1
|
Hu T, Ling R, Zhu Y. Advancements in imaging of intracranial atherosclerotic disease: beyond the arterial lumen to the vessel wall. Rev Neurosci 2025; 36:229-241. [PMID: 39565965 DOI: 10.1515/revneuro-2024-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/13/2024] [Indexed: 11/22/2024]
Abstract
Intracranial atherosclerotic disease (ICAD) significantly increases the risk of ischemic stroke. It involves the accumulation of plaque within arterial walls and narrowing or blockage of blood vessel lumens. Accurate imaging is crucial for the diagnosis and management of ICAD at both acute and chronic stages. However, imaging the small, tortuous intracranial arterial walls amidst complex structures is challenging. Clinicians have employed diverse approaches to improve imaging quality, with a particular emphasis on optimizing the acquisition of images using new techniques, enhancing spatial and temporal resolution of images, and refining post-processing techniques. ICAD imaging has evolved from depicting lumen stenosis to assessing blood flow reserve and identifying plaque components. Advanced techniques such as fractional flow reserve (FFR), high-resolution vessel wall magnetic resonance (VW-MR), optical coherence tomography (OCT), and radial wall strain (RWS) now allow direct visualization of flow impairment, vulnerable plaques, and blood flow strain to plaque, aiding in the selection of high-risk stroke patients for intervention. This article reviews the progression of imaging modalities from lumen stenosis to vessel wall pathology and compares their diagnostic value for risk stratification in ICAD patients.
Collapse
Affiliation(s)
- Tianhao Hu
- Department of Radiology, School of Medicine, 12474 Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University , No. 600, Yishan Road, Shanghai, 200233, China
| | - Runjianya Ling
- Department of Radiology, School of Medicine, 12474 Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University , No. 600, Yishan Road, Shanghai, 200233, China
| | - Yueqi Zhu
- Department of Radiology, School of Medicine, 12474 Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University , No. 600, Yishan Road, Shanghai, 200233, China
| |
Collapse
|
2
|
Chen YC, Zheng J, Zhou F, Tao XW, Chen Q, Feng Y, Su YY, Zhang Y, Liu T, Zhou CS, Tang CX, Weir-McCall J, Teng Z, Zhang LJ. Coronary CTA-based vascular radiomics predicts atherosclerosis development proximal to LAD myocardial bridging. Eur Heart J Cardiovasc Imaging 2024; 25:1462-1471. [PMID: 38781436 DOI: 10.1093/ehjci/jeae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
AIMS Cardiac cycle morphological changes can accelerate plaque growth proximal to myocardial bridging (MB) in the left anterior descending artery (LAD). To assess coronary computed tomography angiography (CCTA)-based vascular radiomics for predicting proximal plaque development in LAD MB. METHODS AND RESULTS Patients with repeated CCTA scans showing LAD MB without proximal plaque in index CCTA were included from Jinling Hospital as a development set. They were divided into training and internal testing in an 8:2 ratio. Patients from four other tertiary hospitals were set as external validation set. The endpoint was proximal plaque development of LAD MB in follow-up CCTA. Four vascular radiomics models were built: MB centreline (MB CL), proximal MB CL (pMB CL), MB cross-section (MB CS), and proximal MB CS (pMB CS), whose performances were evaluated using area under the receiver operating characteristic curve (AUC), integrated discrimination improvement (IDI), and net reclassification improvement (NRI). In total, 295 patients were included in the development (n = 192; median age, 54 ± 11 years; 137 men) and external validation sets (n = 103; median age, 57 ± 9 years; 57 men). The pMB CS vascular radiomics model exhibited higher AUCs in training, internal test, and external sets (AUC = 0.78, 0.75, 0.75) than the clinical and anatomical model (all P < 0.05). Integration of the pMB CS vascular radiomics model significantly raised the AUC of the clinical and anatomical model from 0.56 to 0.75 (P = 0.002), along with enhanced NRI [0.76 (0.37-1.14), P < 0.001] and IDI [0.17 (0.07-0.26), P < 0.001] in the external validation set. CONCLUSION The CCTA-based pMB CS vascular radiomics model can predict plaque development in LAD MB.
Collapse
Affiliation(s)
- Yan Chun Chen
- Department of Radiology, Jinling Hospital, Nanjing Medical University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu 210002, China
| | - Jin Zheng
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Fan Zhou
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu 210002, China
| | | | - Qian Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Yun Feng
- Department of Radiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223001, China
| | - Yun Yan Su
- Department of Radiology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Gusu District, Suzhou, Jiangsu 215006, China
| | - Yu Zhang
- Outpatient Department of Military, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei 230031, China
| | - Tongyuan Liu
- Department of Radiology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Chang Sheng Zhou
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu 210002, China
| | - Chun Xiang Tang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu 210002, China
| | - Jonathan Weir-McCall
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Royal Papworth Hospital, Cambridge, UK
| | - Zhongzhao Teng
- Nanjing Jingsan Medical Science and Technology, Ltd., Nanjing, Jiangsu, China
| | - Long Jiang Zhang
- Department of Radiology, Jinling Hospital, Nanjing Medical University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu 210002, China
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu 210002, China
| |
Collapse
|
3
|
Cho M, Hwang JS, Kim KR, Kim JK. Wall Shear Stress (WSS) Analysis in Atherosclerosis in Partial Ligated Apolipoprotein E Knockout Mouse Model through Computational Fluid Dynamics (CFD). Int J Mol Sci 2024; 25:9877. [PMID: 39337364 PMCID: PMC11432177 DOI: 10.3390/ijms25189877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis involves an inflammatory response due to plaque formation within the arteries, which can lead to ischemic stroke and heart disease. It is one of the leading causes of death worldwide, with various contributing factors such as hyperlipidemia, hypertension, obesity, diabetes, and smoking. Wall shear stress (WSS) is also known as a contributing factor of the formation of atherosclerotic plaques. Since the causes of atherosclerosis cannot be attributed to a single factor, clearly understanding the mechanisms and causes of its occurrence is crucial for preventing the disease and developing effective treatment strategies. To better understand atherosclerosis and define the correlation between various contributing factors, computational fluid dynamics (CFD) analysis is primarily used. CFD simulates WSS, the frictional force caused by blood flow on the vessel wall with various hemodynamic changes. Using apolipoprotein E knockout (ApoE-KO) mice subjected to partial ligation and a high-fat diet at 1-week, 2-week, and 4-week intervals as an atherosclerosis model, CFD analysis was conducted along with the reconstruction of carotid artery blood flow via magnetic resonance imaging (MRI) and compared to the inflammatory factors and pathological staining. In this experiment, a comparative analysis of the effects of high WSS and low WSS was conducted by comparing the standard deviation of time-averaged wall shear stress (TAWSS) at each point within the vessel wall. As a novel approach, the standard deviation of TAWSS within the vessel was analyzed with the staining results and pathological features. Since the onset of atherosclerosis cannot be explained by a single factor, the aim was to find the correlation between the thickness of atherosclerotic plaques and inflammatory factors through standard deviation analysis. As a result, the gap between low WSS and high WSS widened as the interval between weeks in the atherosclerosis mouse model increased. This finding not only linked the occurrence of atherosclerosis to WSS differences but also provided a connection to the causes of vulnerable plaques.
Collapse
Affiliation(s)
- Minju Cho
- Department of Convergence Medicine, Brain Korea 21 Project, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea
| | - Joon Seup Hwang
- Department of Convergence Medicine, Brain Korea 21 Project, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea
| | - Kyeong Ryeol Kim
- Department of Convergence Medicine, Brain Korea 21 Project, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea
| | - Jun Ki Kim
- Department of Convergence Medicine, Brain Korea 21 Project, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea
- Biomedical Engineering Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| |
Collapse
|
4
|
Zhao C, Lv R, Maehara A, Wang L, Gao Z, Xu Y, Guo X, Zhu Y, Huang M, Zhang X, Zhu J, Yu B, Jia H, Mintz GS, Tang D. Plaque Ruptures Are Related to High Plaque Stress and Strain Conditions: Direct Verification by Using In Vivo OCT Rupture Data and FSI Models. Arterioscler Thromb Vasc Biol 2024; 44:1617-1627. [PMID: 38721707 PMCID: PMC11208065 DOI: 10.1161/atvbaha.124.320764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/24/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND While it has been hypothesized that high plaque stress and strain may be related to plaque rupture, its direct verification using in vivo coronary plaque rupture data and full 3-dimensional fluid-structure interaction models is lacking in the current literature due to difficulty in obtaining in vivo plaque rupture imaging data from patients with acute coronary syndrome. This case-control study aims to use high-resolution optical coherence tomography-verified in vivo plaque rupture data and 3-dimensional fluid-structure interaction models to seek direct evidence for the high plaque stress/strain hypothesis. METHODS In vivo coronary plaque optical coherence tomography data (5 ruptured plaques, 5 no-rupture plaques) were acquired from patients using a protocol approved by the local institutional review board with informed consent obtained. The ruptured caps were reconstructed to their prerupture morphology using neighboring plaque cap and vessel geometries. Optical coherence tomography-based 3-dimensional fluid-structure interaction models were constructed to obtain plaque stress, strain, and flow shear stress data for comparative analysis. The rank-sum test in the nonparametric test was used for statistical analysis. RESULTS Our results showed that the average maximum cap stress and strain values of ruptured plaques were 142% (457.70 versus 189.22 kPa; P=0.0278) and 48% (0.2267 versus 0.1527 kPa; P=0.0476) higher than that for no-rupture plaques, respectively. The mean values of maximum flow shear stresses for ruptured and no-rupture plaques were 145.02 dyn/cm2 and 81.92 dyn/cm2 (P=0.1111), respectively. However, the flow shear stress difference was not statistically significant. CONCLUSIONS This preliminary case-control study showed that the ruptured plaque group had higher mean maximum stress and strain values. Due to our small study size, larger scale studies are needed to further validate our findings.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
| | - Rui Lv
- Department of Cardiac Surgery, Shandong Second Provincial General Hospital, Jinan, China (R.L.)
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China (R.L., L.W., Y.Z., M.H., D.T.)
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, NY (A.M., G.S.M.)
| | - Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China (R.L., L.W., Y.Z., M.H., D.T.)
| | - Zhanqun Gao
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
| | - Yishuo Xu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
| | - Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, China (X.G.)
| | - Yanwen Zhu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China (R.L., L.W., Y.Z., M.H., D.T.)
| | - Mengde Huang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China (R.L., L.W., Y.Z., M.H., D.T.)
| | - Xiaoguo Zhang
- Department of Cardiology, Zhongda Hospital, Southeast University, China (X.Z., J.Z.)
| | - Jian Zhu
- Department of Cardiology, Zhongda Hospital, Southeast University, China (X.Z., J.Z.)
| | - Bo Yu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
| | - Haibo Jia
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
| | - Gary S. Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, NY (A.M., G.S.M.)
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China (R.L., L.W., Y.Z., M.H., D.T.)
- Mathematical Sciences Department, Worcester Polytechnic Institute, MA (D.T.)
| |
Collapse
|
5
|
Lin J, Chen X, Li Y, Yu L, Chen Y, Zhang B. A dual-targeting therapeutic nanobubble for imaging-guided atherosclerosis treatment. Mater Today Bio 2024; 26:101037. [PMID: 38586870 PMCID: PMC10995877 DOI: 10.1016/j.mtbio.2024.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Atherosclerosis is a cardiovascular disease that seriously endangers human health. Low shear stress (LSS) is recognized as a vital factor in causing chronic inflammatory and further inducing the occurrence and development of atherosclerosis. Targeting imaging and treatment are of substantial significance for the diagnosis and therapy of atherosclerosis. On this ground, a kind of ultrasound (US) imaging-guided therapeutic polymer nanobubbles (NBs) with dual targeting of magnetism and antibody was rationally designed and constructed for the efficiently treating LSS-mediated atherosclerosis. Under the combined targeting effect of an external magnetic field and antibodies, the drug-loaded therapeutic NBs can be effectively accumulated in the inflammatory area caused by LSS. Upon US irradiation, the NBs can be selectively disrupted, leading to the rapid release of the loaded drugs at the targeted site. Notably, the US irradiation generates a cavitation effect that induces repairable micro gaps in nearby cells, thereby enhancing the uptake of released drugs and further improving the therapeutic effect. The prominent US imaging, efficient anti-inflammatory effect and treatment outcome of LSS-mediated atherosclerosis had been verified in vivo on a surgically constructed LSS-atherosclerosis animal model. This work showcased the potential of the designed NBs with multifunctionality for in vivo imaging, dual-targeting, and drug delivery in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jie Lin
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Xiaoying Chen
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Yi Li
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Luodan Yu
- Department of Radiology, Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
- Shanghai Institute of Materdicine, Shanghai, 200051, PR China
| | - Bo Zhang
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| |
Collapse
|
6
|
Bai X, Fu M, Li Z, Gao P, Zhao H, Li R, Sui B. Distribution and regional variation of wall shear stress in the curved middle cerebral artery using four-dimensional flow magnetic resonance imaging. Quant Imaging Med Surg 2022; 12:5462-5473. [PMID: 36465823 PMCID: PMC9703110 DOI: 10.21037/qims-22-67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2023]
Abstract
BACKGROUND To investigate the distribution and regional variation of wall shear stress (WSS) in the curved middle cerebral artery (MCA) in healthy individuals using four-dimensional (4D) flow magnetic resonance imaging (MRI). METHODS A total of 44 healthy participants (18 males; mean ages: 27.16±5.69 years) were included in this cross-sectional study. The WSS parameters of mean, minimum, and maximum values, the coefficient of variation of time-averaged WSS (TAWSSCV), and the maximum values of the oscillatory shear index (OSI) were calculated and compared in the curved proximal (M1) segments. Three cross-sectional planes were selected: the location perpendicular to the beginning of the long axis of the curved M1 segment of the MCA (proximal section), the most curved M1 location (curved M1 section), and the location before the insular (M2) segment bifurcation (distal section). The WSS and OSI parameters of the proximal, curved, and distal sections of the curved M1 segment were compared, including the inner and outer curvatures of the curved M1 section. RESULTS Of the curved M1 segments, the curved M1 section had significantly lower minimum TAWSS values than the proximal (P=0.031) and distal sections (P=0.002), and the curved M1 section had significantly higher maximum OSI values than the distal section (P=0.001). The TAWSSCV values at the curved M1 section were significantly higher than the proximal (P=0.001) and distal sections (P<0.001). At the curved M1 section, the inner curvature showed a significantly lower minimum TAWSS (P=0.013) and higher maximum OSI values (P=0.002) than the outer curvature. CONCLUSIONS There are distribution variation of WSS and OSI parameters at the curved M1 section of the curved MCA, and the inner curvature of the curved M1 section has the lowest WSS and highest OSI distribution. The local hemodynamic features of the curved MCA may be related to the predilection for atherosclerotic plaque development.
Collapse
Affiliation(s)
- Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingzhu Fu
- Center for Biomedical Imaging Research, Biomedical Engineering Department, School of Medicine, Tsinghua University, Beijing, China
| | - Zhiye Li
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peiyi Gao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haiqing Zhao
- Department of Radiology, Beijing Chui Yang Liu Hospital, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Biomedical Engineering Department, School of Medicine, Tsinghua University, Beijing, China
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
7
|
Rostam-Alilou AA, Jarrah HR, Zolfagharian A, Bodaghi M. Fluid-structure interaction (FSI) simulation for studying the impact of atherosclerosis on hemodynamics, arterial tissue remodeling, and initiation risk of intracranial aneurysms. Biomech Model Mechanobiol 2022; 21:1393-1406. [PMID: 35697948 DOI: 10.1007/s10237-022-01597-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022]
Abstract
The biomechanical and hemodynamic effects of atherosclerosis on the initiation of intracranial aneurysms (IA) are not yet clearly discovered. Also, studies for the observation of hemodynamic variation due to atherosclerotic stenosis and its impact on arterial remodeling and aneurysm genesis remain a controversial field of vascular engineering. The majority of studies performed are relevant to computational fluid dynamic (CFD) simulations. CFD studies are limited in consideration of blood and arterial tissue interactions. In this work, the interaction of the blood and vessel tissue because of atherosclerotic occlusions is studied by developing a fluid and structure interaction (FSI) analysis for the first time. The FSI presents a semi-realistic simulation environment to observe how the blood and vessels' structural interactions can increase the accuracy of the biomechanical study results. In the first step, many different intracranial vessels are modeled for an investigation of the biomechanical and hemodynamic effects of atherosclerosis in arterial tissue remodeling. Three physiological conditions of an intact artery, the artery with intracranial atherosclerosis (ICAS), and an atherosclerotic aneurysm (ACA) are employed in the models with required assumptions. Finally, the obtained outputs are studied with comparative and statistical analyses according to the intact model in a normal physiological condition. The results show that existing occlusions in the cross-sectional area of the arteries play a determinative role in changing the hemodynamic behavior of the arterial segments. The undesirable variations in blood velocity and pressure throughout the vessels increase the risk of arterial tissue remodeling and aneurysm formation.
Collapse
Affiliation(s)
- Ali A Rostam-Alilou
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Hamid R Jarrah
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong, 3216, Australia
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
8
|
Hossain T, Anan N, Arafat MT. The effects of plaque morphological characteristics on the post-stenotic flow in left main coronary artery bifurcation. Biomed Phys Eng Express 2021; 7. [PMID: 34425569 DOI: 10.1088/2057-1976/ac202c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Local post-stenotic hemodynamics has critical influence in the atherosclerotic plaque progression occurring in susceptible arterial sites, in particular the left main coronary artery (LMCA) bifurcation. Understanding the effects of plaque morphological characteristics: stenosis severity (SS), eccentricity index (EI) and lesion length (LL) on the post-stenotic flow behavior can significantly improve treatment planning. In order to investigate these effects, we have employed computational fluid dynamics (CFD) simulations in twenty computer-generated and five patient-specific LMCA models and the hemodynamic parameters: velocity, pressure (P), wall pressure gradient (WPG), wall shear stress (WSS), time averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT) and helicity intensity (h2) were analyzed. Our results revealed that the effect of stenosis eccentricity varied significantly for different values of stenosis severity and lesion length. Regions with low WSS, low TAWSS and high RRT were more prominent in models having higher stenosis severity. For smaller lesion length, at low and moderate stenosis severity, surface area with low TAWSS and high RRT decreased with increasing eccentricity index, whereas for high stenosis severity models, low TAWSS region and average RRT values increased with eccentricity. However, for models with longer lesion length, regions with high OSI and RRT overall increased gradually with eccentricity. The helicity intensity (h2) of all models remained very low except at the most eccentric model with longer lesion length. The presence of very high helical flow in this model suggests the possibility of atheroprotective flow. It can be concluded that all plaque morphological characteristics covered under this investigation play an important role in plaque progression.
Collapse
Affiliation(s)
- Tahura Hossain
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| | - Noushin Anan
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1205, Bangladesh
| |
Collapse
|