1
|
Chao BT, McInnis MC, Sage AT, Yeung JC, Cypel M, Liu M, Wang B, Keshavjee S. A radiographic score for human donor lungs on ex vivo lung perfusion predicts transplant outcomes. J Heart Lung Transplant 2024; 43:797-805. [PMID: 38211838 DOI: 10.1016/j.healun.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) is an advanced platform for isolated lung assessment and treatment. Radiographs acquired during EVLP provide a unique opportunity to assess lung injury. The purpose of our study was to define and evaluate EVLP radiographic findings and their association with lung transplant outcomes. METHODS We retrospectively evaluated 113 EVLP cases from 2020-21. Radiographs were scored by a thoracic radiologist blinded to outcome. Six lung regions were scored for 5 radiographic features (consolidation, infiltrates, atelectasis, nodules, and interstitial lines) on a scale of 0 to 3 to derive a score. Spearman's correlation was used to correlate radiographic scores to biomarkers of lung injury. Machine learning models were developed using radiographic features and EVLP functional data. Predictive performance was assessed using the area under the curve. RESULTS Consolidation and infiltrates were the most frequent findings at 1 hour EVLP (radiographic lung score 2.6 (3.3) and 4.6 (4.3)). Consolidation (r = -0.536 and -0.608, p < 0.0001) and infiltrates (r = -0.492 and -0.616, p < 0.0001) were inversely correlated with oxygenation (∆pO2) at 1 hour and 3 hours of EVLP. First-hour consolidation and infiltrate lung scores predicted transplant suitability with an area under the curve of 87% and 88%, respectively. Prediction of transplant outcomes using a machine learning model yielded an area under the curve of 80% in the validation set. CONCLUSIONS EVLP radiographs provide valuable insight into donor lungs being assessed for transplantation. Consolidation and infiltrates were the most common abnormalities observed in EVLP lungs, and radiographic lung scores predicted the suitability of donor lungs for transplant.
Collapse
Affiliation(s)
- Bonnie T Chao
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Micheal C McInnis
- University Medical Imaging Toronto, Toronto General Hospital, University Health Network, Toronto, ON, Canada; Department of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T Sage
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan C Yeung
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bo Wang
- Vector Institute, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Oishi H, Noda M, Sado T, Matsuda Y, Niikawa H, Watanabe T, Sakurada A, Hoshikawa Y, Okada Y. Ex vivo lung CT findings may predict the outcome of the early phase after lung transplantation. PLoS One 2020; 15:e0233804. [PMID: 32469995 PMCID: PMC7259648 DOI: 10.1371/journal.pone.0233804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/12/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose We developed an ex vivo lung CT (EVL-CT) technique that allows us to obtain detailed CT images and morphologically assess the retrieved lung from a donor for transplantation. After we recovered the lung graft from a brain-dead donor, we transported it to our hospital and CT images were obtained ex vivo before lung transplant surgery. The objective of this study was to investigate the correlation between the EVL-CT findings and post-transplant outcome in patients who underwent bilateral lung transplantation (BLT) or single lung transplantation (SLT). Methods We retrospectively reviewed the records of 70 patients with available EVL-CT data who underwent BLT (34 cases) or SLT (36 cases) in our hospital between October 2007 and September 2017. The recipients were divided into 2 groups (control group, infiltration group) according to the findings of EVL-CT of the lung graft in BLT and SLT, respectively. Recipients in the control group were transplanted lung grafts without any infiltrates (BLT control group, SLT control group). Recipients in the infiltration group received lung grafts with infiltrates (BLT infiltration group, SLT infiltration group). Results The recipients in the BLT infiltration group showed significantly slower recovery from primary graft dysfunction and a longer mechanical ventilation period and ICU stay period than those in the BLT control group. The mechanical ventilation period was significantly longer in the recipients in the SLT infiltration group than those in the SLT control group. Conclusion EVL-CT may predict the outcome of the early phase after lung transplantation.
Collapse
Affiliation(s)
- Hisashi Oishi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- * E-mail:
| | - Masafumi Noda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tetsu Sado
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasushi Matsuda
- Department of Thoracic Surgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiromichi Niikawa
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tatsuaki Watanabe
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akira Sakurada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasushi Hoshikawa
- Department of Thoracic Surgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Gu C, Pan X, Shi J. Progress of Clinical Application for Ex Vivo Lung Perfusion (EVLP) in Lung Transplantation. Methods Mol Biol 2020; 2204:217-224. [PMID: 32710328 DOI: 10.1007/978-1-0716-0904-0_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, medical advances make lung transplantation become a standard treatment for terminal lung diseases (such as emphysema, pulmonary fibrosis, pulmonary cystic fibrosis, and pulmonary arterial hypertension) that cannot be cured by drugs or surgery (Lund et al., J Heart Lung Transplant 34:1244, 2015). However, the current number of donor lungs that meet the transplant criteria is no longer sufficient for transplanting, causing some patients to die while waiting for a suitable lung. Current methods for improving the situation of shortage of lung transplant donors include the use of donation after cardiac death (DCD) donors, smoker donors, and Ex Vivo Lung Perfusion (EVLP). Among them, EVLP is a technique for extending lung preservation time and repairing lung injury in the field of lung transplantation. By continuously assessing and improving the function of marginal donor lungs, EVLP increases the number of lungs that meet the transplant criteria and, to some extent, alleviates the current situation of shortage of donor lungs. This chapter reviews the clinical application and research progress of EVLP in the field of lung transplantation.
Collapse
Affiliation(s)
- Chang Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Barrow-McGee R, Procter J, Owen J, Woodman N, Lombardelli C, Kothari A, Kovacs T, Douek M, George S, Barry PA, Ramsey K, Gibson A, Buus R, Holgersen E, Natrajan R, Haider S, Shattock MJ, Gillett C, Tutt AN, Pinder SE, Naidoo K. Real-time ex vivo perfusion of human lymph nodes invaded by cancer (REPLICANT): a feasibility study. J Pathol 2019; 250:262-274. [PMID: 31755096 PMCID: PMC7065097 DOI: 10.1002/path.5367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023]
Abstract
Understanding how breast cancer (BC) grows in axillary lymph nodes (ALNs), and refining how therapies might halt that process, is clinically important. However, modelling the complex ALN microenvironment is difficult, and no human models exist at present. We harvested ALNs from ten BC patients, and perfused them at 37 °C ex vivo for up to 24 h. Controlled autologous testing showed that ALNs remain viable after 24 h of ex vivo perfusion: haematoxylin and eosin-stained histological appearance and proliferation (by Ki67 immunohistochemistry) did not change significantly over time for any perfused ALN compared with a control from time-point zero. Furthermore, targeted gene expression analysis (NanoString PanCancer IO360 panel) showed that only 21/750 genes were differentially expressed between control and perfused ALNs (|log2 FC| > 1 and q < 0.1): none were involved in apoptosis and metabolism, but rather all 21 genes were involved in immune function and angiogenesis. During perfusion, tissue acid-base balance remained stable. Interestingly, the flow rate increased (p < 0.001) in cancer-replaced (i.e. metastasis occupied more than 90% of the surface area on multiple levels) compared to cancer-free nodes (i.e. nodes with no metastasis on multiple sections). CXCL11 transcripts were significantly more abundant in cancer-replaced nodes, while CXCL12 transcripts were significantly more abundant in cancer-free nodes. These cytokines were also detected in the circulating perfusate. Monoclonal antibodies (nivolumab and trastuzumab) were administered into a further three ALNs to confirm perfusion efficacy. These drugs saturated the nodes; nivolumab even induced cancer cell death. Normothermic ALN perfusion is not only feasible but sustains the tumour microenvironment ex vivo for scientific investigation. This model could facilitate the identification of actionable immuno-oncology targets. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Rachel Barrow-McGee
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Julia Procter
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Julie Owen
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | - Natalie Woodman
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | - Cristina Lombardelli
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | | | - Tibor Kovacs
- Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Michael Douek
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Comprehensive Cancer Centre, London, UK
| | - Simi George
- Department of Cellular Pathology, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| | | | | | - Amy Gibson
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Richard Buus
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK.,Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, UK
| | - Erle Holgersen
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Syed Haider
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Michael J Shattock
- British Heart Foundation Centre of Research Excellence, King's College London, St Thomas' Hospital, London, UK
| | - Cheryl Gillett
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | - Andrew Nj Tutt
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Sarah E Pinder
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Comprehensive Cancer Centre, London, UK
| | - Kalnisha Naidoo
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK.,Department of Cellular Pathology, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Abdalla LG, Oliveira-Braga KAD, Fernandes LM, Samano MN, Camerini PR, Pêgo-Fernandes PM. Evaluation and reconditioning of donor organs for transplantation through ex vivo lung perfusion. EINSTEIN-SAO PAULO 2019; 17:eAO4288. [PMID: 31314859 PMCID: PMC6629369 DOI: 10.31744/einstein_journal/2019ao4288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/08/2019] [Indexed: 11/11/2022] Open
Abstract
Objective: To assess the feasibility and impact of ex vivo lung perfusion with hyperoncotic solution (Steen Solution™) in the utilization of these organs in Brazil. Methods: In this prospective study, we subjected five lungs considered to be high risk for transplantation to 4 hours of ex vivo lung perfusion, with evaluation of oxygenation capacity. High-risk donor lungs were defined by specific criteria, including inflammatory infiltrates, pulmonary edema and partial pressure of arterial oxygen less than 300mmHg (inspired oxygen fraction of 100%). Results: During reperfusion, the mean partial pressure of arterial oxygen (inspired oxygen fraction of 100%) of the lungs did not change significantly (p=0.315). In the first hour, the mean partial pressure of arterial oxygen was 302.7mmHg (±127.66mmHg); in the second hour, 214.2mmHg (±94.12mmHg); in the third hour, 214.4mmHg (±99.70mmHg); and in the fourth hour, 217.7mmHg (±73.93mmHg). Plasma levels of lactate and glucose remained stable during perfusion, with no statistical difference between the moments studied (p=0.216). Conclusion: Ex vivo lung perfusion was reproduced in our center and ensured the preservation of lungs during the study period, which was 4 hours. The technique did not provide enough improvement for indicating organs for transplantation; therefore, it did not impact on use of these organs.
Collapse
Affiliation(s)
| | | | | | - Marcos Naoyuki Samano
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.,Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Paulo Manuel Pêgo-Fernandes
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.,Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Abstract
IMPACT STATEMENT Over the past several decades, ex vivo perfusion has emerged as a promising technology for the assessment, preservation, and recovery of donor organs. Many exciting pre-clinical findings have now been translated to clinical use, and successful transplantation following ex vivo perfusion has been achieved for heart, lung, and liver. While machine perfusion provides distinct advantages over traditional cold preservation, many challenges remain, including that of long-term (multi-day) ex vivo support. Here, we provide an overview of the current status of ex vivo machine perfusion in the pre-clinical and clinical setting and share our perspective on the future direction of the field.
Collapse
Affiliation(s)
- Meghan Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
- Department of Medicine, Columbia University, New York NY 10032, USA
| |
Collapse
|
7
|
Guenthart BA, O'Neill JD, Kim J, Fung K, Vunjak-Novakovic G, Bacchetta M. Cell replacement in human lung bioengineering. J Heart Lung Transplant 2019; 38:215-224. [PMID: 30529200 PMCID: PMC6351169 DOI: 10.1016/j.healun.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND As the number of patients with end-stage lung disease continues to rise, there is a growing need to increase the limited number of lungs available for transplantation. Unfortunately, attempts at engineering functional lung de novo have been unsuccessful, and artificial mechanical devices have limited utility as a bridge to transplant. This difficulty is largely due to the size and inherent complexity of the lung; however, recent advances in cell-based therapeutics offer a unique opportunity to enhance traditional tissue-engineering approaches with targeted site- and cell-specific strategies. METHODS Human lungs considered unsuitable for transplantation were procured and supported using novel cannulation techniques and modified ex-vivo lung perfusion. Targeted lung regions were treated using intratracheal delivery of decellularization solution. Labeled mesenchymal stem cells or airway epithelial cells were then delivered into the lung and incubated for up to 6 hours. RESULTS Tissue samples were collected at regular time intervals and detailed histologic and immunohistochemical analyses were performed to evaluate the effectiveness of native cell removal and exogenous cell replacement. Regional decellularization resulted in the removal of airway epithelium with preservation of vascular endothelium and extracellular matrix proteins. After incubation, delivered cells were retained in the lung and showed homogeneous topographic distribution and flattened cellular morphology. CONCLUSIONS Our findings suggest that targeted cell replacement in extracorporeal organs is feasible and may ultimately lead to chimeric organs suitable for transplantation or the development of in-situ interventions to treat or reverse disease, ultimately negating the need for transplantation.
Collapse
Affiliation(s)
- Brandon A Guenthart
- Department of Surgery, Columbia University Medical Center, Columbia University, New York, New York, USA; Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - John D O'Neill
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Jinho Kim
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, New York, USA; Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Kenmond Fung
- Department of Clinical Perfusion, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, New York, USA; Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Matthew Bacchetta
- Department of Surgery, Columbia University Medical Center, Columbia University, New York, New York, USA.
| |
Collapse
|
8
|
Multiparametric MRI for organ quality assessment in a porcine Ex-Vivo lung perfusion system. PLoS One 2018; 13:e0209103. [PMID: 30589907 PMCID: PMC6307703 DOI: 10.1371/journal.pone.0209103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/28/2018] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Ex-vivo lung perfusion (EVLP) is an emerging technique promising an expansion of the donor pool and improvements in the outcome after lung transplantation. Reliable biomarkers for local assessment of organ function in the EVLP system are intensely sought after. This study aims to evaluate the feasibility of multiparametric functional magnetic resonance imaging (fMRI) in an EVLP system in a porcine aspiration model. MATERIAL AND METHODS Seven female pigs were anesthetized and gastric juice was instilled in the right lower lobe bronchus to simulate aspiration. Left lungs served as control. Lungs were removed and installed in a modified EVLP system. In the 12-hour EVLP run three sequential MRI scans were performed. Oxygen-washout time, Fourier Decomposition derived ventilation and perfusion, and dynamic contrast enhanced imaging derived perfusion were calculated. PaO2:FiO2 ratio was determined and correlated. End-point histology and computed tomography served as control. RESULTS All animals completed the protocol. MRI structural images showed infiltrates in lungs after aspiration comparable to CT scans. Ventilation was significantly (p = 0.016) reduced while perfusion was increased (p = 0.016) in lungs after aspiration. Non-contrast dependent Fourier decomposition perfusion showed good correlation (R2 = 0.67) to dynamic contrast enhanced derived perfusion. Oxygen washout time was significantly increased (p = 0.016) in lungs after aspiration and showed a correlation with the PaO2:FiO2 ratio (R2 = 0.54). CONCLUSION Multiparametric fMRI for local assessment of organ function is feasible in EVLP and detects alterations in lung function following aspiration with correlation to clinical parameters. fMRI may improve organ assessment in ex-vivo perfusion systems, leading to a better selection of segments suitable for transplant.
Collapse
|
9
|
Makdisi G, Makdisi T, Jarmi T, Caldeira CC. Ex vivo lung perfusion review of a revolutionary technology. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:343. [PMID: 28936437 DOI: 10.21037/atm.2017.07.17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Donor lung shortage has been the main reason to the increasing number of patients waiting for lung transplant. Ex vivo lung perfusion (EVLP) is widely expanding technology to assess and prepare the lungs who are considered marginal for transplantation. the outcomes are encouraging and comparable to the lungs transplanted according to the standard criteria. in this article, we will discuss the history of development, the techniques and protocols of ex vivo, and the logics and rationales for ex vivo use.
Collapse
Affiliation(s)
- George Makdisi
- Division of cardiothoracic surgery, Tampa General Hospital, University of South Florida, Tampa, FL, USA
| | - Tony Makdisi
- Palliative care division, University of Massachusetts Medical School, Berkshire Medical Center, Pittsfield, MA, USA
| | - Tambi Jarmi
- Division of renal transplant, University of South Florida, Tampa, FL, USA
| | - Christiano C Caldeira
- Division of cardiothoracic surgery, Tampa General Hospital, University of South Florida, Tampa, FL, USA
| |
Collapse
|
10
|
Venkataraman A, Blackwell JW, Funkhouser WK, Birchard KR, Beamer SE, Simmons WT, Randell SH, Egan TM. Beware Cold Agglutinins in Organ Donors! Ex Vivo Lung Perfusion From an Uncontrolled Donation After Circulatory-Determination-of-Death Donor With a Cold Agglutinin: A Case Report. Transplant Proc 2017; 49:1678-1681. [PMID: 28838463 PMCID: PMC6034983 DOI: 10.1016/j.transproceed.2017.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND We began to recover lungs from uncontrolled donation after circulatory determination of death to assess for transplant suitability by means of ex vivo lung perfusion (EVLP) and computerized tomographic (CT) scan. Our first case had a cold agglutinin with an interesting outcome. CASE REPORT A 60-year-old man collapsed at home and was pronounced dead by Emergency Medical Services personnel. Next-of-kin consented to lung retrieval, and the decedent was ventilated and transported. Lungs were flushed with cold Perfadex, removed, and stored cold. The lungs did not flush well. Medical history revealed a recent hemolytic anemia and a known cold agglutinin. Warm nonventilated ischemia time was 51 minutes. O2-ventilated ischemia time was 141 minutes. Total cold ischemia time was 6.5 hours. At cannulation for EVLP, established clots were retrieved from both pulmonary arteries. At initiation of EVLP with Steen solution, tiny red aggregates were observed initially. With warming, the aggregates disappeared and the perfusate became red. After 1 hour, EVLP was stopped because of florid pulmonary edema. The lungs were cooled to 20°C; tiny red aggregates formed again in the perfusate. Ex vivo CT scan showed areas of pulmonary edema and a pyramidal right middle lobe opacity. Dissection showed multiple pulmonary emboli-the likely cause of death. However, histology showed agglutinated red blood cells in the microvasculature in pre- and post-EVLP biopsies, which may have contributed to inadequate parenchymal preservation. CONCLUSIONS Organ donors with cold agglutinins may not be suitable owing to the impact of hypothermic preservation.
Collapse
Affiliation(s)
- A Venkataraman
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - J W Blackwell
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - W K Funkhouser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - K R Birchard
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina
| | - S E Beamer
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - W T Simmons
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - S H Randell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - T M Egan
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
11
|
Verleden SE, Martens A, Ordies S, Heigl T, Bellon H, Vandermeulen E, Van Herck A, Sacreas A, Verschakelen J, Coudyzer W, Van Raemdonck DE, Vos R, Weynand B, Verleden GM, Vanaudenaerde B, Neyrinck A. Radiological Analysis of Unused Donor Lungs: A Tool to Improve Donor Acceptance for Transplantation? Am J Transplant 2017; 17:1912-1921. [PMID: 28251829 DOI: 10.1111/ajt.14255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 01/25/2023]
Abstract
Despite donor organ shortage, a large proportion of possible donor lungs are declined for transplantation. Criteria for accepting/declining lungs remain controversial because of the lack of adequate tools to aid in decision-making. We collected, air-inflated, and froze a large series of declined/unused donor lungs and subjected these lung specimens to CT examination. Affected target regions were scanned by using micro-CT. Lungs from 28 donors were collected. Two lungs were unused, six were declined for non-allograft-related reasons (collectively denominated nonallograft declines, n = 8), and 20 were declined because of allograft-related reasons. CT scanning demonstrated normal lung parenchyma in only four of eight nonallograft declines, while relatively normal parenchyma was found in 12 of 20 allograft-related declines. CT and micro-CT examinations confirmed the reason for decline in most lungs and revealed unexpected (unknown from clinical files or physical inspection) CT abnormalities in other lungs. CT-based measurements showed a higher mass and density in the lungs with CT alterations compared with lungs without CT abnormalities. CT could aid in the decision-making to accept or decline donor lungs which could lead to an increase in the quantity and quality of lung allografts.
Collapse
Affiliation(s)
- S E Verleden
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium
| | - A Martens
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium.,Department of Anesthesiology, UZ Leuven, Leuven, Belgium
| | - S Ordies
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium.,Department of Anesthesiology, UZ Leuven, Leuven, Belgium
| | - T Heigl
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium
| | - H Bellon
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium
| | - E Vandermeulen
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium
| | - A Van Herck
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium
| | - A Sacreas
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium
| | | | - W Coudyzer
- Departement of Radiology, UZ Leuven, Leuven, Belgium
| | - D E Van Raemdonck
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium.,Department of Thoracic Surgery, UZ Gasthuisberg, Leuven, Belgium
| | - R Vos
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium
| | - B Weynand
- Department of Pathology, UZ Gasthuisberg, Leuven, Belgium
| | - G M Verleden
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium
| | - B Vanaudenaerde
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium
| | - A Neyrinck
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory Disease, UZ Leuven, Leuven, Belgium.,Department of Anesthesiology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Sage E, De Wolf J, Puyo P, Bonnette P, Glorion M, Salley N, Roux A, Liu N, Chapelier A. Real-Time Computed Tomography Highlights Pulmonary Parenchymal Evolution During Ex Vivo Lung Reconditioning. Ann Thorac Surg 2017; 103:e535-e537. [DOI: 10.1016/j.athoracsur.2016.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/25/2016] [Accepted: 12/04/2016] [Indexed: 10/19/2022]
|
13
|
Feasibility and Utility of Chest-X ray on Portable Normothermic Perfusion System. Transplantation 2016; 100:e48-9. [DOI: 10.1097/tp.0000000000001313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Raredon MSB, Rocco KA, Gheorghe CP, Sivarapatna A, Ghaedi M, Balestrini JL, Raredon TL, Calle EA, Niklason LE. Biomimetic Culture Reactor for Whole-Lung Engineering. Biores Open Access 2016; 5:72-83. [PMID: 27088061 PMCID: PMC4827315 DOI: 10.1089/biores.2016.0006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Decellularized organs are now established as promising scaffolds for whole-organ regeneration. For this work to reach therapeutic practice, techniques and apparatus are necessary for doing human-scale clinically applicable organ cultures. We have designed and constructed a bioreactor system capable of accommodating whole human or porcine lungs, and we describe in this study relevant technical details, means of assembly and operation, and validation. The reactor has an artificial diaphragm that mimics the conditions found in the chest cavity in vivo, driving hydraulically regulated negative pressure ventilation and custom-built pulsatile perfusion apparatus capable of driving pressure-regulated or volume-regulated vascular flow. Both forms of mechanical actuation can be tuned to match specific physiologic profiles. The organ is sealed in an elastic artificial pleura that mounts to a support architecture. This pleura reduces the fluid volume required for organ culture, maintains the organ's position during mechanical conditioning, and creates a sterile barrier allowing disassembly and maintenance outside of a biosafety cabinet. The combination of fluid suspension, negative-pressure ventilation, and physiologic perfusion allows the described system to provide a biomimetic mechanical environment not found in existing technologies and especially suited to whole-organ regeneration. In this study, we explain the design and operation of this apparatus and present data validating intended functions.
Collapse
Affiliation(s)
- Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesia, Yale University, New Haven, Connecticut
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kevin A. Rocco
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesia, Yale University, New Haven, Connecticut
| | - Ciprian P. Gheorghe
- Department of Obstetrics, Gynecology, and Reproductive Services, Yale University, New Haven, Connecticut
| | - Amogh Sivarapatna
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesia, Yale University, New Haven, Connecticut
| | - Mahboobe Ghaedi
- Department of Anesthesia, Yale University, New Haven, Connecticut
| | - Jenna L. Balestrini
- Department of Anesthesia, Yale University, New Haven, Connecticut
- Department of Pathology, Yale University, New Haven, Connecticut
| | | | - Elizabeth A. Calle
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesia, Yale University, New Haven, Connecticut
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesia, Yale University, New Haven, Connecticut
- Address correspondence to: Laura E. Niklason, MD, PhD, Department Biomedical Engineering, Yale University, 10 Amistad Street, Room 301D, New Haven, CT 06511, E-mail:
| |
Collapse
|
15
|
Bozovic G, Steen S, Sjöberg T, Schaefer-Prokop C, Verschakelen J, Liao Q, Höglund P, Siemund R, Björkman-Burtscher IM. Circulation stabilizing therapy and pulmonary high-resolution computed tomography in a porcine brain-dead model. Acta Anaesthesiol Scand 2016; 60:93-102. [PMID: 26251260 DOI: 10.1111/aas.12595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Currently 80% of donor lungs are not accepted for transplantation, often due to fluid overload. Our aim was to investigate if forced fluid infusion may be replaced by a new pharmacological therapy to stabilize circulation after brain death in an animal model, and to assess therapy effects on lung function and morphology trough blood gas parameters and state-of-the-art High-resolution CT (HRCT). METHODS Brain death was caused by surgical decapitation. To maintain mean aortic pressure > 60 mmHg, pigs were treated with forced electrolyte solution infusion (GI; n = 6) or the pharmacological therapy (GII; n = 11). GIII (n = 11) were non-decapitated controls. Lung function was investigated with blood gases and lung morphology with HRCT. RESULTS GI pigs became circulatory instable 4-6 h after brain death in spite of forced fluid infusion, five pigs showed moderate to severe pulmonary edema on HRCT and median final PaO2 /FiO2 was 29 kPa (Q1; Q3; range 26; 40; 17-76). GII and GIII were circulatory stable (mean aortic pressure > 80 mmHg) and median final PaO2 /FiO2 after 24 h was 72 kPa (Q1; Q3; range 64; 76; 53-91) (GII) and 66 kPa (55; 78; 43-90) (GIII). On HRCT, only two pigs in GII had mild pulmonary edema and none in GIII. More than 50% of HRCT exams revealed unexpected lung disease even in spite of PaO2 /FiO2 > 40 kPa. CONCLUSION Pharmacological therapy but not forced fluid infusion prevented circulatory collapse and extensive HRCT verified pulmonary edema after acute brain death. HRCT was useful to evaluate lung morphology and revealed substantial occult parenchymal changes justifying efforts toward a more intense use of HRCT in the pre-transplant evaluation.
Collapse
Affiliation(s)
- G. Bozovic
- Department of Medical Imaging and Physiology; Skåne University Hospital; Lund University; Lund Sweden
| | - S. Steen
- Department of Cardiothoracic Surgery; Skåne University Hospital; Lund University; Lund Sweden
| | - T. Sjöberg
- Department of Cardiothoracic Surgery; Skåne University Hospital; Lund University; Lund Sweden
| | | | - J. Verschakelen
- Department of Radiology; University Hospitals; Leuven Belgium
| | - Q. Liao
- Department of Cardiothoracic Surgery; Skåne University Hospital; Lund University; Lund Sweden
| | - P. Höglund
- Department of Laboratory Medicine; Division of Clinical Chemistry and Pharmacology; Skåne University Hospital; Lund University; Lund Sweden
| | - R. Siemund
- Department of Medical Imaging and Physiology; Skåne University Hospital; Lund University; Lund Sweden
| | - I. M. Björkman-Burtscher
- Department of Medical Imaging and Physiology; Skåne University Hospital; Lund University; Lund Sweden
- Lund University Bioimaging Centre; Lund University; Lund Sweden
| |
Collapse
|
16
|
Blatter J, Sweet S. Lung Transplantation in Cystic Fibrosis: Trends and Controversies. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2015; 28:237-243. [PMID: 26697265 DOI: 10.1089/ped.2015.0564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article is not an overview of all facets of lung transplantation in cystic fibrosis (CF), but rather it is intended as a review of current allocation controversies, as well as of trends in diagnostics and management in lung transplant recipients and in patients with end-stage lung disease. Despite changes in donor and recipient selection, long-term survival in pediatric lung transplant has continued to be limited by chronic lung allograft dysfunction (CLAD). Due to, in part, this short survival benefit, transplant continues to be an appropriate option for only a subset of pediatric patients with CF. The feasibility of transplant as a therapeutic option is also affected by the limited pediatric organ supply, which has moreover contributed to controversy over lung allocation. Debates over the allocation of this scarce resource, however, may also help to drive innovation in the field of lung transplant. Longer pretransplant survival-as aided by new lung bypass technologies, for example-could help to alleviate organ shortages, as well as facilitate the transport of organs to suitable pediatric recipients. Improved diagnosis and treatment for CLAD and for antibody-mediated rejection have the potential to extend survival in pediatric lung transplant. Regardless, the relative rarity of transplant could pose future challenges for pediatric lung transplant programs, which require adequate numbers of patients to maintain proper expertise.
Collapse
Affiliation(s)
- Joshua Blatter
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine , St. Louis, Missouri
| | - Stuart Sweet
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
17
|
Fernandes LM, Mariani AW, Medeiros ILD, Samano MN, Abdalla LG, Correia AT, Nepomuceno NA, Canzian M, Pêgo-Fernandes PM. Alternative solution for ex vivo lung perfusion, experimental study on donated human lungs non-accepted for transplantation. Acta Cir Bras 2015; 30:359-65. [PMID: 26016936 DOI: 10.1590/s0102-865020150050000008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/24/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate a new perfusate solution to be used for ex vivo lung perfusion. METHODS Randomized experimental study using lungs from rejected brain-dead donors harvested and submitted to 1 hour of ex vivo lung perfusion (EVLP) using mainstream solution or the alternative. RESULTS From 16 lungs blocs tested, we found no difference on weight after EVLP: Steen group (SG) = 1,097±526g; Alternative Perfusion Solution (APS) = 743±248g, p=0.163. Edema formation, assessed by Wet/dry weigh ratio, was statistically higher on the Alternative Perfusion Solution group (APS = 3.63 ± 1.26; SG = 2.06 ± 0.28; p = 0.009). No difference on PaO2 after EVLP (SG = 498±37.53mmHg; APS = 521±55.43mmHg, p=0.348, nor on histological analyses: pulmonary injury score: SG = 4.38±1.51; APS = 4.50±1.77, p=0.881; apoptotic cells count after perfusion: SG = 2.4 ± 2.0 cells/mm2; APS = 4.8 ± 6.9 cells/mm2; p = 0.361). CONCLUSION The ex vivo lung perfusion using the alternative perfusion solution showed no functional or histological differences, except for a higher edema formation, from the EVLP using Steen Solution(r) on lungs from rejected brain-dead donors.
Collapse
|
18
|
Abstract
Lung transplantation (LTx) is the definitive treatment of patients with end-stage lung disease. Availability of donor lungs remains the primary limitation and leads to substantial wait-list mortality. Efforts to expand the donor pool have included a resurgence of interest in the use of donation after cardiac death (DCD) lungs. Unique in its physiology, lung viability seems more tolerant to the variable durations of ischemia that occur in DCD donors. Initial experience with DCD LTx is promising and, in combination with ex vivo lung perfusion systems, seems a valuable opportunity to expand the lung donor pool.
Collapse
|
19
|
Haam S, Lee S, Paik HC, Park MS, Song JH, Lim BJ, Nakao A. The effects of hydrogen gas inhalation during ex vivo lung perfusion on donor lungs obtained after cardiac death. Eur J Cardiothorac Surg 2015; 48:542-7. [PMID: 25750008 DOI: 10.1093/ejcts/ezv057] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/26/2014] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Lung transplantation is a well-established treatment of end-stage lung disease; however, it is limited by a shortage of donor lungs. To overcome this problem, donation after cardiac death (DCD) and ex vivo lung perfusion (EVLP) are being widely investigated. In this study, the effect of hydrogen gas, a known antioxidant, was investigated on a DCD lung model during EVLP. METHODS Ten pigs were randomized into either a control (n = 5) or a hydrogen group (n = 5). After fibrillation by electric shock, no further treatment was administered in order to induce warm ischaemic injury for 1 h. The lungs were then procured, followed by 4 h of EVLP. During EVLP, the lungs were ventilated with room air in the control group, and with 2% hydrogen gas in the hydrogen group. Oxygen capacity (OC), pulmonary vascular resistance (PVR) and peak airway pressure (PAP) were measured every hour, and the expressions of interleukin-1 beta (IL-1β), IL-6 (IL-6), IL-8 (IL-8) and tumour necrosis factor-alpha (TNF-α) were evaluated in lung tissue after EVLP. Pathological evaluations were performed using lung injury severity (LIS) scores and the wet/dry ratio was also measured. RESULTS The OC in the hydrogen group was higher than in the control group, but the difference was not statistically significant (P = 0.0862). PVR (P = 0.0111) and PAP (P = 0.0189) were statistically significantly lower in the hydrogen group. Compared with the control group, the hydrogen group had a statistically significantly lower expression of IL-1β (P = 0.0317), IL-6 (P = 0.0159), IL-8 (P = 0.0195) and TNF-α (P = 0.0159). The LIS scores (P = 0.0358) and wet/dry ratios (P = 0.040) were also significantly lower in the hydrogen group. CONCLUSIONS Hydrogen gas inhalation during EVLP improved the function of DCD lungs, which may increase the utilization of DCD lungs.
Collapse
Affiliation(s)
- Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungsoo Lee
- Department of Thoracic and Cardiovascular Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Chae Paik
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moo Suk Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo Han Song
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Jin Lim
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Atsunori Nakao
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
20
|
Chatterjee S, Nieman GF, Christie JD, Fisher AB. Shear stress-related mechanosignaling with lung ischemia: lessons from basic research can inform lung transplantation. Am J Physiol Lung Cell Mol Physiol 2014; 307:L668-80. [PMID: 25239915 DOI: 10.1152/ajplung.00198.2014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cessation of blood flow represents a physical event that is sensed by the pulmonary endothelium leading to a signaling cascade that has been termed "mechanotransduction." This paradigm has clinical relevance for conditions such as pulmonary embolism, lung bypass surgery, and organ procurement and storage during lung transplantation. On the basis of our findings with stop of flow, we postulate that normal blood flow is "sensed" by the endothelium by virtue of its location at the interface of the blood and vessel wall and that this signal is necessary to maintain the endothelial cell membrane potential. Stop of flow is sensed by a "mechanosome" consisting of PECAM-VEGF receptor-VE cadherin that is located in the endothelial cell caveolae. Activation of the mechanosome results in endothelial cell membrane depolarization that in turn leads to activation of NADPH oxidase (NOX2) to generate reactive oxygen species (ROS). Endothelial depolarization additionally results in opening of T-type voltage-gated Ca(2+) channels, increased intracellular Ca(2+), and activation of nitric oxide (NO) synthase with resultant generation of NO. Increased NO causes vasodilatation whereas ROS provide a signal for neovascularization; however, with lung transplantation overproduction of ROS and NO can cause oxidative injury and/or activation of proteins that drive inflammation and cell death. Understanding the key events in the mechanosignaling cascade has important lessons for the design of strategies or interventions that may reduce injury during storage of donor lungs with the goal to increase the availability of lungs suitable for donation and thus improving access to lung transplantation.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennyslvania;
| | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York; and
| | - Jason D Christie
- Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennyslvania
| |
Collapse
|
21
|
|
22
|
Andreasson ASI, Dark JH, Fisher AJ. Ex vivo lung perfusion in clinical lung transplantation--State of the art. Eur J Cardiothorac Surg 2014; 46:779-88. [DOI: 10.1093/ejcts/ezu228] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
A standardized model of brain death, donor treatment, and lung transplantation for studies on organ preservation and reconditioning. Intensive Care Med Exp 2014; 2:12. [PMID: 26266913 PMCID: PMC4513016 DOI: 10.1186/2197-425x-2-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We set a model of brain death, donor management, and lung transplantation for studies on lung preservation and reconditioning before transplantation. METHODS Ten pigs (39.7 ± 5.9 Kg) were investigated. Five animals underwent brain death and were treated as organ donors; the lungs were then procured and cold stored (Ischemia). Five recipients underwent left lung transplantation and post-reperfusion follow-up (Graft). Cardiorespiratory and metabolic parameters were collected. Lung gene expression of cytokines (tumor necrosis factor alpha (TNFα), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interferon gamma (IFNγ), high mobility group box-1 (HMGB-1)), chemokines (chemokine CC motif ligand-2 (CCL2-MCP-1), chemokine CXC motif ligand-10 (CXCL-10), interleukin-8 (IL-8)), and endothelial activation markers (endothelin-1 (EDN-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), selectin-E (SELE)) was assessed by real-time polymerase chain reaction (PCR). RESULTS Tachycardia and hypertension occurred during brain death induction; cardiac output rose, systemic vascular resistance dropped (P < 0.05), and diabetes insipidus occurred. Lung-protective ventilation strategy was applied: 9 h after brain death induction, PaO2 was 192 ± 12 mmHg at positive end-expiratory pressure (PEEP) 8.0 ± 1.8 cmH2O and FiO2 of 40%; wet-to-dry ratio (W/D) was 5.8 ± 0.5, and extravascular lung water (EVLW) was 359 ± 80 mL. Procured lungs were cold-stored for 471 ± 24 min (Ischemia) at the end of which W/D was 6.1 ± 0.9. Left lungs were transplanted and reperfused (warm ischemia 98 ± 14 min). Six hours after controlled reperfusion, PaO2 was 192 ± 23 mmHg (PEEP 8.7 ± 1.5 cmH2O, FiO2 40%), W/D was 5.6 ± 0.4, and EVLW was 366 ± 117 mL. Levels of IL-8 rose at the end of donor management (BD, P < 0.05); CCL2-MCP-1, IL-8, HMGB-1, and SELE were significantly altered after reperfusion (Graft, P < 0.05). CONCLUSIONS We have set a standardized, reproducible pig model resembling the entire process of organ donation that may be used as a platform to test in vivo and ex vivo strategies of donor lung optimization before transplantation.
Collapse
|
24
|
Raemdonck D, Neyrinck A, Cypel M, Keshavjee S. Ex‐vivo lung perfusion. Transpl Int 2014; 28:643-56. [DOI: 10.1111/tri.12317] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/11/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Dirk Raemdonck
- Department of Thoracic Surgery University Hospitals Leuven Leuven Belgium
- Laboratory for Experimental Thoracic Surgery KU Leuven University Leuven Belgium
| | - Arne Neyrinck
- Laboratory for Experimental Thoracic Surgery KU Leuven University Leuven Belgium
- Department of Anaesthesiology University Hospitals Leuven Leuven Belgium
| | - Marcelo Cypel
- Division of Thoracic Surgery Toronto General Hospital Toronto ON Canada
- The Latner Thoracic Surgery Laboratories Toronto General Research Institute Toronto ON Canada
| | - Shaf Keshavjee
- Division of Thoracic Surgery Toronto General Hospital Toronto ON Canada
- The Latner Thoracic Surgery Laboratories Toronto General Research Institute Toronto ON Canada
| |
Collapse
|
25
|
Suzuki Y, Tiwari JL, Lee J, Diamond J, Blumenthal NP, Carney K, Borders C, Strain J, Alburger G, Jackson D, Timar J, Berg J, Hasz R, Cantu E. Should we reconsider lung transplantation through uncontrolled donation after circulatory death? Am J Transplant 2014; 14:966-71. [PMID: 24712333 PMCID: PMC4273571 DOI: 10.1111/ajt.12633] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/02/2013] [Accepted: 12/12/2013] [Indexed: 01/25/2023]
Abstract
Lung transplantation through controlled donation after circulatory death (cDCD) has slowly gained universal acceptance with reports of equivalent outcomes to those through donation after brain death. In contrast, uncontrolled DCD (uDCD) lung use is controversial and requires ethical, legal and medical complexities to be addressed in a limited time. Consequently, uDCD lung use has not previously been reported in the United States. Despite these potential barriers, we present a case of a patient with multiple gunshot wounds to the head and the body who was unsuccessfully resuscitated and ultimately became an uDCD donor. A cytomegalovirus positive recipient who had previously consented for CDC high-risk, DCD and participation in the NOVEL trial was transplanted from this uDCD donor, following 3 h of ex vivo lung perfusion. The postoperative course was uneventful, and the recipient was discharged home on day 9. While this case represents a "best-case scenario," it illustrates a method for potential expansion of the lung allograft pool through uDCD after unsuccessful resuscitation in hospitalized patients.
Collapse
Affiliation(s)
- Y. Suzuki
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J. L. Tiwari
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J. Lee
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.M. Diamond
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - N. P. Blumenthal
- Transplant Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - K. Carney
- Transplant Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - C. Borders
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J. Strain
- Division of Traumatology, Albert Einstein Medical Center, Philadelphia, PA
| | - G.W. Alburger
- Division of Traumatology, Albert Einstein Medical Center, Philadelphia, PA
| | - D. Jackson
- Gift of Life Donor Program, Philadelphia, PA
| | - J. Timar
- Gift of Life Donor Program, Philadelphia, PA
| | - J. Berg
- Gift of Life Donor Program, Philadelphia, PA
| | - R.D. Hasz
- Gift of Life Donor Program, Philadelphia, PA
| | - E. Cantu
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Corresponding author: Edward Cantu,
| |
Collapse
|
26
|
Mariani AW, Pêgo-Fernandes PM, Abdalla LG, Jatene FB. Ex vivo lung reconditioning: a new era for lung transplantation. J Bras Pneumol 2013; 38:776-85. [PMID: 23288125 DOI: 10.1590/s1806-37132012000600015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 09/13/2012] [Indexed: 11/21/2022] Open
Abstract
Lung transplantation has come to be viewed as the best treatment option for various end-stage lung diseases. The low number of viable donors continues to be a major obstacle to increasing the number of lung transplants, resulting in high mortality among patients on the waiting list. Unlike transplantation of other solid organs, lung transplantation is primarily limited not by the absolute number of donors but by the viability of the donor lungs, which can be damaged by brain death and by treatments given in the ICU. There are various proposals of ways to increase the number of lung donors: intensification of donation campaigns, use of non-heart-beating donors, living lobar lung transplantation, and adoption of more flexible criteria for donors. However, the proposal that has attracted the most attention from lung transplant groups is ex vivo lung perfusion, especially due to the prospect of reconditioning previously discarded lungs. This system consists of perfusion and ventilation of the isolated heart-lung block using a modified cardiopulmonary bypass circuit. Various authors have been studying this technique due to the satisfactory results obtained and the prospect of an increase in the number of organs suitable for transplantation. Researchers in Sweden, Canada, Austria, England, Spain, and Brazil have extensive experience with the method and have introduced modifications to it. The objective of this article was to review the development of, state of the art in, and future prospects for the ex vivo model of lung perfusion and reconditioning.
Collapse
Affiliation(s)
- Alessandro Wasum Mariani
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | | |
Collapse
|
27
|
Haam SJ, Paik HC, Lee DY, Kim DU, Kim NY. Ex vivo Lung Perfusion Model in Lung Transplantation. KOREAN JOURNAL OF TRANSPLANTATION 2013. [DOI: 10.4285/jkstn.2013.27.3.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Seok Jin Haam
- Department of Thoracic and Cardiovascular Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Chae Paik
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Doo Yun Lee
- Department of Thoracic and Cardiovascular Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Uk Kim
- Department of Thoracic and Cardiovascular Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Na Young Kim
- Department of Thoracic and Cardiovascular Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
|
29
|
Machine perfusion in organ transplantation: a tool for ex-vivo graft conditioning with mesenchymal stem cells? Curr Opin Organ Transplant 2013; 18:24-33. [PMID: 23254699 DOI: 10.1097/mot.0b013e32835c494f] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Machine perfusion has emerged as a tool to evaluate pretransplant graft function more objectively during preservation. Machine perfusion also offers the possibility to recondition questionable organs and to 'immunomodulate' allografts ex vivo. This article aims to review the current knowledge on machine perfusion of the various solid thoracic and abdominal organs, and to discuss the new possibility of conditioning and treating grafts with mesenchymal stem cells (MSCs) during machine perfusion. RECENT FINDINGS Different methods of machine perfusion have been described varying among organs in temperature and composition of perfusate. Commercial devices have recently become available for machine perfusion of all organs, with the largest clinical experience acquired in kidney and lung transplantation. Clinical studies are ongoing for liver, heart, and pancreas. MSC therapy in organ transplantation is now emerging with clinical studies set up to investigate its potential to attenuate ischemia/reperfusion injury (innate immunity) and to downregulate the alloimmune response (adaptive immunity) and promote engraftment after transplantation. We hypothesize that delivery of MSCs directly into the machine perfusion circuit may provide a unique opportunity to treat and immunomodulate organs prior to transplantation. To our knowledge, no study on ex-vivo delivery of MSCs during machine perfusion has been reported. SUMMARY Machine perfusion of solid organs has regained much attention during the last decade. It provides a new promising tool that may allow pretransplant ex-vivo assessment, preservation, repair, and conditioning of grafts. Experimental research and clinical trials testing the administration of MSCs during machine perfusion are warranted to explore the potential benefit and mechanisms of this approach.
Collapse
|
30
|
Dong B, Stewart PW, Egan TM. Postmortem and ex vivo carbon monoxide ventilation reduces injury in rat lungs transplanted from non-heart-beating donors. J Thorac Cardiovasc Surg 2012; 146:429-36.e1. [PMID: 23260460 DOI: 10.1016/j.jtcvs.2012.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/17/2012] [Accepted: 11/06/2012] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We sought to determine whether ventilation of lungs after death in non-heart-beating donors with carbon monoxide during warm ischemia and ex vivo lung perfusion and after transplant would reduce ischemia-reperfusion injury and improve lung function. METHODS One hour after death, Sprague-Dawley rats were ventilated for another hour with 60% oxygen (control group) or 500 ppm carbon monoxide in 60% oxygen (CO-vent group; n=6/group). Then, lungs were flushed with 20 mL cold Perfadex, stored cold for 1 hour, then warmed to 37 °C in an ex vivo lung perfusion circuit perfused with Steen solution. At 37 °C, lungs were ventilated for 15 minutes with alveolar gas with or without 500 ppm carbon monoxide, then perfusion-cooled to 20 °C, flushed with cold Perfadex and stored cold for 2 hours. The left lung was transplanted using a modified cuff technique. Recipients were ventilated with 60% oxygen with or without carbon monoxide. One hour after transplant, we measured blood gases from the left pulmonary vein and aorta, and wet-to-dry ratio of both lungs. The RNA and protein extracted from graft lungs underwent real-time polymerase chain reaction and Western blotting, and measurement of cyclic guanosine monophosphate by enzyme-linked immunosorbent assay. RESULTS Carbon monoxide ventilation begun 1 hour after death reduced wet/dry ratio after ex vivo lung perfusion. After transplantation, the carbon monoxide-ventilation group had better oxygenation; higher levels of tissue cyclic guanosine monophosphate, heme oxidase-1 expression, and p38 phosphorylation; reduced c-Jun N-terminal kinase phosphorylation; and reduced expression of interleukin-6 and interleukin-1β messenger RNA. CONCLUSIONS Administration of carbon monoxide to the deceased donor and non-heart-beating donor lungs reduces ischemia-reperfusion injury in rat lungs transplanted from non-heart-beating donors. Therapy to the deceased donor via the airway may improve post-transplant lung function.
Collapse
Affiliation(s)
- Boming Dong
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7065, USA
| | | | | |
Collapse
|
31
|
Medeiros IL, Pêgo-Fernandes PM, Mariani AW, Fernandes FG, Unterpertinger FV, Canzian M, Jatene FB. Comparison of lung preservation solutions in human lungs using an ex vivo lung perfusion experimental model. Clinics (Sao Paulo) 2012; 67:1101-6. [PMID: 23018310 PMCID: PMC3438253 DOI: 10.6061/clinics/2012(09)19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 06/12/2012] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Experimental studies on lung preservation have always been performed using animal models. We present ex vivo lung perfusion as a new model for the study of lung preservation. Using human lungs instead of animal models may bring the results of experimental studies closer to what could be expected in clinical practice. METHOD Brain-dead donors whose lungs had been declined by transplantation teams were used. The cases were randomized into two groups. In Group 1, Perfadex®was used for pulmonary preservation, and in Group 2, LPDnac, a solution manufactured in Brazil, was used. An ex vivo lung perfusion system was used, and the lungs were ventilated and perfused after 10 hours of cold ischemia. The extent of ischemic-reperfusion injury was measured using functional and histological parameters. RESULTS After reperfusion, the mean oxygenation capacity was 405.3 mmHg in Group 1 and 406.0 mmHg in Group 2 (p = 0.98). The mean pulmonary vascular resistance values were 697.6 and 378.3 dyn·s·cm-5, respectively (p =0.035). The mean pulmonary compliance was 46.8 cm H20 in Group 1 and 49.3 ml/cm H20 in Group 2 (p =0.816). The mean wet/dry weight ratios were 2.06 and 2.02, respectively (p=0.87). The mean Lung Injury Scores for the biopsy performed after reperfusion were 4.37 and 4.37 in Groups 1 and 2, respectively (p = 1.0), and the apoptotic cell counts were 118.75/mm² and 137.50/mm², respectively (p=0.71). CONCLUSION The locally produced preservation solution proved to be as good as Perfadex®. The clinical use of LPDnac may reduce costs in our centers. Therefore, it is important to develop new models to study lung preservation.
Collapse
Affiliation(s)
- Israel L Medeiros
- Heart Institute, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The number of patients listed for lung transplantation largely exceeds the number of available transplantable organs because of both a shortage of organ donors and a low utilization rate of donor lungs. Normothermic ex vivo lung perfusion (EVLP) is a method that maintains the organ in physiologically protective conditions outside the body during preservation, and shows great promise to increase utilization of donor lungs by allowing more accurate evaluation, as well as treatment and repair, of damaged donor lungs prior to transplantation. This article will cover the rationale, technical details and results of experimental and clinical studies with EVLP. The significant potential applications of EVLP in lung transplantation, lung regeneration and oncology are discussed.
Collapse
|
33
|
Valenza F, Rosso L, Coppola S, Froio S, Colombo J, Dossi R, Fumagalli J, Salice V, Pizzocri M, Conte G, Gatti S, Santambrogio L, Gattinoni L. β-Adrenergic agonist infusion during extracorporeal lung perfusion: Effects on glucose concentration in the perfusion fluid and on lung function. J Heart Lung Transplant 2012; 31:524-30. [DOI: 10.1016/j.healun.2012.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/16/2011] [Accepted: 02/02/2012] [Indexed: 11/25/2022] Open
|
34
|
Sanchez PG, Bittle GJ, Burdorf L, Pierson RN, Griffith BP. State of Art: Clinical ex vivo lung perfusion: Rationale, current status, and future directions. J Heart Lung Transplant 2012; 31:339-48. [DOI: 10.1016/j.healun.2012.01.866] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 12/30/2011] [Accepted: 01/17/2012] [Indexed: 01/08/2023] Open
|
35
|
Adenosine A₂A agonist improves lung function during ex vivo lung perfusion. Ann Thorac Surg 2011; 92:1840-6. [PMID: 22051279 DOI: 10.1016/j.athoracsur.2011.06.062] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) is a novel technique than can be used to assess and potentially repair marginal lungs that may otherwise be rejected for transplantation. Adenosine has been shown to protect against pulmonary ischemia-reperfusion (IR) injury through its A(2A) receptor. We hypothesized that combining EVLP with adenosine A(2A) receptor agonist treatment would enhance lung functional quality and increase donor lung use. METHODS Eight bilateral pig lungs were harvested and flushed with cold Perfadex (Vitrolife, Englewood, CO). After 14 hours of storage at 4°C, EVLP was performed for 5 hours on 2 explanted lung groups: (1) control group lungs (n = 4) were perfused with Steen Solution (Vitrolife) and dimethyl sulfoxide and (2) treated group lungs (n = 4) received 10 μM CGS21680, a selective A(2A) receptor agonist, in a Steen solution-primed circuit. Lung histologic features, tissue cytokines, gas analysis, and pulmonary function were compared between groups. RESULTS Treated lungs demonstrated significantly less edema as reflected by wet-dry weight ratio (6.6 versus 5.2; p < 0.03) and confirmed by histologic examination. In addition, treated lung demonstrated significantly lower levels of interferon-γ (IFN- γ) (45.1 versus 88.5; p < 0.05). Other measured tissue cytokine levels (interleukin [IL]-1β, IL-6, and IL-8) were lower in the treatment group, but values failed to reach statistical significance. The oxygenation index was improved in the treated group (1.5 versus 2.3; p < 0.01) as was mean airway pressure (10.3 versus 13; p < 0.009). CONCLUSIONS Combined use of adenosine A(2A) agonist and EVLP significantly attenuates the inflammatory response in acutely injured lungs after IR and enhances pulmonary function. This combination may improve donor lung quality and could increase the donor lung pool for transplantation.
Collapse
|
36
|
|
37
|
A Model of Ex Vivo Perfusion of Porcine Donor Lungs Injured by Gastric Aspiration: A Step Towards Pretransplant Reconditioning. J Surg Res 2011; 170:e159-67. [DOI: 10.1016/j.jss.2011.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/04/2011] [Accepted: 05/10/2011] [Indexed: 11/23/2022]
|
38
|
Preemptive Therapy with Steroids but Not Macrolides Improves Gas Exchange in Caustic-Injured Donor Lungs. J Surg Res 2011; 170:e141-8. [DOI: 10.1016/j.jss.2011.05.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/06/2011] [Accepted: 05/27/2011] [Indexed: 01/05/2023]
|
39
|
Proudfoot AG, McAuley DF, Griffiths MJD, Hind M. Human models of acute lung injury. Dis Model Mech 2011; 4:145-53. [PMID: 21357760 PMCID: PMC3046086 DOI: 10.1242/dmm.006213] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acute lung injury (ALI) is a syndrome that is characterised by acute inflammation and tissue injury that affects normal gas exchange in the lungs. Hallmarks of ALI include dysfunction of the alveolar-capillary membrane resulting in increased vascular permeability, an influx of inflammatory cells into the lung and a local pro-coagulant state. Patients with ALI present with severe hypoxaemia and radiological evidence of bilateral pulmonary oedema. The syndrome has a mortality rate of approximately 35% and usually requires invasive mechanical ventilation. ALI can follow direct pulmonary insults, such as pneumonia, or occur indirectly as a result of blood-borne insults, commonly severe bacterial sepsis. Although animal models of ALI have been developed, none of them fully recapitulate the human disease. The differences between the human syndrome and the phenotype observed in animal models might, in part, explain why interventions that are successful in models have failed to translate into novel therapies. Improved animal models and the development of human in vivo and ex vivo models are therefore required. In this article, we consider the clinical features of ALI, discuss the limitations of current animal models and highlight how emerging human models of ALI might help to answer outstanding questions about this syndrome.
Collapse
Affiliation(s)
- Alastair G Proudfoot
- Royal Brompton & Harefield NHS Foundation Trust, Adult Intensive Care Unit, London, UK
| | | | | | | |
Collapse
|
40
|
|
41
|
A Porcine Model to Study Ex Vivo Reconditioning of Injured Donor Lungs. J Surg Res 2011; 166:e175-85. [DOI: 10.1016/j.jss.2009.09.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/21/2009] [Accepted: 09/10/2009] [Indexed: 11/24/2022]
|
42
|
Cypel M, Yeung JC, Keshavjee S. Novel approaches to expanding the lung donor pool: donation after cardiac death and ex vivo conditioning. Clin Chest Med 2011; 32:233-44. [PMID: 21511086 DOI: 10.1016/j.ccm.2011.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two novel approaches have been developed to potentially increase the availability of donor lungs for lung transplantation. In the first approach, lungs from donation after cardiac death (DCD) donors are used to increase the quantity of organ donors. In the second approach, a newly developed normothermic ex vivo lung perfusion (EVLP) technique is used as a means of reassessing the adequacy of lung function from DCD and from high-risk brain death donors prior to transplantation. This EVLP technique can also act as a platform for the delivery of novel therapies to repair injured organs ex vivo.
Collapse
Affiliation(s)
- Marcelo Cypel
- Division Thoracic Surgery, Toronto Lung Transplant Program, Toronto General Hospital, University of Toronto, Toronto, M5G 2C4, Canada
| | | | | |
Collapse
|
43
|
Early effects of the ex vivo evaluation system on graft function after swine lung transplantation. Eur J Cardiothorac Surg 2011; 40:956-61. [PMID: 21354808 DOI: 10.1016/j.ejcts.2010.12.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/07/2010] [Accepted: 12/24/2010] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Ex vivo lung evaluation (ex vivo) has been developed as a useful method by which to assess lungs from donation-after-cardiac death (DCD) donors prior to transplant. However, the safety of the ex vivo circulation itself with respect to grafts has not been fully investigated. The aim of this study is to evaluate the effects of the ex vivo circuit using a swine lung transplant model. METHODS Lungs with or without 2-h warm ischemia were used. To assess post-transplant graft function, the left lung was transplanted after 2-h ex vivo or cold preservation; blood gas analysis of the left pulmonary vein (partial pressure of oxygen, PO(2)) was performed during the 6-h post-transplant follow-up period. Data were compared between the ex vivo (+) and ex vivo (-) groups. RESULTS Partial pressure of oxygen/ inspired oxygen fraction (PO(2)/FiO(2)) in the ex vivo (-) group was significantly greater than that in the ex vivo (+) group until 3h after transplant. The PO(2)/FiO(2) levels in both groups then increased and became similar at 6 h after transplant, regardless of whether ischemic or non-ischemic lungs (p<0.001 and p=0.004, respectively) were used. CONCLUSIONS Negative effects of the ex vivo system were limited and seen only in the immediate post-transplant period. Therefore, in DCD swine lung transplantation, the ex vivo system appears to be safe.
Collapse
|
44
|
Meers CM, De Wever W, Verbeken E, Mertens V, Wauters S, De Vleeschauwer SI, Vos R, Vanaudenaerde BM, Verleden GM, Van Raemdonck DEM. A porcine model of acute lung injury by instillation of gastric fluid. J Surg Res 2010; 166:e195-204. [PMID: 21109258 DOI: 10.1016/j.jss.2010.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/04/2010] [Accepted: 10/15/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND About 15% of donor lungs are declined because of aspiration contributing to current organ shortage. The aim was to develop a porcine lung injury model by gastric juice (GJ) instillation to study different pretransplant treatment strategies. MATERIALS AND METHODS Pigs (n = 6/group) were anesthetized and monitored. At T0 bronchoalveolar lavage (BAL) was performed followed by instillation of 4 mL/kg GJ or saline solution (SAL). Hemodynamics, aerodynamics and oxygenation were recorded for two hours. Serum samples were collected. At T120 a second BAL was performed. CT scans of explanted, inflated lungs were taken, tissue samples were collected and wet/dry weight ratio (W/D) was calculated. Pepsin and bile acids were measured in BAL. IL-8, CRP and MMP-9 were measured in serum and in BAL. RESULT Oxygenation and lung compliance was lower in [GJ] versus [SAL] (P < 0.01 and P < 0.001, respectively). More consolidation areas were noticed on CT in GJ versus SAL (P < 0.01). Hemorrhage, edema and neutrophil inflammation were seen on histology in [GJ] (P < 0.01, P < 0.001, P < 0.001, respectively). BAL neutrophils, pepsin, bile acids, and IL-8 (P < 0.05) increased in [GJ]. W/D was higher in [GJ] versus SAL (P < 0.001). CONCLUSION Instillation of GJ in pig lungs caused acute lung injury with impaired oxygenation and increased inflammation in BAL, on histology, and on imaging. This model holds promise to assess the efficacy of a broad range of treatment strategies including ex vivo lung perfusion (EVLP).
Collapse
Affiliation(s)
- Caroline M Meers
- Laboratory for Experimental Thoracic Surgery, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Invited Commentary. Ann Thorac Surg 2010; 89:1779-81. [DOI: 10.1016/j.athoracsur.2010.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 03/17/2010] [Accepted: 03/22/2010] [Indexed: 11/18/2022]
|
46
|
Thoracic organs: current preservation technology and future prospects; part 1: lung. Curr Opin Organ Transplant 2010; 15:150-5. [DOI: 10.1097/mot.0b013e3283373b7e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Selección de donantes y receptores en trasplante pulmonar: procedimientos generales. REVISTA MÉDICA CLÍNICA LAS CONDES 2010. [DOI: 10.1016/s0716-8640(10)70524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Dong BM, Abano JB, Egan TM. Nitric oxide ventilation of rat lungs from non-heart-beating donors improves posttransplant function. Am J Transplant 2009; 9:2707-15. [PMID: 19845592 DOI: 10.1111/j.1600-6143.2009.02840.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lungs from non-heart-beating donors (NHBDs) would enhance the donor pool. Ex vivo perfusion and ventilation of NHBD lungs allows functional assessment and treatment. Ventilation of rat NHBD lungs with nitric oxide (NO) during ischemia, ex vivo perfusion and after transplant reduced ischemia-reperfusion injury (IRI) and improved lung function posttransplant. One hour after death, Sprague-Dawley rats were ventilated for another hour with either 60% O2 or 60% O2/40 ppm NO. Lungs were then flushed with 20-mL cold Perfadex, stored cold for 1 h, perfused in an ex vivo circuit with Steen solution and warmed to 37 degrees C, ventilated 15 min, perfusion-cooled to 20 degrees C, then flushed with cold Perfadex and stored cold. The left lung was transplanted and ventilated separately. Recipients were sacrificed after 1 h. NO-ventilation was associated with significantly reduced wet:dry weight ratio in the ex vivo circuit, better oxygenation, reduced pulmonary vascular resistance, increased lung tissue levels of cGMP, maintained endothelial NOS eNOS, and reduced increases in tumor necrosis factor alpha (TNF-alpha) and inducible nitric oxide synthase (iNOS). NO-ventilation had no effect on MAP kinases or NF-kappaB activation. NO administration to NHBDs before and after lung retrieval may improve function of lungs from NHBDs.
Collapse
Affiliation(s)
- B M Dong
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina at Chapel Hill, NC, USA
| | | | | |
Collapse
|
49
|
Cypel M, Rubacha M, Yeung J, Hirayama S, Torbicki K, Madonik M, Fischer S, Hwang D, Pierre A, Waddell TK, de Perrot M, Liu M, Keshavjee S. Normothermic ex vivo perfusion prevents lung injury compared to extended cold preservation for transplantation. Am J Transplant 2009; 9:2262-9. [PMID: 19663886 DOI: 10.1111/j.1600-6143.2009.02775.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Treatment of injured donor lungs ex vivo to accelerate organ recovery and ameliorate reperfusion injury could have a major impact in lung transplantation. We have recently demonstrated a feasible technique for prolonged (12 h) normothermic ex vivo lung perfusion (EVLP). This study was performed to examine the impact of prolonged EVLP on ischemic injury. Pig donor lungs were cold preserved in Perfadex for 12 h and subsequently divided into two groups: cold static preservation (CSP) or EVLP at 37 degrees C with Steen solution for a further 12 h (total 24 h preservation). Lungs were then transplanted and reperfused for 4 h. EVLP preservation resulted in significantly better lung oxygenation (PaO(2) 531 +/- 43 vs. 244 +/- 49 mmHg, p < 0.01) and lower edema formation rates after transplantation. Alveolar epithelial cell tight junction integrity, evaluated by zona occludens-1 protein staining, was disrupted in the cell membranes after prolonged CSP but not after EVLP. The maintenance of integrity of barrier function during EVLP translates into significant attenuation of reperfusion injury and improved graft performance after transplantation. Integrity of functional metabolic pathways during normothermic perfusion was confirmed by effective gene transfer and GFP protein synthesis by lung alveolar cells. In conclusion, EVLP prevents ongoing injury associated with prolonged ischemia and accelerates lung recovery.
Collapse
Affiliation(s)
- M Cypel
- Toronto Lung Transplant Program, Division of Thoracic Surgery, Latner Thoracic Laboratories, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Update on donor assessment, resuscitation, and acceptance criteria, including novel techniques--non-heart-beating donor lung retrieval and ex vivo donor lung perfusion. Thorac Surg Clin 2009; 19:261-74. [PMID: 19662970 DOI: 10.1016/j.thorsurg.2009.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The shortage of adequate organ donors remains a great challenge in clinical lung transplantation. With increasing experience in the medical management and surgical technique of lung transplantation, gradual expansion of the criteria for lung donor selection has occurred with beneficial effects on the donor pool. Interest in donation after cardiac death also is increasing as the gap increases between donors and the needs of listed patients. Successful use of these new sources of lungs depends on the accurate assessment and prediction of transplanted lung function. Promising techniques for lung assessment and diagnostics include investigating key genes associated with graft failure or good graft performance using molecular approaches, and ex vivo evaluation. Further studies are needed to answer remaining questions about the best technique and solution to reperfuse human lungs for several hours without edema formation. As the predictive ability to discern good from injured donor lungs improves, strategies to repair donor lungs become increasingly important. Prolonged normothermic EVLP seems to be a platform on which many reparative strategies can be realized. With these new methods for assessing and resuscitating lungs accurately, it is hoped that inroads will be made toward providing every listed patient a chance for successful lung transplantation.
Collapse
|