Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
4
|
Relations Between Familial Hypercholesterolemia and Early Ischemic Heart Disease: An Analysis of Medical Documentation Data. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2019-0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Heterozygous familial hypercholesterolemia is associated with a high risk of early ischemic heart disease onset and cardiovascular death. There is almost no data about the prevalence of the disease in the Ukrainian population. The aim of the study was to assess the incidence of familial hypercholesterolemia among patients who were treated in “L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine” due to early ischemic heart disease. Medical records data of 600 patients treated in the Institute during 2015-2017 were analyzed. Early ischemic heart disease was diagnosed in 89 patients. The disease verification has been conducted either on the basis of coronarography data, or on the basis of previous myocardial infarction with Q wave. To identify patients with familial hypercholesterolemia, the Dutch lipid clinic network criteria were used. The presence of familial hypercholesterolemia was suspected in more than 14.8% of patients with early ischemic heart disease. Among these patients, 2 (2.2%) had definite diagnosis; 27 (30.3%) were likely to have diagnosis, 26 (29.7%) had possible diagnosis and in 34 (38,2%) patients it was unlikely to diagnose them with familial hypercholesterolemia. The term “familial hypercholesterolemia” was not mentioned in the hospital diagnosis. This paper demonstrates that despite frequent occurrence of familial hyper-cholesterolemia, doctors’ alertness towards this disease has been noted to be quite low.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The present review summarizes different polygenic risk scores associated with hypercholesterolemia applied to cohorts with a genetic diagnosis of familial hypercholesterolemia (FH). RECENT FINDINGS Several single-nucleotide polymorphisms associated with increased levels of LDL-C or Lp(a) have been genotyped in population cohorts with FH phenotype, to identify the cause of hypercholesterolemia in mutation negative individuals. In different studies, a large proportion of individuals without a monogenic causative variant (in low density lipoprotein receptor gene (LDLR), apolipoprotein B gene (APOB) or proprotein convertase subtilisin/kexin type 9 gene (PCSK9 genes) was considered to have a hypercholesterolemia with a polygenic basis. The heterogeneity in the phenotype of monogenic FH may also be explained by polygenic contributions to LDL-C. The elevated LDL-C genetic risk score (GRS) has been associated with increased risk of atherosclerotic cardiovascular disease in individuals with monogenic FH. Moreover, a poorer response to lipid lowering therapy has been associated with monogenic FH when compared to a polygenic basis. The reason why Lp(a) concentrations are raised in individuals with clinical FH is unclear, but it could be caused by a genetic variation in Lipoprotein(A) gene as a polygenic contribution. SUMMARY Polygenic risk scores have revealed to be important tools to define the cause of hypercholesterolemia in FH mutation-negative individuals and should be included in FH diagnosis strategies, although there is still space for more specific LDL-C GRS to be developed. The use of GRS may be used to refine cardiovascular risk prediction in FH patients and could lead to a personalized approach to therapy. The identification of the genetic status of an individual with FH phenotype (monogenic or polygenic) may have implications on their risk stratification, cascade screening of relatives, disease management and therapeutic measures.
Collapse
Affiliation(s)
- Ana Margarida Medeiros
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Bourbon
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Martín-Campos JM. Genetic Determinants of Plasma Low-Density Lipoprotein Cholesterol Levels: Monogenicity, Polygenicity, and "Missing" Heritability. Biomedicines 2021; 9:biomedicines9111728. [PMID: 34829957 PMCID: PMC8615680 DOI: 10.3390/biomedicines9111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in plasma low-density lipoprotein cholesterol (LDL-c) levels relate to a high risk of developing some common and complex diseases. LDL-c, as a quantitative trait, is multifactorial and depends on both genetic and environmental factors. In the pregenomic age, targeted genes were used to detect genetic factors in both hyper- and hypolipidemias, but this approach only explained extreme cases in the population distribution. Subsequently, the genetic basis of the less severe and most common dyslipidemias remained unknown. In the genomic age, performing whole-exome sequencing in families with extreme plasma LDL-c values identified some new candidate genes, but it is unlikely that such genes can explain the majority of inexplicable cases. Genome-wide association studies (GWASs) have identified several single-nucleotide variants (SNVs) associated with plasma LDL-c, introducing the idea of a polygenic origin. Polygenic risk scores (PRSs), including LDL-c-raising alleles, were developed to measure the contribution of the accumulation of small-effect variants to plasma LDL-c. This paper discusses other possibilities for unexplained dyslipidemias associated with LDL-c, such as mosaicism, maternal effect, and induced epigenetic changes. Future studies should consider gene-gene and gene-environment interactions and the development of integrated information about disease-driving networks, including phenotypes, genotypes, transcription, proteins, metabolites, and epigenetics.
Collapse
Affiliation(s)
- Jesús Maria Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IR-HSCSP)-Biomedical Research Institute Sant Pau (IIB-Sant Pau), C/Sant Quintí 77-79, 08041 Barcelona, Spain
| |
Collapse
|
7
|
Turkyilmaz A, Kurnaz E, Alavanda C, Yarali O, Kartal Baykan E, Yavuz D, Cayir A, Ata P. The Spectrum of Low-Density Lipoprotein Receptor Mutations in a Large Turkish Cohort of Patients with Familial Hypercholesterolemia. Metab Syndr Relat Disord 2021; 19:340-346. [PMID: 33794673 DOI: 10.1089/met.2021.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Monogenic hypercholesterolemia with Mendelian inheritance is a heterogeneous group of diseases that are characterized by elevated plasma low-density lipoprotein cholesterol (LDL-C) levels, and the most common form of this disorder is autosomal-dominant familial hypercholesterolemia (FH). Methods: A total of 104 index cases with the clinical diagnosis of FH were included in this study. Low-density lipoprotein receptor (LDLR) was sequenced using the Sanger sequencing method. Results: Pathogenic/likely pathogenic variants were detected in LDLR in 55 of the 104 cases (mutation detection rate = 52.8%). Thirty different variants were detected in LDLR, three of which were novel. The total cholesterol and LDL-C values of the patients in the group of premature termination codon (PTC) mutation carriers were significantly higher than those of the patients in the group of non-PTC mutation carriers. A total of 87 patients (17 pediatric and 70 adult cases) were diagnosed with cascade genetic screening. Statin treatment was recommended to all 87 patients and was accepted and initiated in 70 of these patients. Conclusions: This study is the largest patient cohort that evaluated FH cases in the Turkish population. Herein, we revealed the LDLR mutation spectrum for a Turkish population and compared the cases in the context of genotype-phenotype correlation. Genetic screening of individuals with suspected FH not only helps to establish their diagnosis, but also facilitates early diagnosis and treatment initiation in other family members through cascade screening.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Erdal Kurnaz
- Department of Pediatric Endocrinology, Dr. Sami Ulus Obstetrics and Gynecology, Children's Health and Disease Training and Research Hospital, Ankara, Turkey
| | - Ceren Alavanda
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Oguzhan Yarali
- Department of Medical Genetics, Erzurum City Hospital, Erzurum, Turkey
| | | | - Dilek Yavuz
- Department of Endocrinology, Marmara University School of Medicine, Istanbul, Turkey
| | - Atilla Cayir
- Department of Pediatric Endocrinology, Erzurum City Hospital, Erzurum, Turkey
| | - Pinar Ata
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
8
|
Tolezano GC, da Costa SS, Scliar MDO, Fernandes WLM, Otto PA, Bertola DR, Rosenberg C, Vianna-Morgante AM, Krepischi ACV. Investigating Genetic Factors Contributing to Variable Expressivity of Class I 17p13.3 Microduplication. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 9:296-306. [PMID: 33688487 PMCID: PMC7936075 DOI: 10.22088/ijmcm.bums.9.4.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/02/2021] [Indexed: 11/13/2022]
Abstract
17p13.3 microduplications are rare copy number variations (CNVs) associated with variable phenotypes, including facial dysmorphism, developmental delay, intellectual disability, and autism. Typically, when a recognized pathogenic CNV is identified, other genetic factors are not considered. We investigated via whole-exome sequencing the presence of additional variants in four carriers of class I 17p13.3 microduplications. A 730 kb 17p13.3 microduplication was identified in two half-brothers with intellectual disability, but not in a third affected half-brother or blood cells from their normal mother (Family A), thus leading to the hypothesis of maternal germline mosaicism. No additional pathogenic variants were detected in Family A. Two affected siblings carried maternally inherited 450 kb 17p13.3 microduplication (Family B); the three carriers of the microduplication exhibited microcephaly and learning disability/speech impairment of variable degrees. Exome analysis revealed a variant of uncertain significance in RORA, a gene already linked to autism, in the autistic boy; his sister was heterozygous for a CYP1B1 pathogenic variant that could be related to her congenital glaucoma. Besides, both siblings carried a loss-of-function variant in DIP2B, a candidate gene for intellectual disability, which was inherited from their father, who also exhibited learning disability in childhood. In conclusion, additional pathogenic variants were revealed in two affected carriers of class I 17p13.3 microduplication (Family B), probably adding to their phenotypes. These results provided new evidence regarding the contribution of RORA and DIP2B to neurocognitive deficits, and highlighted the importance of full genetic investigation in carriers of CNV syndromes with variable expressivity. Finally, we suggest that microcephaly may be a rare clinical feature also related to the presence of the class I 17p13.3 microduplication.
Collapse
Affiliation(s)
- Giovanna Cantini Tolezano
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvia Souza da Costa
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marília de Oliveira Scliar
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Paulo Alberto Otto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil .,Instituto da Criança, Hospital das Clínicas, University of São Paulo Medical, São Paulo, SP, Brazil
| | - Carla Rosenberg
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Angela Maria Vianna-Morgante
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Efficacy of Polyphenols in the Management of Dyslipidemia: A Focus on Clinical Studies. Nutrients 2021; 13:nu13020672. [PMID: 33669729 PMCID: PMC7922034 DOI: 10.3390/nu13020672] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols (PLPs), phytochemicals found in a wide range of plant-based foods, have gained extensive attention in view of their antioxidant, anti-inflammatory, immunomodulatory and several additional beneficial activities. The health-promoting effects noted in animal models of various non-communicable diseases explain the growing interest in these molecules. In particular, in vitro and animal studies reported an attenuation of lipid disorders in response to PLPs. However, despite promising preclinical investigations, the effectiveness of PLPs in human dyslipidemia (DLP) is less clear and necessitates revision of available literature. Therefore, the present review analyzes the role of PLPs in managing clinical DLP, notably by dissecting their potential in ameliorating lipid/lipoprotein metabolism and alleviating hyperlipidemia, both postprandially and in long-term interventions. To this end, PubMed was used for article search. The search terms included polyphenols, lipids, triglycerides, cholesterol, LDL-cholesterol and /or HDL-cholesterol. The critical examination of the trials published to date illustrates certain benefits on blood lipids along with co-morbidities in participant’s health status. However, inconsistent results document significant research gaps, potentially owing to study heterogeneity and lack of rigor in establishing PLP bioavailability during supplementation. This underlines the need for further efforts in order to elucidate and support a potential role of PLPs in fighting DLP.
Collapse
|
10
|
Vrablik M, Tichý L, Freiberger T, Blaha V, Satny M, Hubacek JA. Genetics of Familial Hypercholesterolemia: New Insights. Front Genet 2020; 11:574474. [PMID: 33133164 PMCID: PMC7575810 DOI: 10.3389/fgene.2020.574474] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Familial hypercholesterolemia (FH) is one of the most common monogenic diseases, leading to an increased risk of premature atherosclerosis and its cardiovascular complications due to its effect on plasma cholesterol levels. Variants of three genes (LDL-R, APOB and PCSK9) are the major causes of FH, but in some probands, the FH phenotype is associated with variants of other genes. Alternatively, the typical clinical picture of FH can result from the accumulation of common cholesterol-increasing alleles (polygenic FH). Although the Czech Republic is one of the most successful countries with respect to FH detection, approximately 80% of FH patients remain undiagnosed. The opportunities for international collaboration and experience sharing within international programs (e.g., EAS FHSC, ScreenPro FH, etc.) will improve the detection of FH patients in the future and enable even more accessible and accurate genetic diagnostics.
Collapse
Affiliation(s)
- Michal Vrablik
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Lukas Tichý
- Centre of Molecular Biology and Gene Therapy, University Hospital, Brno, Czechia
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Vladimir Blaha
- Internal Gerontometabolic Department, Charles University and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Martin Satny
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Jaroslav A Hubacek
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czechia.,Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
11
|
Polygenic Markers in Patients Diagnosed of Autosomal Dominant Hypercholesterolemia in Catalonia: Distribution of Weighted LDL-c-Raising SNP Scores and Refinement of Variant Selection. Biomedicines 2020; 8:biomedicines8090353. [PMID: 32942679 PMCID: PMC7554998 DOI: 10.3390/biomedicines8090353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
Familial hypercholesterolemia (FH) is associated with mutations in the low-density lipoprotein (LDL) receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin 9 (PCSK9) genes. A pathological variant has not been identified in 30-70% of clinically diagnosed FH patients, and a burden of LDL cholesterol (LDL-c)-raising alleles has been hypothesized as a potential cause of hypercholesterolemia in these patients. Our aim was to study the distribution of weighted LDL-c-raising single-nucleotide polymorphism (SNP) scores (weighted gene scores or wGS) in a population recruited in a clinical setting in Catalonia. The study included 670 consecutive patients with a clinical diagnosis of FH and a prior genetic study involving 250 mutation-positive (FH/M+) and 420 mutation-negative (FH/M-) patients. Three wGSs based on LDL-c-raising variants were calculated to evaluate their distribution among FH patients and compared with 503 European samples from the 1000 Genomes Project. The FH/M- patients had significantly higher wGSs than the FH/M+ and control populations, with sensitivities ranging from 42% to 47%. A wGS based only on the SNPs significantly associated with FH (wGS8) showed a higher area under the receiver operating characteristic curve, and higher diagnostic specificity and sensitivity, with 46.4% of the subjects in the top quartile. wGS8 would allow for the assignment of a genetic cause to 66.4% of the patients if those with polygenic FH are added to the 37.3% of patients with monogenic FH. Our data indicate that a score based on 8 SNPs and the75th percentile cutoff point may identify patients with polygenic FH in Catalonia, although with limited diagnostic sensitivity and specificity.
Collapse
|
12
|
Di Taranto MD, Giacobbe C, Buonaiuto A, Calcaterra I, Palma D, Maione G, Iannuzzo G, Di Minno MND, Rubba P, Fortunato G. A Real-World Experience of Clinical, Biochemical and Genetic Assessment of Patients with Homozygous Familial Hypercholesterolemia. J Clin Med 2020; 9:jcm9010219. [PMID: 31947532 PMCID: PMC7019873 DOI: 10.3390/jcm9010219] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 01/09/2023] Open
Abstract
Homozygous familial hypercholesterolemia (HoFH), the severest form of familial hypercholesterolemia (FH), is characterized by very high LDL-cholesterol levels and a high frequency of coronary heart disease. The disease is caused by the presence of either a pathogenic variant at homozygous status or of two pathogenic variants at compound heterozygous status in the LDLR, APOB, PCSK9 genes. We retrospectively analyzed data of 23 HoFH patients (four children and 19 adults) identified during the genetic screening of 724 FH patients. Genetic screening was performed by sequencing FH causative genes and identifying large rearrangements of LDLR. Among the HoFH patients, four out of 23 (17.4%) were true homozygotes, whereas 19 out of 23 (82.6%) were compound heterozygotes for variants in the LDLR gene. Basal LDL-cholesterol was 12.9 ± 2.9 mmol/L. LDL-cholesterol levels decreased to 7.2 ± 1.8 mmol/L when treated with statin/ezetimibe and to 5.1 ± 3.1 mmol/L with anti-PCSK9 antibodies. Homozygous patients showed higher basal LDL-cholesterol and a poorer response to therapy compared with compound heterozygotes. Since 19 unrelated patients were identified in the Campania region (6,000,000 inhabitants) in southern Italy, the regional prevalence of HoFH was estimated to be at least 1:320,000. In conclusion, our results revealed a worse phenotype for homozygotes compared with compound heterozygotes, thereby highlighting the role of genetic screening in differentiating one genetic status from the other.
Collapse
Affiliation(s)
- Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.G.); (D.P.); (G.M.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
- Correspondence: (M.D.D.T.); (G.F.); Tel.: +39-081-7463530 (M.D.D.T.); +39-081-7464200 (G.F.)
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.G.); (D.P.); (G.M.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
| | - Alessio Buonaiuto
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (A.B.); (I.C.); (G.I.); (P.R.)
| | - Ilenia Calcaterra
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (A.B.); (I.C.); (G.I.); (P.R.)
| | - Daniela Palma
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.G.); (D.P.); (G.M.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
| | - Giovanna Maione
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.G.); (D.P.); (G.M.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
| | - Gabriella Iannuzzo
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (A.B.); (I.C.); (G.I.); (P.R.)
| | - Matteo Nicola Dario Di Minno
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, 80131 Naples, Italy;
| | - Paolo Rubba
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (A.B.); (I.C.); (G.I.); (P.R.)
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.G.); (D.P.); (G.M.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
- Correspondence: (M.D.D.T.); (G.F.); Tel.: +39-081-7463530 (M.D.D.T.); +39-081-7464200 (G.F.)
| |
Collapse
|
13
|
Lee C, Cui Y, Song J, Li S, Zhang F, Wu M, Li L, Hu D, Chen H. Effects of familial hypercholesterolemia-associated genes on the phenotype of premature myocardial infarction. Lipids Health Dis 2019; 18:95. [PMID: 30971288 PMCID: PMC6458678 DOI: 10.1186/s12944-019-1042-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Background The incidence of premature myocardial infarction (PMI) has gradually increased in recent years. Genetics plays a central role in the development of PMI. Familial hypercholesterolemia (FH) is one of the most common genetic disorders of cholesterol metabolism leading to PMI. Objective This study investigated the relationship between FH-associated genes and the phenotype of PMI to clarify the genetic spectrum of PMI diseases. Method This study enrolled PMI patients (n = 225) and detected the mutations in their FH-associated genes (LDLR, APOB, PCSK9, LDLRAP1) by Sanger sequencing. At the same time, patients free of PMI (non-FH patients, n = 56) were enrolled as control, and a logistic regression analysis was used to identify risk factors associated with PMI. The diagnosis of FH was confirmed using “2018 Chinese expert consensus of FH screening and diagnosis” before the prevalence and clinical features of FH were analyzed. Results Pathogenic mutations in LDLR, APOB, PCSK9 and LDLRAP1 genes were found in 17 of 225 subjects (7.6%), and all mutations were loss of function (LOF) and heterozygous. The genotype-phenotype relationship of patients carrying FH-associated mutations showed high heterogeneity. The logistic regression analysis showed that the smoking history, obesity and the family history of premature CHD were independent risk factors of PMI. In this study, a total of 19 patients (8.4%) were diagnosed as FH, and the proportion of smoking subjects in FH patients was higher than that in non-FH patients. Conclusions FH-associated gene mutations were present in about 7.6% of Chinese patients with PMI. In addition to genetic factors, smoking history, lifestyle and other environmental factors may play a synergistic role in determining the phenotype of PMI. Trial registration Essential gene mutation of cholesterol metabolism in patients with premature myocardial infarction. ChiCTR-OCH-12002349.Registered 26 December 2014, http://www.chictr.org.cn/showproj.aspx?proj=7201.
Collapse
Affiliation(s)
- Chongyou Lee
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Yuxia Cui
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Junxian Song
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Sufang Li
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Feng Zhang
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Manyan Wu
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Long Li
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Dan Hu
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China. .,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China. .,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
14
|
Batais MA, Almigbal TH, Shaik NA, Alharbi FK, Alharbi KK, Ali Khan I. Screening of common genetic variants in the APOB gene related to familial hypercholesterolemia in a Saudi population: A case-control study. Medicine (Baltimore) 2019; 98:e14247. [PMID: 30681615 PMCID: PMC6358331 DOI: 10.1097/md.0000000000014247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a monogenic dominant inherited disorder of lipid metabolism characterized by elevated low-density lipoprotein levels, and is mainly attributable to mutations in low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proportein convertase subtilisin/kexin type 9 (PCSK9) genes. Next-generation and exome sequencing studies have primarily involved genome-wide association analyses, and meta-analyses and next-generation studies examined a few single-nucleotide polymorphisms (rs151009667 and Val2095Glu) in the ApoB gene. The present study was conducted to investigate the association of APOB and patients with FH in a Saudi population.We genotyped 100 patients with FH and 100 controls for 2 polymorphisms in APOB using polymerase chain reaction-restriction fragment length polymorphism, followed by 3% agarose gel electrophoresis. The strength of the association between the genotype and allele frequencies with the risk of developing FH was evaluated. Clinical details and genotype analysis results were recorded.For the rs151009667 polymorphism, 18% of the CT genotypes were observed only in patients with FH. There was a positive association between CT and CC (odds ratio [OR] 45.07 [95% conflict of interest (CI), 2.67-759.1]; P = .0001) and between T and C (OR 87.8 [95% CI, 5.34-144.2]; P < .0001). However, no Val2095Glu mutations were found in patients with FH or controls. There was also no correlation between clinical characteristics and the rs151009667 polymorphism.In conclusion, we confirmed the association between the rs151009667 polymorphism and FH in a Saudi population. The Val2095Glu novel variant did not appear in either patients with FH or controls. Similar studies should be performed in different ethnic populations to rule out the role of this polymorphism in FH.
Collapse
Affiliation(s)
| | - Turky H. Almigbal
- Department of Family and Community Medicine, King Saud University, Riyadh
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah
| | | | - Khalid Khalaf Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Sun D, Zhou BY, Li S, Sun NL, Hua Q, Wu SL, Cao YS, Guo YL, Wu NQ, Zhu CG, Gao Y, Cui CJ, Liu G, Li JJ. Genetic basis of index patients with familial hypercholesterolemia in Chinese population: mutation spectrum and genotype-phenotype correlation. Lipids Health Dis 2018; 17:252. [PMID: 30400955 PMCID: PMC6220500 DOI: 10.1186/s12944-018-0900-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although there have been many reports in the genetics of familial hypercholesterolemia (FH) worldwide, studies in regard of Chinese population are lacking. In this multi-center study, we aim to characterize the genetic spectrum of FH in Chinese population, and examine the genotype-phenotype correlations in detail. METHODS A total of 285 unrelated index cases from China with clinical FH were consecutively recruited. Next-generation sequencing and bioinformatics tools were used for mutation detection of LDLR, APOB and PCSK9 genes and genetic analysis. RESULTS Overall, the detection rate is 51.9% (148/285) in the unrelated index cases with a total of 119 risk variants identified including 84 in the LDLR gene, 31 in APOB and 4 in PCSK9 gene. Twenty-eight variants were found in more than one individual and LDLR c.1448G > A (p. W483X) was most frequent one detected in 9 patients. Besides, we found 8 (7 LDLR and 1 APOB) novel variants referred as "pathogenic (or likely pathogenic) variants" according to in silico analysis. In the phenotype analysis, patients with LDLR null mutation had significantly higher LDL cholesterol level than LDLR defective and APOB/PCSK9 mutation carriers and those with no mutations (p < 0.001). Furthermore, 13 double heterozygotes, 16 compound heterozygotes and 5 true LDLR homozygotes were identified and the true LDLR homozygotes had the most severe phenotypes. CONCLUSIONS The present study confirmed the heterogeneity of FH genetics in the largest Chinese cohort, which could replenish the knowledge of mutation spectrum and contribute to early screening and disease management.
Collapse
Affiliation(s)
- Di Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Bing-Yang Zhou
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Ning-Ling Sun
- Department of Cardiology, Peking University People’s Hospital, Beijing, 100044 China
| | - Qi Hua
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Shu-Lin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, 510080 China
| | - Yun-Shan Cao
- Department of Cardiology, Gansu Provincial People’s Hospital, Lanzhou, 730000 Gansu China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Ying Gao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Chuan-Jue Cui
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Geng Liu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| |
Collapse
|
16
|
Vallejo-Vaz AJ, De Marco M, Stevens CAT, Akram A, Freiberger T, Hovingh GK, Kastelein JJP, Mata P, Raal FJ, Santos RD, Soran H, Watts GF, Abifadel M, Aguilar-Salinas CA, Al-Khnifsawi M, AlKindi FA, Alnouri F, Alonso R, Al-Rasadi K, Al-Sarraf A, Ashavaid TF, Binder CJ, Bogsrud MP, Bourbon M, Bruckert E, Chlebus K, Corral P, Descamps O, Durst R, Ezhov M, Fras Z, Genest J, Groselj U, Harada-Shiba M, Kayikcioglu M, Lalic K, Lam CSP, Latkovskis G, Laufs U, Liberopoulos E, Lin J, Maher V, Majano N, Marais AD, März W, Mirrakhimov E, Miserez AR, Mitchenko O, Nawawi HM, Nordestgaard BG, Paragh G, Petrulioniene Z, Pojskic B, Postadzhiyan A, Reda A, Reiner Ž, Sadoh WE, Sahebkar A, Shehab A, Shek AB, Stoll M, Su TC, Subramaniam T, Susekov AV, Symeonides P, Tilney M, Tomlinson B, Truong TH, Tselepis AD, Tybjærg-Hansen A, Vázquez-Cárdenas A, Viigimaa M, Vohnout B, Widén E, Yamashita S, Banach M, Gaita D, Jiang L, Nilsson L, Santos LE, Schunkert H, Tokgözoğlu L, Car J, Catapano AL, Ray KK. Overview of the current status of familial hypercholesterolaemia care in over 60 countries - The EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Atherosclerosis 2018; 277:234-255. [PMID: 30270054 DOI: 10.1016/j.atherosclerosis.2018.08.051] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Management of familial hypercholesterolaemia (FH) may vary across different settings due to factors related to population characteristics, practice, resources and/or policies. We conducted a survey among the worldwide network of EAS FHSC Lead Investigators to provide an overview of FH status in different countries. METHODS Lead Investigators from countries formally involved in the EAS FHSC by mid-May 2018 were invited to provide a brief report on FH status in their countries, including available information, programmes, initiatives, and management. RESULTS 63 countries provided reports. Data on FH prevalence are lacking in most countries. Where available, data tend to align with recent estimates, suggesting a higher frequency than that traditionally considered. Low rates of FH detection are reported across all regions. National registries and education programmes to improve FH awareness/knowledge are a recognised priority, but funding is often lacking. In most countries, diagnosis primarily relies on the Dutch Lipid Clinics Network criteria. Although available in many countries, genetic testing is not widely implemented (frequent cost issues). There are only a few national official government programmes for FH. Under-treatment is an issue. FH therapy is not universally reimbursed. PCSK9-inhibitors are available in ∼2/3 countries. Lipoprotein-apheresis is offered in ∼60% countries, although access is limited. CONCLUSIONS FH is a recognised public health concern. Management varies widely across countries, with overall suboptimal identification and under-treatment. Efforts and initiatives to improve FH knowledge and management are underway, including development of national registries, but support, particularly from health authorities, and better funding are greatly needed.
Collapse
Affiliation(s)
- Antonio J Vallejo-Vaz
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom.
| | - Martina De Marco
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom.
| | - Christophe A T Stevens
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - Frederick J Raal
- Division of Endocrinology & Metabolism, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raul D Santos
- Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil; Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Handrean Soran
- University Department of Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia; FH Australasia Network (FHAN), Australia
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon
| | | | - Mutaz Al-Khnifsawi
- Al-Qadisiyah University, Faculty of Medicine, Department of Internal Medicine, Diwaniya City, Iraq
| | | | - Fahad Alnouri
- Cardiovascular Prevention Unit, Prince Sultan Cardiac Centre Riyadh, Riyadh, Saudi Arabia
| | | | | | - Ahmad Al-Sarraf
- Laboratory Department, Kuwait Cancer Control Centre, Kuwait City, Kuwait
| | - Tester F Ashavaid
- P. D Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Mafalda Bourbon
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Faculty of Sciences, Biosystems & Integrative Sciences Institute (BioISI), University of Lisboa, Lisboa, Portugal
| | - Eric Bruckert
- Department of Endocrinology, Institut E3M et IHU Cardiométabolique (ICAN), Hôpital Pitié Salpêtrière, Paris, France
| | - Krzysztof Chlebus
- First Department of Cardiology, Medical University of Gdansk, Gdańsk, Poland; Clinical Centre of Cardiology, University Clinical Centre, Gdańsk, Poland
| | - Pablo Corral
- Pharmacology Department, School of Medicine, FASTA University, Mar del Plata, Argentina
| | | | - Ronen Durst
- Cardiology Department and Centre for Treatment and Prevention of Atherosclerosis, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Marat Ezhov
- National Cardiology Research Centre, Ministry of Health of the Russian Federation, Russia
| | - Zlatko Fras
- University Medical Centre Ljubljana, Division of Medicine, Preventive Cardiology Unit, Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Urh Groselj
- University Medical Centre Ljubljana, University Children's Hospital, Department of Endocrinology, Diabetes and Metabolism, Ljubljana, Slovenia
| | - Mariko Harada-Shiba
- National Cerebral and Cardiovascular Centre Research Institute, Suita, Osaka, Japan
| | - Meral Kayikcioglu
- Ege University Medical School, Department of Cardiology, Izmir, Turkey
| | - Katarina Lalic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Carolyn S P Lam
- National Heart Centre, Singapore; Duke-NUS Medical School, Singapore
| | - Gustavs Latkovskis
- Research Institute of Cardiology and Regenerative Medicine, Faculty of Medicine, University of Latvia, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Ulrich Laufs
- Klinik und Poliklinikfür Kardiologie, Universitätsklinikum Leipzig, Germany
| | | | - Jie Lin
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Vincent Maher
- Advanced Lipid Management and Research (ALMAR) Centre, Ireland
| | | | - A David Marais
- University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Winfried März
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany; Klinisches Institutfür Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz, Austria; Synlab Akademie, Synlab Holding Deutschland GmbH, Mannheim und Augsburg, Germany; D-A-CH-Gesellschaft Prävention von Herz-Kreislauf-Erkrankungen e.V., Hamburg, Germany
| | - Erkin Mirrakhimov
- Kyrgyz State Medical Academy, Centre of Cardiology and Internal Diseases, Biskek, Kyrgizstan
| | - André R Miserez
- Diagene Research Institute, Swiss FH Center, Reinach, Switzerland; Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Olena Mitchenko
- Dyslipidemia Department, State Institution National Scientific Centre "The M.D. Strazhesko Institute of Cardiology National Academy of Medical Sciences of Ukraine", Kiev, Ukraine
| | - Hapizah M Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM) and Faculty of Medicine Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - György Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zaneta Petrulioniene
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania; Clinic of Cardiac and Vascular Diseases, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | | | - Arman Postadzhiyan
- Bulgarian Society of Cardiology, Medical University of Sofia, Sofia, Bulgaria
| | - Ashraf Reda
- Cardiology, Menofia University, Egypt; Egyptian Association of Vernacular Biology and Atherosclerosis (EAVA), Egypt
| | - Željko Reiner
- Department of Internal Medicine, Division of Metabolic Diseases, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Wilson E Sadoh
- Cardiology Unit, Department of Child Health, University of Benin Teaching Hospital, Benin City, Edo State, Nigeria
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdullah Shehab
- Department of Internal Medicine, United Arab Emirates University-College of Medicine and Health Sciences, AlAin, United Arab Emirates
| | - Aleksander B Shek
- CAD and Atherosclerosis Laboratory, Republican Specialized Centre of Cardiology (RSCC), Ministry of Health of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Mario Stoll
- Honorary Commission for Cardiovascular Health (CHSCV), Montevideo, Uruguay
| | - Ta-Chen Su
- Departments of Internal Medicine and Environmental & Occupational Medicine, Cardiovascular Centre, National Taiwan University Hospital, Taipei, Taiwan
| | - Tavintharan Subramaniam
- Diabetes Centre, Admiralty Medical Centre, Singapore; Division of Endocrinology, Khoo Teck Puat Hospital, Singapore; Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Andrey V Susekov
- Faculty of Clinical Pharmacology and Therapeutics, Academy for Postgraduate Medical Education and Central Clinical Hospital, Academy of Medical Science, Moscow, Russia
| | | | - Myra Tilney
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Malta; Lipid Clinic, Mater Dei Hospital, Malta
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Thanh-Huong Truong
- Department of Cardiology, Hanoi Medical University, Hanoi, Viet Nam; Vietnam National Heart Institute, Bach Mai Hospital, Hanoi, Viet Nam
| | | | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark
| | | | - Margus Viigimaa
- Centre for Cardiovascular Medicine, North Estonia Medical Centre, Tallinn University of Technology, Tallinn, Estonia
| | - Branislav Vohnout
- Institute of Nutrition, FOZOS, Slovak Medical University, Bratislava, Slovakia; Coordination Centre for Familial Hyperlipoproteinemias, Slovak Medical University, Bratislava, Slovakia
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Shizuya Yamashita
- Rinku General Medical Centre and Osaka University Graduate School of Medicine, Osaka, Japan
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - Dan Gaita
- Universitatea de Medicina si Farmacie Victor Babes din Timisoara, Romania
| | - Lixin Jiang
- National Clinical Research Centre of Cardiovascular Diseases, Fuwai Hospital, National Centre for Cardiovascular Diseases, Beijing, China
| | - Lennart Nilsson
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Lourdes E Santos
- Cardinal Santos Medical Centre, University of the Philippines - Philippine General Hospital (UP-PGH), Philippines
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Deutsches Zentrumfür Herz- und Kreislauferkrankungen (DZHK), Munich Heart Alliance, Germany
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University, Ankara, Turkey
| | - Josip Car
- Global eHealth Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom; Centre for Population Health Sciences, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Martín-Campos JM, Plana N, Figueras R, Ibarretxe D, Caixàs A, Esteve E, Pérez A, Bueno M, Mauri M, Roig R, Martínez S, Pintó X, Masana L, Julve J, Blanco-Vaca F. Autosomal dominant hypercholesterolemia in Catalonia: Correspondence between clinical-biochemical and genetic diagnostics in 967 patients studied in a multicenter clinical setting. J Clin Lipidol 2018; 12:1452-1462. [PMID: 30293936 DOI: 10.1016/j.jacl.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autosomal dominant hypercholesterolemia (ADH) is associated with mutations in the low-density lipoprotein (LDL) receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin 9 (PCSK9) genes, and it is estimated to be greatly underdiagnosed. The most cost-effective strategy for increasing ADH diagnosis is a cascade screening from mutation-positive probands. OBJECTIVE The objective of this study was to evaluate the results from 2008 to 2016 of ADH genetic analysis performed in our clinical laboratory, serving most lipid units of Catalonia, a Spanish region with approximately 7.5 million inhabitants. METHODS After the application of the Dutch Lipid Clinic Network (DLCN) clinical diagnostic score for ADH, this information and blood or saliva from 23 different lipid clinic units were investigated in our laboratory. DNA was screened for mutations in LDLR, APOB, and PCSK9, using the DNA-array LIPOchip, the next-generation sequencing SEQPRO LIPO RS platform, and multiplex ligation-dependent probe amplification (MLPA). The Simon Broome Register Group (SBRG) criteria was calculated and analyzed for comparative purposes. RESULTS A total of 967 unrelated samples were analyzed. From this, 158 pathogenic variants were detected in 356 patients. The main components of the DLCN criteria associated with the presence of mutation were plasma LDL cholesterol (LDLc), age, and the presence of tendinous xanthomata. The contribution of family history to the diagnosis was lower than in other studies. DLCN and SBRG were similarly useful for predicting the presence of mutation. CONCLUSION In a real clinical practice, multicenter setting in Catalonia, the percentage of positive genetic diagnosis in patients potentially affected by ADH was 38.6%. The DLCN showed a relatively low capacity to predict mutation detection but a higher one for ruling out mutation.
Collapse
Affiliation(s)
- Jesús M Martín-Campos
- Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Serveis de Bioquímica, i d'Endocrinologia i Nutrició, IIB Sant Pau, CIBERDEM, Universitat Autònoma de Barcelona, Departaments de Bioquímica i Biologia Molecular, i Medicina, Barcelona, Spain.
| | - Núria Plana
- Hospital Universitari Sant Joan, Universitat Rovira i Virgili, Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lípids i Arteriosclerosi, IISPV, CIBERDEM, Reus, Spain
| | - Rosaura Figueras
- Hospital Universitari de Bellvitge, Servei de Medicina Interna, Unitat de Lípids i Risc Vascular, Universitat de Barcelona, IDIBELL, CIBEROBN, FIPEC, ABS 17 de Setembre, L'Hospitalet/El Prat de Llobregat, Spain
| | - Daiana Ibarretxe
- Hospital Universitari Sant Joan, Universitat Rovira i Virgili, Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lípids i Arteriosclerosi, IISPV, CIBERDEM, Reus, Spain
| | - Assumpta Caixàs
- Hospital Universitari Parc Taulí, Servei d'Endocrinologia i Nutrició, Institut Investigació i Innovació Parc Taulí I3PT-Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Eduardo Esteve
- Hospital Universitari de Girona Dr Josep Trueta, Servei d'Endocrinologia i Nutrició, CIBEROBN, Girona, Spain
| | - Antonio Pérez
- Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Serveis de Bioquímica, i d'Endocrinologia i Nutrició, IIB Sant Pau, CIBERDEM, Universitat Autònoma de Barcelona, Departaments de Bioquímica i Biologia Molecular, i Medicina, Barcelona, Spain
| | - Marta Bueno
- Hospital Universitari Arnau de Vilanova, Servei d'Endocrinologia i Nutrició, Lleida, Spain
| | - Marta Mauri
- Hospital de Terrassa, Servei de Medicina Interna, Terrassa, Spain
| | - Rosa Roig
- Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Serveis de Bioquímica, i d'Endocrinologia i Nutrició, IIB Sant Pau, CIBERDEM, Universitat Autònoma de Barcelona, Departaments de Bioquímica i Biologia Molecular, i Medicina, Barcelona, Spain
| | - Susana Martínez
- Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Serveis de Bioquímica, i d'Endocrinologia i Nutrició, IIB Sant Pau, CIBERDEM, Universitat Autònoma de Barcelona, Departaments de Bioquímica i Biologia Molecular, i Medicina, Barcelona, Spain
| | - Xavier Pintó
- Hospital Universitari de Bellvitge, Servei de Medicina Interna, Unitat de Lípids i Risc Vascular, Universitat de Barcelona, IDIBELL, CIBEROBN, FIPEC, ABS 17 de Setembre, L'Hospitalet/El Prat de Llobregat, Spain
| | - Luís Masana
- Hospital Universitari Sant Joan, Universitat Rovira i Virgili, Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lípids i Arteriosclerosi, IISPV, CIBERDEM, Reus, Spain
| | - Josep Julve
- Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Serveis de Bioquímica, i d'Endocrinologia i Nutrició, IIB Sant Pau, CIBERDEM, Universitat Autònoma de Barcelona, Departaments de Bioquímica i Biologia Molecular, i Medicina, Barcelona, Spain
| | - Francisco Blanco-Vaca
- Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Serveis de Bioquímica, i d'Endocrinologia i Nutrició, IIB Sant Pau, CIBERDEM, Universitat Autònoma de Barcelona, Departaments de Bioquímica i Biologia Molecular, i Medicina, Barcelona, Spain.
| | | |
Collapse
|
18
|
Natarajan P, Peloso GM, Zekavat SM, Montasser M, Ganna A, Chaffin M, Khera AV, Zhou W, Bloom JM, Engreitz JM, Ernst J, O'Connell JR, Ruotsalainen SE, Alver M, Manichaikul A, Johnson WC, Perry JA, Poterba T, Seed C, Surakka IL, Esko T, Ripatti S, Salomaa V, Correa A, Vasan RS, Kellis M, Neale BM, Lander ES, Abecasis G, Mitchell B, Rich SS, Wilson JG, Cupples LA, Rotter JI, Willer CJ, Kathiresan S. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals. Nat Commun 2018; 9:3391. [PMID: 30140000 PMCID: PMC6107638 DOI: 10.1038/s41467-018-05747-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Large-scale deep-coverage whole-genome sequencing (WGS) is now feasible and offers potential advantages for locus discovery. We perform WGS in 16,324 participants from four ancestries at mean depth >29X and analyze genotypes with four quantitative traits-plasma total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, and triglycerides. Common variant association yields known loci except for few variants previously poorly imputed. Rare coding variant association yields known Mendelian dyslipidemia genes but rare non-coding variant association detects no signals. A high 2M-SNP LDL-C polygenic score (top 5th percentile) confers similar effect size to a monogenic mutation (~30 mg/dl higher for each); however, among those with severe hypercholesterolemia, 23% have a high polygenic score and only 2% carry a monogenic mutation. At these sample sizes and for these phenotypes, the incremental value of WGS for discovery is limited but WGS permits simultaneous assessment of monogenic and polygenic models to severe hypercholesterolemia.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Seyedeh Maryam Zekavat
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
- Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - May Montasser
- School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Andrea Ganna
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark Chaffin
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
| | - Amit V Khera
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jonathan M Bloom
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jesse M Engreitz
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
- Society of Fellows, Harvard University, Cambridge, MA, 02138, USA
| | - Jason Ernst
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | | | - Maris Alver
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - James A Perry
- School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Timothy Poterba
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Cotton Seed
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ida L Surakka
- Institute for Molecular Medicine Finland, Helsinki, 00290, Finland
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, Helsinki, 00290, Finland
| | - Veikko Salomaa
- Institute for Molecular Medicine Finland, Helsinki, 00290, Finland
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Ramachandran S Vasan
- Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA
- Framingham Heart Study, Framingham, MA, 01702, USA
| | - Manolis Kellis
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
- Computer Science and Artificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Benjamin M Neale
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Eric S Lander
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
| | - Goncalo Abecasis
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Braxton Mitchell
- School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - James G Wilson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- Framingham Heart Study, Framingham, MA, 01702, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LABioMed and Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Cristen J Willer
- Departments of Human Genetics, Internal Medicine, and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Familial hypercholesterolaemia is a hereditary disorder of lipoprotein metabolism which causes a lifelong increase in LDL-C levels resulting in premature coronary heart disease. The present review looks at some of the recent literature on how molecular methods can be used to assist in the definitive diagnosis of familial hypercholesterolaemia in a range of patient groups. RECENT FINDINGS Several recent studies have shown that the prevalence of clinical familial hypercholesterolaemia is higher than previously thought at 1/200 to 1/300, and that 2-5% of patients presenting with early myocardial infarction can be found to have a familial hypercholesterolaemia mutation. The present review then examines different approaches to molecular testing for familial hypercholesterolaemia including point mutation panels versus next-generation sequencing gene panels, and the range of genes tested by some of those panels. Finally, we review the recent evidence for polygenic hypercholesterolaemia within clinically defined familial hypercholesterolaemia patient populations. SUMMARY To identify patients with familial hypercholesterolaemia within clinically selected patient groups efficiently, a clinical scoring system should be combined with a molecular testing approach for mutations and for polygenic LDL-C single-nucleotide polymorphisms. Alternatively, a population screening methodology may be appropriate, using mutation testing at an early age before significant atherosclerosis has begun. The precise molecular testing method chosen may depend on the clinical presentation of the patient, and/or the population from which they arise.
Collapse
Affiliation(s)
- Colin A Graham
- aMolecular Diagnostics, Randox Laboratories Ltd., Crumlin bRegional Genetics Centre, Belfast City Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | | | | |
Collapse
|