1
|
Deng D, Xu L, Liu Y, Li C, Jiang Q, Shi J, Feng S, Lin Y. HIIT versus MICT in MASLD: mechanisms mediated by gut-liver axis crosstalk, mitochondrial dynamics remodeling, and adipokine signaling attenuation. Lipids Health Dis 2025; 24:144. [PMID: 40241065 PMCID: PMC12004573 DOI: 10.1186/s12944-025-02565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/10/2025] [Indexed: 04/18/2025] Open
Abstract
OBJECTIVE Compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on metabolic dysfunction-associated steatotic liver disease (MASLD), focusing on the mechanisms by which these two exercise modalities influence gut microbiota structure, bile acid metabolism, and intestinal barrier function, as well as their regulatory roles in hepatic lipid synthesis and oxidative dynamics. Explore the synergistic effects of exercise-mediated mitochondrial fusion remodeling and leptin signaling, elucidate the causal relationship between gut-derived factors and hepatic metabolic reprogramming, and reveal the potential multi-scale and cross-organ dominant mechanisms of exercise, providing a theoretical basis for systematically comparing the effects of different exercise modalities. METHODS Thirty-two male rats were randomly divided into NFD (n = 8) and HFD (n = 24) groups and fed normal chow and high-fat chow, respectively. After eight weeks, the HFD group was randomly divided into three groups: (1) MICT-8; (2) HIIT-8; and (3) HFD-8. At the end of the experiment, blood, liver, ileum, and skeletal muscle samples were collected for analysis of the rats' baseline conditions, mitochondrial function, hepatic lipid metabolism, bile acid pathway and gut microbiota, and synthesis of analyses. RESULTS Both modes of exercise ameliorated metabolic dysregulation and attenuated pathological progression, insulin resistance, and liver fat accumulation in rats with MASLD. Furthermore, both interventions counteracted HFD-induced intestinal barrier dysfunction and restored gut-liver axis homeostasis. HIIT and MICT also upregulated bile acid-related gene expression modulated butyrate-producing bacterial taxa, and adjusted the abundance of butyrate-generating bacteria. CONCLUSION Both HIIT and MICT improved lipid metabolism in MASLD rats and the difference between the HIIT and MICT groups was not statistically significant. It is noteworthy that HIIT was more effective in improving mitochondrial function in MASLD than MICT (P < 0.001).
Collapse
Affiliation(s)
- Dongkun Deng
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Lin Xu
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China.
| | - Yufei Liu
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China.
| | - Chang Li
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Qingfeng Jiang
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Jiaming Shi
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Shuo Feng
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Yunhua Lin
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| |
Collapse
|
2
|
Sui Y, Zhang T, Ou S, Li G, Liu L, Lu T, Zhang C, Cao Y, Bai R, Zhou H, Zhao X, Yuan Y, Wang G, Chen H, Kong R, Sun B, Li L. Statin therapy associated Lactobacillus intestinalis attenuates pancreatic fibrosis through remodeling intestinal homeostasis. NPJ Biofilms Microbiomes 2025; 11:59. [PMID: 40234406 PMCID: PMC12000565 DOI: 10.1038/s41522-025-00695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 04/04/2025] [Indexed: 04/17/2025] Open
Abstract
Chronic pancreatitis (CP) is characterized by irreversible fibrotic destruction and impaired pancreatic function. CP disrupts lipid metabolism and causes the imbalance of gut microbiota which in turn exacerbates pancreatic fibrosis. Statins alter gut microbiota and exert anti-inflammatory effects, but its role in CP has not been fully elucidated. Here, we found that statins-associated higher abundance of Lactobacillus intestinalis (L.intestinalis) maintained gut homeostasis that restrained bacteria translocation from gut to the pancreas, which eventually aggravated pancreatic fibrosis through inhibiting CD8+T cells-dependent immunity. Fecal microbiota transplantation (FMT) or L.intestinalis administration inhibited the infiltration of CD8+T cells and macrophages that delayed CP progression. L.intestinalis restrained the recruitment of M1 macrophages and limited the release of Ccl2/7 in the colon, which prevented epithelial damage and epithelial barrier dysfunction through blocking Ccl2/7-Ccr1 signaling. Our findings elucidate that the utilization of statin therapy or supplementation of L.intestinalis can be potential approach for the therapies of CP.
Collapse
Affiliation(s)
- Yuhang Sui
- Department of Liver Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Tao Zhang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Suwen Ou
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanqun Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liwei Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Minimally Invasive Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianqi Lu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Can Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yukai Cao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Bai
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoxin Zhou
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinbo Zhao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Yuan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Oncology Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Kong
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China.
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Li H, Liang J, Han M, Gao Z. Polyphenols synergistic drugs to ameliorate non-alcoholic fatty liver disease via signal pathway and gut microbiota: A review. J Adv Res 2025; 68:43-62. [PMID: 38471648 PMCID: PMC11785558 DOI: 10.1016/j.jare.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with an increasing incidence worldwide. Single drug therapy may have toxic side effects and disrupt gut microbiota balance. Polyphenols are widely used in disease intervention due to their distinctive nutritional properties and medicinal value, which a potential gut microbiota modulator. However, there is a lack of comprehensive review to explore the efficacy and mechanism of combined therapy with drugs and polyphenols for NAFLD. AIM OF REVIEW Based on this, this review firstly discusses the link between NAFLD and gut microbiota, and outlines the effects of polyphenols and drugs on gut microbiota. Secondly, it examined recent advances in the treatment and intervention of NAFLD with drugs and polyphenols and the therapeutic effect of the combination of the two. Finally, we highlight the underlying mechanisms of polyphenol combined drug therapy in NAFLD. This is mainly in terms of signaling pathways (NF-κB, AMPK, Nrf2, JAK/STAT, PPAR, SREBP-1c, PI3K/Akt and TLR) and gut microbiota. Furthermore, some emerging mechanisms such as microRNA potential biomarker therapies may provide therapeutic avenues for NAFLD. KEY SCIENTIFIC CONCEPTS OF REVIEW Drawing inspiration from combination drug strategies, the use of active substances in combination with drugs for NAFLD intervention holds transformative and prospective potential, both improve NAFLD and restore gut microbiota balance while reducing the required drug dosage. This review systematically discusses the bidirectional interactions between gut microbiota and NAFLD, and summarizes the potential mechanisms of polyphenol synergistic drugs in the treatment of NAFLD by modulating signaling pathways and gut microbiota. Future researches should develop multi-omics technology to identify patients who benefit from polyphenols combination drugs and devising individualized treatment plans to enhance its therapeutic effect.
Collapse
Affiliation(s)
- Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Garcia-Santamarina S, Kuhn M, Devendran S, Maier L, Driessen M, Mateus A, Mastrorilli E, Brochado AR, Savitski MM, Patil KR, Zimmermann M, Bork P, Typas A. Emergence of community behaviors in the gut microbiota upon drug treatment. Cell 2024; 187:6346-6357.e20. [PMID: 39321801 DOI: 10.1016/j.cell.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Pharmaceuticals can directly inhibit the growth of gut bacteria, but the degree to which such interactions manifest in complex community settings is an open question. Here, we compared the effects of 30 drugs on a 32-species synthetic community with their effects on each community member in isolation. While most individual drug-species interactions remained the same in the community context, communal behaviors emerged in 26% of all tested cases. Cross-protection during which drug-sensitive species were protected in community was 6 times more frequent than cross-sensitization, the converse phenomenon. Cross-protection decreased and cross-sensitization increased at higher drug concentrations, suggesting that the resilience of microbial communities can collapse when perturbations get stronger. By metabolically profiling drug-treated communities, we showed that both drug biotransformation and bioaccumulation contribute mechanistically to communal protection. As a proof of principle, we molecularly dissected a prominent case: species expressing specific nitroreductases degraded niclosamide, thereby protecting both themselves and sensitive community members.
Collapse
Affiliation(s)
- Sarela Garcia-Santamarina
- European Molecular Biology Laboratory, Genome Biology, Heidelberg, Germany; European Molecular Biology Laboratory, Structural and Computational Biology, Heidelberg, Germany
| | - Michael Kuhn
- European Molecular Biology Laboratory, Structural and Computational Biology, Heidelberg, Germany
| | - Saravanan Devendran
- European Molecular Biology Laboratory, Structural and Computational Biology, Heidelberg, Germany
| | - Lisa Maier
- European Molecular Biology Laboratory, Genome Biology, Heidelberg, Germany
| | - Marja Driessen
- European Molecular Biology Laboratory, Structural and Computational Biology, Heidelberg, Germany
| | - André Mateus
- European Molecular Biology Laboratory, Genome Biology, Heidelberg, Germany
| | - Eleonora Mastrorilli
- European Molecular Biology Laboratory, Structural and Computational Biology, Heidelberg, Germany
| | - Ana Rita Brochado
- European Molecular Biology Laboratory, Genome Biology, Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology, Heidelberg, Germany
| | - Kiran R Patil
- European Molecular Biology Laboratory, Structural and Computational Biology, Heidelberg, Germany.
| | - Michael Zimmermann
- European Molecular Biology Laboratory, Structural and Computational Biology, Heidelberg, Germany.
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology, Heidelberg, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology, Heidelberg, Germany; European Molecular Biology Laboratory, Structural and Computational Biology, Heidelberg, Germany.
| |
Collapse
|
5
|
Luangphiphat W, Prombutara P, Muangsillapasart V, Sukitpunyaroj D, Eeckhout E, Taweechotipatr M. Exploring of gut microbiota features in dyslipidemia and chronic coronary syndrome patients undergoing coronary angiography. Front Microbiol 2024; 15:1384146. [PMID: 38646625 PMCID: PMC11026706 DOI: 10.3389/fmicb.2024.1384146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Chronic coronary syndrome (CCS) has a high mortality rate, and dyslipidemia is a major risk factor. Atherosclerosis, a cause of CCS, is influenced by gut microbiota dysbiosis and its metabolites. The objective of this study was to study the diversity and composition of gut microbiota and related clinical parameters among CCS patients undergoing coronary angiography and dyslipidemia patients in comparison to healthy volunteers in Thailand. CCS patients had more risk factors and higher inflammatory markers, high-sensitivity C-reactive protein (hs-CRP) than others. The alpha diversity was lower in dyslipidemia and CCS patients than in the healthy group. A significant difference in the composition of gut microbiota was observed among the three groups. The relative abundance of Proteobacteria, Fusobacteria, Enterobacteriaceae, Prevotella, and Streptococcus was significantly increased while Roseburia, Ruminococcus, and Faecalibacterium were lower in CCS patients. In CCS patients, Lachnospiraceae, Peptostreptococcaceae, and Pediococcus were positively correlated with hs-CRP. In dyslipidemia patients, Megasphaera was strongly positively correlated with triglyceride (TG) level and negatively correlated with high-density lipoprotein cholesterol (HDL-C). The modification of gut microbiota was associated with changes in clinical parameters involved in the development of coronary artery disease (CAD) in CCS patients.
Collapse
Affiliation(s)
- Wongsakorn Luangphiphat
- Innovative Anatomy Program, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
- Division of Cardiology, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Mod Gut Co., Ltd., Bangkok, Thailand
| | - Viroj Muangsillapasart
- Division of Cardiology, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Damrong Sukitpunyaroj
- Division of Cardiology, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Eric Eeckhout
- Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Malai Taweechotipatr
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
- Clinical Research Center, Faculty of Medicine, Srinakharinwirot University, Ongkharak, Thailand
| |
Collapse
|
6
|
She J, Tuerhongjiang G, Guo M, Liu J, Hao X, Guo L, Liu N, Xi W, Zheng T, Du B, Lou B, Gao X, Yuan X, Yu Y, Zhang Y, Gao F, Zhuo X, Xiong Y, Zhang X, Yu J, Yuan Z, Wu Y. Statins aggravate insulin resistance through reduced blood glucagon-like peptide-1 levels in a microbiota-dependent manner. Cell Metab 2024; 36:408-421.e5. [PMID: 38325336 DOI: 10.1016/j.cmet.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/23/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024]
Abstract
Statins are currently the most common cholesterol-lowering drug, but the underlying mechanism of statin-induced hyperglycemia is unclear. To investigate whether the gut microbiome and its metabolites contribute to statin-associated glucose intolerance, we recruited 30 patients with atorvastatin and 10 controls, followed up for 16 weeks, and found a decreased abundance of the genus Clostridium in feces and altered serum and fecal bile acid profiles among patients with atorvastatin therapy. Animal experiments validated that statin could induce glucose intolerance, and transplantation of Clostridium sp. and supplementation of ursodeoxycholic acid (UDCA) could ameliorate statin-induced glucose intolerance. Furthermore, oral UDCA administration in humans alleviated the glucose intolerance without impairing the lipid-lowering effect. Our study demonstrated that the statin-induced hyperglycemic effect was attributed to the Clostridium sp.-bile acids axis and provided important insights into adjuvant therapy of UDCA to lower the adverse risk of statin therapy.
Collapse
Affiliation(s)
- Jianqing She
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, China; MED-X Institute, Center for Immunological and Metabolic Diseases (CIMD), First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gulinigaer Tuerhongjiang
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Manyun Guo
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Junhui Liu
- Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiang Hao
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Liangan Guo
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Nairong Liu
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Wen Xi
- Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Zheng
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Bin Du
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Bowen Lou
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Xiyu Gao
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Xiao Yuan
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yue Yu
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yi Zhang
- MED-X Institute, Center for Immunological and Metabolic Diseases (CIMD), First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fan Gao
- Clinical Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaozhen Zhuo
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, China
| | - Ying Xiong
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, China
| | - Xiang Zhang
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Zuyi Yuan
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, China.
| | - Yue Wu
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Chan M, Ghadieh C, Irfan I, Khair E, Padilla N, Rebeiro S, Sidgreaves A, Patravale V, Disouza J, Catanzariti R, Pont L, Williams K, De Rubis G, Mehndiratta S, Dhanasekaran M, Dua K. Exploring the influence of the microbiome on the pharmacology of anti-asthmatic drugs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:751-762. [PMID: 37650889 PMCID: PMC10791706 DOI: 10.1007/s00210-023-02681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
The microbiome is increasingly implicated in playing a role in physiology and pharmacology; in this review, we investigate the literature on the possibility of bacterial influence on the pharmacology of anti-asthmatic drugs, and the potential impact this has on asthmatic patients. Current knowledge in this area of research reveals an interaction between the gut and lung microbiome and the development of asthma. The influence of microbiome on the pharmacokinetics and pharmacodynamics of anti-asthmatic drugs is limited; however, understanding this interaction will assist in creating a more efficient treatment approach. This literature review highlighted that bioaccumulation and biotransformation in the presence of certain gut bacterial strains could affect drug metabolism in anti-asthmatic drugs. Furthermore, the bacterial richness in the lungs and the gut can influence drug efficacy and could also play a role in drug response. The implications of the above findings suggest that the microbiome is a contributing factor to an individuals' pharmacological response to anti-asthmatic drugs. Hence, future directions for research should follow investigating how these processes affect asthmatic patients and consider the role of the microbiome on drug efficacy and modify treatment guidelines accordingly.
Collapse
Affiliation(s)
- Michael Chan
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Chloe Ghadieh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Isphahan Irfan
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Eamen Khair
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Natasha Padilla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sanshya Rebeiro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Annabel Sidgreaves
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Maharashtra, 416113, India
| | - Rachelle Catanzariti
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Lisa Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
8
|
Horvath A, Zukauskaite K, Hazia O, Balazs I, Stadlbauer V. Human gut microbiome: Therapeutic opportunities for metabolic syndrome-Hype or hope? Endocrinol Diabetes Metab 2024; 7:e436. [PMID: 37771199 PMCID: PMC10781898 DOI: 10.1002/edm2.436] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 09/30/2023] Open
Abstract
Shifts in gut microbiome composition and metabolic disorders are associated with one another. Clinical studies and experimental data suggest a causal relationship, making the gut microbiome an attractive therapeutic goal. Diet, intake of probiotics or prebiotics and faecal microbiome transplantation (FMT) are methods to alter a person's microbiome composition. Although FMT may allow establishing a proof of concept to use microbiome modulation to treat metabolic disorders, studies show mixed results regarding the effects on metabolic parameters as well as on the composition of the microbiome. This review summarizes the current knowledge on diet, probiotics, prebiotics and FMT to treat metabolic diseases, focusing on studies that also report alterations in microbiome composition. Furthermore, clinical trial results on the effects of common drugs used to treat metabolic diseases are synopsized to highlight the bidirectional relationship between the microbiome and metabolic diseases. In conclusion, there is clear evidence that microbiome modulation has the potential to influence metabolic diseases; however, it is not possible to distinguish which intervention is the most successful. In addition, a clear commitment from all stakeholders is necessary to move forward in the direction of developing targeted interventions for microbiome modulation.
Collapse
Affiliation(s)
- Angela Horvath
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Kristina Zukauskaite
- Medical University of GrazGrazAustria
- Life Sciences CentreVilnius UniversityVilniusLithuania
| | - Olha Hazia
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Irina Balazs
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Vanessa Stadlbauer
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| |
Collapse
|
9
|
She J, Sun L, Yu Y, Fan H, Li X, Zhang X, Zhuo X, Guo M, Liu J, Liu P, Tuerhongjiang G, Du B, Li H, Yu J, Yuan Z, Wu Y. A gut feeling of statin. Gut Microbes 2024; 16:2415487. [PMID: 39470680 PMCID: PMC11540068 DOI: 10.1080/19490976.2024.2415487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
Statins, known as HMG-CoA reductase inhibitors, are widely utilized to reduce blood cholesterol levels and possess pleiotropic effects, including the influence on inflammation and macrophage proliferation. Despite their significant impact in diminishing the incidence of cardiovascular events and mortality, individual responses to statin therapy vary considerably. Understanding this variability is essential for optimizing treatment outcomes and minimizing adverse effects. The gut microbiota, a complex ecosystem of microorganisms within the gastrointestinal tract, plays a critical role in human health and disease. Emerging evidence has linked the gut microbiota to drug metabolism and response, with the potential to modulate the efficacy of statin therapy and its side effects. This review provides a comprehensive overview of the interaction between the gut microbiota and statins. It discusses how the gut microbiota can influence the therapeutic effects and side effects of statins and examines the mechanisms by which the gut microbiota affect statin response and cardiovascular diseases.
Collapse
Affiliation(s)
- Jianqing She
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an, Shaanxi, China
| | - Lizhe Sun
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Yue Yu
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Heze Fan
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Xia Li
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Xinyu Zhang
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Xiaozhen Zhuo
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an, Shaanxi, China
| | - Manyun Guo
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Junhui Liu
- Clinical Laboratory, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Peining Liu
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Gulinigaer Tuerhongjiang
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Bin Du
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Hongbing Li
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Jun Yu
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zuyi Yuan
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Yue Wu
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Zeng SY, Liu YF, Liu JH, Zeng ZL, Xie H, Liu JH. Potential Effects of Akkermansia Muciniphila in Aging and Aging-Related Diseases: Current Evidence and Perspectives. Aging Dis 2023; 14:2015-2027. [PMID: 37199577 PMCID: PMC10676789 DOI: 10.14336/ad.2023.0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/25/2023] [Indexed: 05/19/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is an anaerobic bacterium that widely colonizes the mucus layer of the human and animal gut. The role of this symbiotic bacterium in host metabolism, inflammation, and cancer immunotherapy has been extensively investigated over the past 20 years. Recently, a growing number of studies have revealed a link between A. muciniphila, and aging and aging-related diseases (ARDs). Research in this area is gradually shifting from correlation analysis to exploration of causal relationships. Here, we systematically reviewed the association of A. muciniphila with aging and ARDs (including vascular degeneration, neurodegenerative diseases, osteoporosis, chronic kidney disease, and type 2 diabetes). Furthermore, we summarize the potential mechanisms of action of A. muciniphila and offer perspectives for future studies.
Collapse
Affiliation(s)
- Shi-Yu Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Yi-Fu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Jiang-Hua Liu
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhao-Lin Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
11
|
Wu J, Xia C, Liu C, Zhang Q, Xia C. The role of gut microbiota and drug interactions in the development of colorectal cancer. Front Pharmacol 2023; 14:1265136. [PMID: 37680706 PMCID: PMC10481531 DOI: 10.3389/fphar.2023.1265136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The human gut microbiota is a complex ecosystem regulating the host's environmental interaction. The same functional food or drug may have varying bioavailability and distinct effects on different individuals. Drugs such as antibiotics can alter the intestinal flora, thus affecting health. However, the relationship between intestinal flora and non-antibiotic drugs is bidirectional: it is not only affected by drugs; nevertheless, it can alter the drug structure through enzymes and change the bioavailability, biological activity, or toxicity of drugs to improve their efficacy and safety. This review summarizes the roles and mechanisms of antibiotics, antihypertensive drugs, nonsteroidal anti-inflammatory drugs, lipid-lowering drugs, hypoglycemic drugs, virus-associated therapies, metabolites, and dietary in modulating the colorectal cancer gut microbiota. It provides a reference for future antitumor therapy targeting intestinal microorganisms.
Collapse
Affiliation(s)
- Jinna Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Pharmacy, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Mruk-Mazurkiewicz H, Kulaszyńska M, Jakubczyk K, Janda-Milczarek K, Czarnecka W, Rębacz-Maron E, Zacha S, Sieńko J, Zeair S, Dalewski B, Marlicz W, Łoniewski I, Skonieczna-Żydecka K. Clinical Relevance of Gut Microbiota Alterations under the Influence of Selected Drugs-Updated Review. Biomedicines 2023; 11:biomedicines11030952. [PMID: 36979931 PMCID: PMC10046554 DOI: 10.3390/biomedicines11030952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
As pharmacology and science progress, we discover new generations of medicines. This relationship is a response to the increasing demand for medicaments and is powered by progress in medicine and research about the respective entities. However, we have questions about the efficiency of pharmacotherapy in individual groups of patients. The effectiveness of therapy is controlled by many variables, such as genetic predisposition, age, sex and diet. Therefore, we must also pay attention to the microbiota, which fulfill a lot of functions in the human body. Drugs used in psychiatry, gastroenterology, diabetology and other fields of medicine have been demonstrated to possess much potential to change the composition and probably the function of the intestinal microbiota, which consequently creates long-term risks of developing chronic diseases. The article describes the amazing interactions between gut microbes and drugs currently used in healthcare.
Collapse
Affiliation(s)
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Institute of Biology, Department of Ecology and Anthropology, University of Szczecin, 71-415 Szczecin, Poland
| | - Sławomir Zacha
- Department of Pediatric Orthopedics and Oncology of the Musculoskeletal System, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Jerzy Sieńko
- Department of General and Gastroenterology Oncology Surgery, Pomeranian Medical University in Szczecin, 71-899 Szczecin, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Samir Zeair
- General and Transplant Surgery Ward with Sub-Departments of Pomeranian Regional Hospital in Szczecin, 71-455 Arkonska, Poland
| | - Bartosz Dalewski
- Department of Dental Prosthetics, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | | |
Collapse
|
13
|
Zha H, Lv J, Lou Y, Wo W, Xia J, Li S, Zhuge A, Tang R, Si N, Hu Z, Lu H, Chang K, Wang C, Si G, Li L. Alterations of gut and oral microbiota in the individuals consuming take-away food in disposable plastic containers. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129903. [PMID: 36087528 DOI: 10.1016/j.jhazmat.2022.129903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MP) and nanoplastics (NP) exist in the disposable plastic take-away containers. This study aims to determine the gut and oral microbiota alterations in the individuals frequently and occasionally consuming take-away food in disposable plastic containers (TFDPC), and explore the effect of micro/nanoplastics (MNP) reduction on gut microbiota in mice. TFDPC consumption are associated with greater presences of gastrointestinal dysfunction and cough. Both occasional and frequent consumers have altered gut and oral microbiota, and their gut diversity and evenness are greater than those of non-TFDPC consuming cohort. Multiple gut and oral bacteria are associated with TFDPC consumers, among which intestinal Collinsella and oral Thiobacillus are most associated with the frequent consumers, while intestinal Faecalibacterium is most associated with the occasional consumers. Although some gut bacteria associated with the mice treated with 500 µg NP and 500 µg MP are decreased in the mice treated with 200 µg NP, the gut microbiota of the three MNP groups are all different from the control group. This study demonstrates that TFDPC induces gut and oral microbiota alterations in the consumers, and partial reduction of the size and amount of MNP cannot rectify the MNP-induced gut microbial dysbiosis.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiawen Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Lou
- Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Wanlong Wo
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nian Si
- Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Zhihao Hu
- Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Chenyu Wang
- Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Guinian Si
- Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Santopaolo F, Coppola G, Giuli L, Gasbarrini A, Ponziani FR. Influence of Gut–Liver Axis on Portal Hypertension in Advanced Chronic Liver Disease: The Gut Microbiome as a New Protagonist in Therapeutic Management. MICROBIOLOGY RESEARCH 2022; 13:539-555. [DOI: 10.3390/microbiolres13030038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Clinically significant portal hypertension is associated with most complications of advanced chronic liver disease (ACLD), including variceal bleeding, ascites, spontaneous bacterial peritonitis, hepatorenal syndrome, and hepatic encephalopathy. Gut dysbiosis is a hallmark of ACLD with portal hypertension and consists of the overgrowth of potentially pathogenic bacteria and a decrease in autochthonous bacteria; additionally, congestion makes the intestinal barrier more permeable to bacteria and their products, which contributes to the development of complications through inflammatory mechanisms. This review summarizes current knowledge on the role of the gut–liver axis in the pathogenesis of portal hypertension, with a focus on therapies targeting portal hypertension and the gut microbiota. The modulation of the gut microbiota on several levels represents a major challenge in the upcoming years; in-depth characterization of the molecular and microbiological mechanisms linking the gut–liver axis to portal hypertension in a bidirectional relationship could pave the way to the identification of new therapeutic targets for innovative therapies in the management of ACLD.
Collapse
Affiliation(s)
- Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Giuli
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|