1
|
Buzzelli L, Segreti A, Di Gioia D, Lemme E, Squeo MR, Nenna A, Di Gioia G. Alternative lipid lowering strategies: State-of-the-art review of red yeast rice. Fitoterapia 2024; 172:105719. [PMID: 37931717 DOI: 10.1016/j.fitote.2023.105719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Red yeast rice (RYR) is an entirely natural product that originates from the fermentation of white rice (Oryza sativa) with a yeast, mainly Monascus Purpureus, and has been part of traditional Chinese medicine and diet since ancient times. It has generated great interest in recent years in the context of cardiovascular (CV) prevention due to its ability to inhibit endogenous cholesterol production, helping to achieve and maintain optimal plasma lipid concentrations. This review aims to make an extensive 360-degree assessment and summary of the whole currently available scientific evidence about RYR, starting with its biochemical composition, passing through a historical reconstruction of all the studies that have evaluated its efficacy and safety in cholesterol-lowering action, with a focus on CV outcomes, and ultimately addressing its other relevant clinical effects. We also discuss its possible therapeutic role, alone or in combination with other nutraceuticals, in different clinical scenarios, taking into account the positions of major scientific documents on the issue, and describe the articulate legal controversies that have characterized the regulation of its use up to the present day. RYR preparations have been proven safe and effective in improving lipid profile, with a potential role in reducing cardiovascular risk. They can be considered as additional supportive agents in the armamentarium of lipid-modifying therapies.
Collapse
Affiliation(s)
- Lorenzo Buzzelli
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Andrea Segreti
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis, 15, 00135 Rome, Italy
| | - Daniela Di Gioia
- Farmacia del Corso, Via Federico II, 50, 71036 Lucera, Foggia, Italy
| | - Erika Lemme
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis, 15, 00135 Rome, Italy
| | - Maria Rosaria Squeo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis, 15, 00135 Rome, Italy
| | - Antonio Nenna
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Giuseppe Di Gioia
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis, 15, 00135 Rome, Italy; Institute of Sport Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy.
| |
Collapse
|
2
|
Sadowska A, Osiński P, Roztocka A, Kaczmarz-Chojnacka K, Zapora E, Sawicka D, Car H. Statins-From Fungi to Pharmacy. Int J Mol Sci 2023; 25:466. [PMID: 38203637 PMCID: PMC10779115 DOI: 10.3390/ijms25010466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Statins have been used in the treatment of hyperlipidemia, both as monotherapy and in combination therapy. Natural fermentation processes of fungi such as Monascus spp., Penicillium spp., Aspergillus terreus, and Pleurotus ostreatus have given rise to natural statins. Compactin (mevastatin), the original naturally occurring statin, is the primary biotransformation substrate in the manufacturing process of marketed drugs. Statins are classified into natural, semi-synthetic derivatives of natural statins, and synthetic ones. Synthetic statins differ from natural statins in their structural composition, with the only common feature being the HMG-CoA-like moiety responsible for suppressing HMG-CoA reductase. Statins do not differ significantly regarding their pleiotropic and adverse effects, but their characteristics depend on their pharmacokinetic parameters and chemical properties. This paper focuses on describing the processes of obtaining natural statins, detailing the pharmacokinetics of available statins, divided into natural and synthetic, and indicating their pleiotropic effects.
Collapse
Affiliation(s)
- Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (D.S.); (H.C.)
| | - Patryk Osiński
- Student’s Pharmacological Club, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland; (P.O.); (A.R.); (K.K.-C.)
| | - Alicja Roztocka
- Student’s Pharmacological Club, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland; (P.O.); (A.R.); (K.K.-C.)
| | - Karolina Kaczmarz-Chojnacka
- Student’s Pharmacological Club, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland; (P.O.); (A.R.); (K.K.-C.)
| | - Ewa Zapora
- Department of Silviculture and Forest Use, Institute of Forest Sciences, Bialystok University of Technology, Wiejska 45E, 15351 Bialystok, Poland;
| | - Diana Sawicka
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (D.S.); (H.C.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (D.S.); (H.C.)
| |
Collapse
|
3
|
Da Porto A, Donnini D, Vanin F, Romanin A, Antonello M, Toritto P, Varisco E, Brosolo G, Catena C, Sechi LA, Soardo G. Effects of Monacolin K in Nondiabetic Patients with NAFLD: A Pilot Study. Nutrients 2023; 15:nu15081887. [PMID: 37111106 PMCID: PMC10144054 DOI: 10.3390/nu15081887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver condition with significant risk of progression to steatohepatitis and cirrhosis. Therapeutic strategies in NAFLD include lifestyle changes mainly related to dietary interventions and use of drugs or nutritional components that could improve plasma lipid profiles and insulin sensitivity and decrease the local inflammatory response. In this study, we tested the effects of monacolin K, an inhibitor of HMCoA reductase. In a prospective, uncontrolled, open study, we treated 24 patients with NAFLD and mild hypercholesterolemia with 10 mg/day of monacolin K. At baseline and after 26 weeks, we measured in plasma liver tests, lipids, malondialdehyde, and oxidized glutathione, and assessed biochemical steatosis scores, liver elastography, and body composition with bioimpedance analysis. Monacolin K significantly reduced plasma alanine aminotransferase, cholesterol, triglycerides and the homeostatic model assessment (HOMA) index that indicated improved insulin sensitivity. No significant changes were found in body fat mass and visceral fat, nor in liver elastography, while the fatty liver index (FLI) was significantly decreased. Plasma levels of both malondialdehyde and oxidized glutathione were markedly reduced by monacolin K treatment, suggesting a reduction in oxidative stress and lipid peroxidation. In summary, this pilot study suggests possible benefits of monacolin K use in NAFLD patients that could be linked to a reduction in oxidative stress. This hypothesis should be further investigated in future studies.
Collapse
Affiliation(s)
- Andrea Da Porto
- Clinica Medica, Department of Medicine, University of Udine, 33100 Udine, Italy
- Diabetes and Metabolism Unit, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Debora Donnini
- Clinica Medica, Department of Medicine, University of Udine, 33100 Udine, Italy
- Liver Unit, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Fabio Vanin
- Clinica Medica, Department of Medicine, University of Udine, 33100 Udine, Italy
- Liver Unit, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Arianna Romanin
- Clinica Medica, Department of Medicine, University of Udine, 33100 Udine, Italy
- Liver Unit, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Martina Antonello
- Clinica Medica, Department of Medicine, University of Udine, 33100 Udine, Italy
- Diabetes and Metabolism Unit, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Paolo Toritto
- Clinica Medica, Department of Medicine, University of Udine, 33100 Udine, Italy
- Liver Unit, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Eleonora Varisco
- Clinica Medica, Department of Medicine, University of Udine, 33100 Udine, Italy
- Liver Unit, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Gabriele Brosolo
- Clinica Medica, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Cristiana Catena
- Clinica Medica, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Leonardo A Sechi
- Clinica Medica, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giorgio Soardo
- Clinica Medica, Department of Medicine, University of Udine, 33100 Udine, Italy
- Liver Unit, Department of Medicine, University of Udine, 33100 Udine, Italy
- Italian Liver Foundation, Area Science Park, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
4
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Zhang C, Zhang N, Chen M, Wang H, Shi J, Wang B, Sun B, Wang C. Metabolomics Analysis of the Effect of Glutamic Acid on Monacolin K Synthesis in Monascus purpureus. Front Microbiol 2020; 11:610471. [PMID: 33391237 PMCID: PMC7773642 DOI: 10.3389/fmicb.2020.610471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023] Open
Abstract
Monacolin K is a secondary metabolite produced by Monascus with beneficial effects on health, including the ability to lower cholesterol. We previously showed that the yield of monacolin K was significantly improved when glutamic acid was added to the fermentation broth of Monascus purpureus M1. In this study, we analyzed M. purpureus in media with and without glutamic acid supplementation using a metabolomic profiling approach to identify key metabolites and metabolic pathway differences. A total of 817 differentially expressed metabolites were identified between the two fermentation broths on day 8 of fermentation. Pathway analysis of these metabolites using the KEGG database indicated overrepresentation of the citric acid cycle; biotin metabolism; and alanine, aspartate, and glutamate metabolic pathways. Six differentially expressed metabolites were found to be related to the citric acid cycle. The effect of citric acid as an exogenous additive on the synthesis of monacolin K was examined. These results provide technical support and a theoretical basis for further studies of the metabolic regulatory mechanisms underlying the beneficial effects of monacolin K and medium optimization, as well as genetic engineering of Monascus M1 for efficient monacolin K production.
Collapse
Affiliation(s)
- Chan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Nan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, China
| | - Mengxue Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, China
| | - Haijiao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, China
| | - Jiachen Shi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, China
| | - Bei Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| |
Collapse
|
6
|
Yanli F, Xiang Y. Perspectives on Functional Red Mold Rice: Functional Ingredients, Production, and Application. Front Microbiol 2020; 11:606959. [PMID: 33324390 PMCID: PMC7723864 DOI: 10.3389/fmicb.2020.606959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023] Open
Abstract
Monacolin K (MK) is a secondary metabolite of the Monascus species that can inhibit cholesterol synthesis. Functional red mold rice (FRMR) is the fermentation product of Monascus spp., which is rich in MK. FRMR is usually employed to regulate serum cholesterol, especially for hypercholesterolemic patients who refuse statins or face statin intolerance. The present perspective summarized the bioactive components of FRMR and their functions. Subsequently, efficient strategies for FRMR production, future challenges of FRMR application, and possible directions were proposed. This perspective helps to understand the present situation and developmental prospects of FRMR.
Collapse
Affiliation(s)
- Feng Yanli
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
- Hubei Engineering Research Center of Typical Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
- National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, China
- College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Yu Xiang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
- Hubei Engineering Research Center of Typical Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
- National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, China
- College of Life Sciences, Hubei Normal University, Huangshi, China
| |
Collapse
|
7
|
Xiong Z, Cao X, Wen Q, Chen Z, Cheng Z, Huang X, Zhang Y, Long C, Zhang Y, Huang Z. An overview of the bioactivity of monacolin K / lovastatin. Food Chem Toxicol 2019; 131:110585. [DOI: 10.1016/j.fct.2019.110585] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/01/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022]
|
8
|
Ward NC, Pang J, Ryan JDM, Watts GF. Nutraceuticals in the management of patients with statin-associated muscle symptoms, with a note on real-world experience. Clin Cardiol 2018; 41:159-165. [PMID: 29363784 DOI: 10.1002/clc.22862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
There is considerable evidence for the role of low-density lipoprotein cholesterol (LDL-C) in the development of atherosclerotic cardiovascular disease. Although statin therapy remains the most frequency prescribed medication to reduce LDL-C and lower risk of cardiovascular disease, a considerable number of patients develop muscle-related side affects. This review summarizes recent literature supporting the role of nutraceuticals as LDL-C-lowering therapy in statin-intolerant patients, with evidence from our own clinical practices.
Collapse
Affiliation(s)
- Natalie C Ward
- School of Medicine, Faculty of Health & Medical Sciences, University of Western Australia, Perth.,School of Biomedical Sciences and Curtin Health Innovation Research Institute, Perth, Australia
| | - Jing Pang
- School of Medicine, Faculty of Health & Medical Sciences, University of Western Australia, Perth.,Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - Jacqueline D M Ryan
- School of Medicine, Faculty of Health & Medical Sciences, University of Western Australia, Perth.,Perth Lipid Clinic, Primary Care, Perth, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health & Medical Sciences, University of Western Australia, Perth.,Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|