1
|
Zhang Z, Shi G, Liu Y, Xing H, Kabakov AY, Zhao AS, Agbortoko V, Kim J, Singh AK, Koren G, Harrington EO, Sellke FW, Feng J. Coronary endothelial dysfunction prevented by small-conductance calcium-activated potassium channel activator in mice and patients with diabetes. J Thorac Cardiovasc Surg 2020; 160:e263-e280. [PMID: 32199659 PMCID: PMC7439127 DOI: 10.1016/j.jtcvs.2020.01.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/30/2019] [Accepted: 01/31/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate coronary endothelial protection of a small-conductance calcium-activated potassium (SK) channel activator against a period of cardioplegic-hypoxia and reoxygenation (CP-H/R) injury in mice and patients with diabetes (DM) and those without diabetes (nondiabetic [ND]). METHODS Mouse small coronary arteries/heart endothelial cells (MHECs) and human coronary arterial endothelial cells (HCAECs) were dissected from the harvested hearts of mice (n = 16/group) and from discarded right atrial tissue samples of patients with DM and without DM (n = 8/group). The SK current density of MHECs was measured. The in vitro small arteries/arterioles, MHECs, and HCAECs were subjected to 60 minutes of CP hypoxia, followed by 60 minutes of oxygenation. Vessels were treated with or without the selective SK activator NS309 for 5 minutes before and during CP hypoxia. RESULTS DM and/or CP-H/R significantly inhibited the total SK currents of MHECs and HCAECs and significantly diminished the mouse coronary relaxation response to NS309. Administration of NS309 immediately before and during CP hypoxia significantly improved the recovery of coronary endothelial function, as demonstrated by increased relaxation responses to adenosine 5'-diphosphate and substance P compared with those seen in controls (P < .05). This protective effect was more pronounced in vessels from ND mice and patients compared with DM mice and patients (P < .05). Cell surface membrane SK3 expression was significantly reduced after hypoxia, whereas cytosolic SK3 expression was greater than that of the sham control group (P < .05). CONCLUSIONS Application of NS309 immediately before and during CP hypoxia protects mouse and human coronary microvasculature against CP-H/R injury, but this effect is diminished in the diabetic coronary microvasculature. SK inhibition/inactivation and/or internalization/redistribution may contribute to CP-H/R-induced coronary endothelial and vascular relaxation dysfunction.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Providence, RI
| | - Guangbin Shi
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Providence, RI
| | - Yuhong Liu
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Providence, RI
| | - Hang Xing
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Providence, RI
| | - Anatoli Y Kabakov
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI
| | - Amy S Zhao
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Providence, RI
| | - Vahid Agbortoko
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Providence, RI
| | - Justin Kim
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Providence, RI
| | - Arun K Singh
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Providence, RI
| | - Gideon Koren
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI
| | | | - Frank W Sellke
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Providence, RI
| | - Jun Feng
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Providence, RI.
| |
Collapse
|
2
|
Sharma R, Randhawa PK, Singh N, Jaggi AS. Bradykinin in ischemic conditioning-induced tissue protection: Evidences and possible mechanisms. Eur J Pharmacol 2015; 768:58-70. [DOI: 10.1016/j.ejphar.2015.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023]
|
3
|
Feng J, Damrauer SM, Lee M, Sellke FW, Ferran C, Abid MR. Endothelium-dependent coronary vasodilatation requires NADPH oxidase-derived reactive oxygen species. Arterioscler Thromb Vasc Biol 2010; 30:1703-10. [PMID: 20702812 PMCID: PMC2924465 DOI: 10.1161/atvbaha.110.209726] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine the functional significance of physiological reactive oxygen species (ROS) levels in endothelium-dependent nitric oxide (NO)-mediated coronary vasodilatation. METHODS AND RESULTS Endothelium-derived NO is important in regulating coronary vascular tone. Excess ROS have been shown to reduce NO bioavailability, resulting in endothelial dysfunction and coronary diseases. NADPH oxidase is a major source of ROS in endothelial cells (ECs). By using lucigenin-based superoxide production and dichlorfluorescein diacetate (DCFH-DA) fluorescence-activated cell sorter assays, we found that mouse heart ECs from NADPH oxidase-knockdown (p47(phox-/-)) animals have reduced NADPH oxidase activity (>40%) and ROS levels (>30%) compared with wild-type mouse heart ECs. Surprisingly, a reduction in ROS did not improve coronary vasomotion; rather, endothelium-dependent vascular endothelial growth factor-mediated coronary vasodilatation was reduced by greater than 50% in p47(phox-/-) animals. Western blots and L-citrulline assays showed a significant reduction in Akt/protein kinase B (PKB) and endothelial NO synthase phosphorylation and NO synthesis, respectively, in p47(phox-/-) coronary vessels and mouse heart ECs. Adenoviral expression of constitutively active endothelial NO synthase restored vascular endothelial growth factor-mediated coronary vasodilatation in p47(phox-/-) animals. CONCLUSIONS Endothelium-dependent vascular endothelial growth factor regulation of coronary vascular tone may require NADPH oxidase-derived ROS to activate phosphatidylinositol 3-kinase-Akt-endothelial NO synthase axis.
Collapse
Affiliation(s)
| | | | - Monica Lee
- The Center for Vascular Biology Research, Department of Medicine (M.L., M.R.A), Department of Surgery (S.M.D., C. F.,), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215. Department of Surgery, Beth Israel Deaconess Medical Center, and Alpert School of Medicine of Brown University, Providence, R.I. (J.F., F.W.S.). Department of Surgery, Massachusetts General Hospital, Boston, MA (S.M.D.)
| | - Frank W. Sellke
- The Center for Vascular Biology Research, Department of Medicine (M.L., M.R.A), Department of Surgery (S.M.D., C. F.,), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215. Department of Surgery, Beth Israel Deaconess Medical Center, and Alpert School of Medicine of Brown University, Providence, R.I. (J.F., F.W.S.). Department of Surgery, Massachusetts General Hospital, Boston, MA (S.M.D.)
| | - Christiane Ferran
- The Center for Vascular Biology Research, Department of Medicine (M.L., M.R.A), Department of Surgery (S.M.D., C. F.,), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215. Department of Surgery, Beth Israel Deaconess Medical Center, and Alpert School of Medicine of Brown University, Providence, R.I. (J.F., F.W.S.). Department of Surgery, Massachusetts General Hospital, Boston, MA (S.M.D.)
| | - Md. Ruhul Abid
- The Center for Vascular Biology Research, Department of Medicine (M.L., M.R.A), Department of Surgery (S.M.D., C. F.,), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215. Department of Surgery, Beth Israel Deaconess Medical Center, and Alpert School of Medicine of Brown University, Providence, R.I. (J.F., F.W.S.). Department of Surgery, Massachusetts General Hospital, Boston, MA (S.M.D.)
| |
Collapse
|
4
|
Driamov SV, Bellahcene M, Butz S, Buser PT, Zaugg CE. Bradykinin is a Mediator, but Unlikely a Trigger, of Antiarrhythmic Effects of Ischemic Preconditioning. J Cardiovasc Electrophysiol 2007; 18:93-9. [PMID: 17229306 DOI: 10.1111/j.1540-8167.2006.00688.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Brief reversible ischemic episodes (ischemic preconditioning, IPC) protect the heart against arrhythmias during a subsequent prolonged low-flow ischemia. We have recently shown that this protection involves release of bradykinin, activation of bradykinin B2 receptors followed by opening of sarcolemmal, but not mitochondrial ATP-sensitive K+ channels. The goal of this study was to clarify a trigger and/or mediator role of bradykinin in the antiarrhythmic effects of IPC during low-flow ischemia. METHODS Isolated perfused rat hearts underwent 60 minutes of low-flow ischemia induced by reducing perfusion pressure followed by 60 minutes of reperfusion. Preconditioning was induced by 2 x 5 minutes episodes of zero-flow ischemia. In yet other groups, preconditioned or non-preconditioned hearts were treated either with bradykinin (10 nmol/L) or with HOE 140 (bradykinin B2 receptor antagonist, 100 nmol/L). RESULTS IPC reduced the number of ventricular premature beats, as well as the incidence of ventricular tachycardia and of ventricular fibrillation during low-flow ischemia. In addition, this protection was abolished by HOE 140 given during low-flow ischemia. Pharmacological preconditioning using short bradykinin perfusion instead of IPC did not show antiarrhythmic effects. However, bradykinin administered during low-flow ischemia and reperfusion reduced the number of ventricular premature beats and the incidence of ventricular tachycardia and of ventricular fibrillation during low-flow ischemia. CONCLUSION Bradykinin is a mediator, but unlikely a trigger, of antiarrhythmic effects of IPC during low-flow ischemia.
Collapse
Affiliation(s)
- Sergey V Driamov
- CardioBiology Research Laboratories, Department of Research, University Hospital Basel, Switzerland
| | | | | | | | | |
Collapse
|
5
|
Feng J, Sellke ME, Ramlawi B, Boodhwani M, Clements R, Li J, Bianchi C, Sellke FW. Bradykinin induces microvascular preconditioning through the opening of calcium-activated potassium channels. Surgery 2006; 140:192-7. [PMID: 16904969 DOI: 10.1016/j.surg.2006.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/27/2006] [Accepted: 05/06/2006] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study was designed to investigate whether the activation of calcium-activated potassium (K(Ca)) or adenosine triphosphate sensitive potassium (K(ATP)) channels are required for bradykinin-induced microvascular preconditioning. METHODS Isolated rabbit hearts underwent retrograde perfusion with Krebs-Henseleit buffer (KHB) followed by 60 minutes of ischemic arrest with cold crystalloid cardioplegia (CCCP). Eight CCCP hearts received no pretreatment. Six bradykinin-preconditioned hearts received a 10-minute coronary infusion of 10(-8) mol/L bradykinin-enriched KHB followed by a 5-minute recovery period before CCCP. Six hearts received both 10(-8) mol/L charybdotoxin (a K(Ca) channel blocker) and bradykinin preconditioning. Finally, 6 other hearts received 10(-5 degrees ) mol/L glibenclamide (a K(ATP) channel blocker) to bradykinin-enriched KHB. All hearts were reperfused for 30 minutes with KHB. RESULTS Bradykinin preconditioning significantly improved the recovery of left ventricular and microvascular function, as compared with control. On the other hand, bradykinin preconditioning significantly reduced the contractile responses to U46619, a thromboxane A2 analogue. Charybdotoxin significantly inhibited the improved recovery of bradykinin-induced left ventricular and microvascular function. Glibenclamide tended to diminish the bradykinin preconditioning-enhanced recovery of left ventricular function, but failed to affect bradykinin preconditioning-improved recovery of microvascular function. CONCLUSION Both K(Ca) and K(ATP) channels were involved partially in bradykinin-induced myocardial preconditioning. However, bradykinin induces microvascular preconditioning through the opening of K(Ca) channels rather than K(ATP) channels.
Collapse
Affiliation(s)
- Jun Feng
- Department of Surgery, Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Feng J, Bianchi C, Sandmeyer JL, Sellke FW. Bradykinin preconditioning improves the profile of cell survival proteins and limits apoptosis after cardioplegic arrest. Circulation 2006; 112:I190-5. [PMID: 16159814 DOI: 10.1161/circulationaha.104.524454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND We hypothesized that preconditioning the heart with bradykinin (BK) would improve the profile of antiapoptotic proteins and inhibit myocardial apoptosis. METHODS AND RESULTS Eighteen rabbit hearts were retrogradely perfused with Krebs-Henseleit buffer (KHB). Six control hearts were perfused with KHB for 90 minutes without cardioplegia ischemia. Six hearts were arrested for 30 minutes (37 degrees C) with crystalloid cardioplegia (CCP). Six BK preconditioning (BKPC) hearts received a 10-minute coronary infusion of 10(-8) M BK-enriched KHB followed by a 5-minute recovery period and were then arrested for 30 minutes with CCP. The hearts were reperfused for 30 minutes with KHB. BKPC significantly improved the recovery of left ventricular pressure (73+/-5 versus 51+/-4 mm Hg; P<0.05) and reduced the percentage of myocardial apoptosis (3.4+/-0.3% versus 1.2+/-0.2%; P<0.05) as compared with CCP. There were no significant differences in total protein levels of caspase 3, Bcl-2, Bad, and Bax, among the groups. Both BKPC and CCP induced phosphorylation of Bad at Ser112, but the BKPC group had higher phosphorylated Bad than CCP (4.4+/-0.5 versus 2.0+/-0.3; P<0.05). Both BKPC and CCP alone increased caspase 3 cleavage and activity as compared with controls (P<0.05 and P<0.01, respectively), but BKPC caused less cleavage and activation of caspase 3 than CCP alone (P<0.05). CONCLUSIONS BKPC increased Bad phosphorylation, inhibited caspase 3 activation, and limited myocardial apoptosis, which were associated with improvement of left-ventricular performance. These results identify novel molecular mechanisms underlying the protective effects of BKPC during cardiac surgery.
Collapse
Affiliation(s)
- Jun Feng
- Division of Cardiothoracic Surgery, of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
7
|
Mabanta L, Valane P, Borne J, Frame MD. Initiation of remote microvascular preconditioning requires KATP channel activity. Am J Physiol Heart Circ Physiol 2006; 290:H264-71. [PMID: 16126818 DOI: 10.1152/ajpheart.00455.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate vascular preconditioning of individual microvascular networks. Prior work shows that exposure of downstream arterioles to specific agonists preconditions upstream arterioles so that they exhibit an altered local vasoactive response [remote microvascular preconditioning (RMP)]. We hypothesized that mitochondrial ATP-sensitive K+ (KATP) channels were involved in stimulation of RMP. Arteriolar diameter (∼15 μm) was observed ∼1,000 μm upstream of the remote exposure site in the cheek pouch of pentobarbital sodium-anesthetized (70 mg/kg) male hamsters ( n = 104); all agonists were applied via micropipette. RMP was initiated by application of pinacidil (Pin), diazoxide (DZ), sodium nitroprusside (SNP), or bradykinin (BK) to the downstream vessel. After 15 min, RMP was apparent at the upstream observation site from testing of local vasoactive responses to l-arginine. Pin, DZ, SNP, and BK each stimulated RMP. To evaluate a specific role for mitochondrial KATP channels in this response, 5-hydroxydecanoate was applied (via a 2nd pipette) during downstream stimulation with agonist. 5-Hydroxydecanoate blocked RMP initiated by Pin, DZ, or SNP, suggesting that mitochondrial KATP channels are involved before SNP signal transduction. To verify this, we applied Nω-nitro-l-arginine during DZ or SNP stimulation. RMP was blocked during SNP, but not during DZ, stimulation. Thus stimulation of the RMP response requires mitochondrial KATP channel activity after stimulation by nitric oxide donors.
Collapse
Affiliation(s)
- Lauren Mabanta
- Dept. of Biomedical Engineering, SUNY Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|