1
|
Băetu AE, Mirea LE, Cobilinschi C, Grințescu IC, Grințescu IM. Hemogram-Based Phenotypes of the Immune Response and Coagulopathy in Blunt Thoracic Trauma. J Pers Med 2024; 14:1168. [PMID: 39728080 DOI: 10.3390/jpm14121168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Blunt thoracic trauma possesses unique physiopathological traits due to the complex interaction of immune and coagulation systems in the lung tissue. Hemogram-based ratios such as neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR), neutrophil-to-lymphocyte × platelet (NLPR) ratios have been studied as proxies for immune dysregulation and survival in trauma. We hypothesized that blunt thoracic trauma patients exhibit distinct patterns of coagulation and inflammation abnormalities identifiable by the use of readily available hemogram-derived markers. Methods: The present study represents a retrospective observational analysis that included 86 patients with blunt thoracic trauma from a single high-volume level one trauma center. The primary outcome was mortality prediction in blunt thoracic trauma patients using these derived biomarkers. Secondary outcomes included phenotypes of the immune response and coagulopathy and the prediction of non-fatal adverse events. Results: A U-shaped distribution of mortality was found, with high rates of early deaths in patients with an NLPR value of <3.1 and high rates of late deaths in patients with NLPR > 9.5. A subgroup of blunt thoracic trauma patients expressing moderate inflammation and inflammation-induced hypercoagulation objectified as NLPR between 3.1 and 9.5 may have a survival benefit (p < 0.0001). The NLPR cut-off for predicting early deaths and the need for massive transfusion was 3.1 (sensitivity = 80.00% and specificity = 71.05%). Conclusions: These findings suggest that blunt thoracic trauma patients exhibit distinct phenotypes of the immune response and coagulopathy from the early stages. A controlled, balanced interaction of immune, coagulation, and fibrinolytic systems might effectively achieve tissue repair and increase survival in thoracic trauma patients and should be subject to further research.
Collapse
Affiliation(s)
- Alexandru Emil Băetu
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Grigore Alexandrescu Clinical Emergency Hospital for Children, 011743 Bucharest, Romania
| | - Liliana Elena Mirea
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Cristian Cobilinschi
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | | | - Ioana Marina Grințescu
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
2
|
Ye H, Zhang Y, Huang Y, Li B, Cao R, Dai L, Huang B, Tian P, Li L, Han Y. Bivalirudin Attenuates Thrombin-Induced Endothelial Hyperpermeability via S1P/S1PR2 Category: Original Articles. Front Pharmacol 2021; 12:721200. [PMID: 34413778 PMCID: PMC8369898 DOI: 10.3389/fphar.2021.721200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/23/2021] [Indexed: 12/02/2022] Open
Abstract
Aims: To explore the role of the Sphingosine 1-Phosphate (S1P)/Receptor2 (S1PR2) pathway in thrombin-induced hyperpermeability (TIP) and to test whether bivalirudin can reverse TIP via the S1P-S1PRs pathway. Methods and Results: Using western blot, we demonstrated that Human umbilical vein endothelial cells (HUVECs) that were cultured with 2 U/ml thrombin showed significantly increased S1PR2 expression while S1PR1and three kept unchanged. Such increment was attenuated by JTE-013 pretreatment and by presence of bivalirudin. Exposure of 2 U/ml of thrombin brought a higher level of S1P both intracellularly and extracellularly within the HUVECs by using ELISA detecting. Thrombin induced S1P and S1PR2 increment was restored by usage of PF543 and bivalirudin. Bivalirudin alone did not influenced the level of S1P and S1PR1,2, and S1PR3 compare to control group. As a surrogate of cytoskeleton morphology, phalloidin staining and immunofluorescence imaging were used. Blurry cell edges and intercellular vacuoles or spaces were observed along thrombin-exposed HUVECs. Presence of JTE-013 and bivalirudin attenuated such thrombin-induced permeability morphological change and presence of heparin failed to show the protective effect. Transwell chamber assay and probe assay were used to measure and compare endothelial permeability in vitro. An increased TIP was observed in HUVECs cultured with thrombin, and coculture with bivalirudin, but not heparin, alleviated this increase. JTE-013 treatment yielded to similar TIP alleviating effect. In vivo, an Evans blue assay was used to test subcutaneous and organ microvascular permeability after the treatment of saline only, thrombin + saline, thrombin + bivalirudin, thrombin + heparin or thrombin + JTE-013. Increased subcutaneous and organ tissue permeability after thrombin treatment was observed in thrombin + saline and thrombin + heparin groups while treatment of bivalirudin and JTE-013 absent this effect. Conclusion: S1P/S1PR2 mediates TIP by impairing vascular endothelial barrier function. Unlike heparin, bivalirudin effectively blocked TIP by inhibiting the thrombin-induced S1P increment and S1PR2 expression, suggesting the novel endothelial protective effect of bivalirudin under pathological procoagulant circumstance.
Collapse
Affiliation(s)
- Haowen Ye
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yizhi Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Huang
- Department of Pediatrics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Biao Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Ruhao Cao
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Libing Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Bin Huang
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Pingge Tian
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Li Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yaling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
3
|
Gunaratne R, Kumar S, Frederiksen JW, Stayrook S, Lohrmann JL, Perry K, Bompiani KM, Chabata CV, Thalji NK, Ho MD, Arepally G, Camire RM, Krishnaswamy S, Sullenger BA. Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass. Nat Biotechnol 2018; 36:606-613. [PMID: 29863725 PMCID: PMC6349032 DOI: 10.1038/nbt.4153] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 03/27/2018] [Indexed: 02/05/2023]
Abstract
Unfractionated heparin (UFH), the standard anticoagulant for cardiopulmonary bypass (CPB) surgery, carries a risk of post-operative bleeding and is potentially harmful in patients with heparin-induced thrombocytopenia-associated antibodies. To improve the activity of an alternative anticoagulant, the RNA aptamer 11F7t, we solved X-ray crystal structures of the aptamer bound to factor Xa (FXa). The finding that 11F7t did not bind the catalytic site suggested that it could complement small-molecule FXa inhibitors. We demonstrate that combinations of 11F7t and catalytic-site FXa inhibitors enhance anticoagulation in purified reaction mixtures and plasma. Aptamer-drug combinations prevented clot formation as effectively as UFH in human blood circulated in an extracorporeal oxygenator circuit that mimicked CPB, while avoiding side effects of UFH. An antidote could promptly neutralize the anticoagulant effects of both FXa inhibitors. Our results suggest that drugs and aptamers with shared targets can be combined to exert more specific and potent effects than either agent alone.
Collapse
Affiliation(s)
- Ruwan Gunaratne
- Duke University, Department of Pharmacology and Cancer Biology, Durham, NC 27710
- Duke University, Medical Scientist Training Program, Durham, NC 27710
| | - Shekhar Kumar
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | | | - Steven Stayrook
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Kay Perry
- Northeastern Collaborative Access Team (NE-CAT) and Departments of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439
| | | | - Charlene V. Chabata
- Duke University, Department of Pharmacology and Cancer Biology, Durham, NC 27710
| | - Nabil K. Thalji
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104
| | - Michelle D. Ho
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | | | - Rodney M. Camire
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104
| | - Sriram Krishnaswamy
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104
| | - Bruce A. Sullenger
- Duke University, Department of Pharmacology and Cancer Biology, Durham, NC 27710
- Duke University, Department of Surgery, Durham, NC 27710
| |
Collapse
|
4
|
Kobori T, Hamasaki S, Kitaura A, Yamazaki Y, Nishinaka T, Niwa A, Nakao S, Wake H, Mori S, Yoshino T, Nishibori M, Takahashi H. Interleukin-18 Amplifies Macrophage Polarization and Morphological Alteration, Leading to Excessive Angiogenesis. Front Immunol 2018; 9:334. [PMID: 29559970 PMCID: PMC5845536 DOI: 10.3389/fimmu.2018.00334] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
M2 macrophage (Mφ) promotes pathologic angiogenesis through a release of pro-angiogenic mediators or the direct cell–cell interaction with endothelium in the micromilieu of several chronic inflammatory diseases, including rheumatoid arthritis and cancer, where interleukin (IL)-18 also contributes to excessive angiogenesis. However, the detailed mechanism remains unclear. The aim of this study is to investigate the mechanism by which M2 Mφs in the micromilieu containing IL-18 induce excessive angiogenesis in the in vitro experimental model using mouse Mφ-like cell line, RAW264.7 cells, and mouse endothelial cell line, b.End5 cells. We discovered that IL-18 acts synergistically with IL-10 to amplify the production of Mφ-derived mediators like osteopontin (OPN) and thrombin, yielding thrombin-cleaved form of OPN generation, which acts through integrins α4/α9, thereby augmenting M2 polarization of Mφ with characteristics of increasing surface CD163 expression in association with morphological alteration. Furthermore, the results of visualizing temporal behavior and morphological alteration of Mφs during angiogenesis demonstrated that M2-like Mφs induced excessive angiogenesis through the direct cell–cell interaction with endothelial cells, possibly mediated by CD163.
Collapse
Affiliation(s)
- Takuro Kobori
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Shinichi Hamasaki
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Atsuhiro Kitaura
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yui Yamazaki
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Atsuko Niwa
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Shinichi Nakao
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Tadashi Yoshino
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
5
|
Hamaoui K, Gowers S, Boutelle M, Cook TH, Hanna G, Darzi A, Smith R, Dorling A, Papalois V. Organ Pretreatment With Cytotopic Endothelial Localizing Peptides to Ameliorate Microvascular Thrombosis and Perfusion Deficits in Ex Vivo Renal Hemoreperfusion Models. Transplantation 2016; 100:e128-e139. [PMID: 27861293 DOI: 10.1097/tp.0000000000001437] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hypothermic machine organ perfusion (HMP) offers opportunity to manipulate grafts with pharmacological agents prior to transplantation. Pretreating organs with novel cytotopic anticoagulant peptides that localize to endothelial cell membranes could ameliorate microvascular thrombotic sequelae posttransplantation. We describe experiments testing thrombalexin (TLN), a novel cell binding thrombin inhibitor, using porcine and unused human kidneys in a series of ex vivo normothermic hemoreperfusion models. METHODS Thirty-eight porcine kidneys were used. Control kidneys underwent pretreatment via HMP with either unmodified perfusion solution (n = 15) or solution with inactive-TLN (absent anticoagulant effect, n = 4). Test kidneys were perfused with TLN-treated solution (n = 19). All kidneys then underwent hemoreperfusion. Two unused human kidneys underwent a similar protocol. RESULTS Hypothermic machine perfusion pretreatment facilitated delivery and tethering of TLN in the organ microvasculature. Hemoreperfusion challenge demonstrated improved perfusion in TLN-treated kidneys compared with controls: 26.4% superior flow (30.6 vs. 23.1 mL/min per 100 g, P = 0.019) and 28.9% higher perfusion flow indices (0.43 vs. 0.32 mL/min per 100 g mm Hg, P = 0.049). Orthogonal polarization spectral imaging demonstrated superior microvascular capillary perfusion in TLN-treated organs versus controls (9.1 vs 2.8 pl/s per mm, P = 0.021). Rapid-sampling microdialysis for cortical [lactate] as a marker of tissue ischemia/metabolism detected lower levels in TLN-treated kidneys. Perfusate analysis demonstrated reduced fibrin generation in TLN-treated kidneys correlating with perfusion data. CONCLUSIONS Our data suggest that HMP graft pretreatment with cytotopic anticoagulants is feasible and ameliorates perfusion deficits seen in ex vivo hemoreperfusion models. There is potential for further development and application of this translational strategy to deliver locally active anticoagulants directly within grafts and decrease microvascular thrombotic sequelae, while avoiding systemic anticoagulation and its associated risks.
Collapse
Affiliation(s)
- Karim Hamaoui
- 1 Department of Surgery, Imperial College, London, United Kingdom. 2 Department of Bioengineering, Imperial College, London, United Kingdom. 3 Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom. 4 MRC Centre for Transplantation, King's College London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Pacheco S, Kanou T, Fung SY, Chen K, Lee D, Bai X, Keshavjee S, Liu M. Formulation of hydrophobic therapeutics with self-assembling peptide and amino acid: A new platform for intravenous drug delivery. J Control Release 2016; 239:211-22. [DOI: 10.1016/j.jconrel.2016.08.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/27/2016] [Indexed: 01/21/2023]
|
7
|
Active clearance of chest drainage catheters reduces retained blood. J Thorac Cardiovasc Surg 2016; 151:832-838.e2. [DOI: 10.1016/j.jtcvs.2015.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 11/23/2022]
|
8
|
|
9
|
Abstract
Ischemia reperfusion injury occurs in the kidney when blood supply is interrupted in clinical settings such as kidney transplantation or nephron sparing surgery for renal tumors. These lesions lead to acute kidney injury (AKI) a detrimental situation associated with impaired short-term allograft function (delayed graft function or primary non function) but also long-term transplant survival through the onset of chronic allograft nephropathy. The present review details the cellular and molecular consequences of ischemia reperfusion in a native kidney as well as in a kidney graft after cold ischemia time, giving a comprehensive description of biological pathways involved during the phase of ischemia and during the reperfusion period where the rapid return to normoxia leads to a large burst of reactive oxygen species along with a dramatic reduction in antioxidant defenses. This work also focuses on the distinct susceptibilities of kidney cells to ischemia (endothelial vs epithelial) and the outcome of acute kidney injury.
Collapse
|
10
|
Lu L, Xu K, Zhang LJ, Morelli J, Krazinski AW, Silverman JR, Schoepf UJ, Lu GM. Lung ischaemia-reperfusion injury in a canine model: dual-energy CT findings with pathophysiological correlation. Br J Radiol 2014; 87:20130716. [PMID: 24611753 DOI: 10.1259/bjr.20130716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate dual-energy CT (DECT) findings of pulmonary ischaemic-reperfusion injury (PIRI) and its pathophysiological correlation in the canine model. METHODS A PIRI model was established in 11 canines, utilizing closed pectoral balloon occlusion. Two control canines were also included. For the PIRI model, the left pulmonary artery was occluded with a balloon, which was deflated and removed after 2 h. DECT was performed before, during occlusion and at 2, 3 and 4 h thereafter and was utilized to construct pulmonary perfusion maps. Immediately after the CT scan at the fourth hour post reperfusion, the canines were sacrificed, and lung specimens were harvested for pathological analysis. CT findings, pulmonary artery pressure and blood gas results were then analysed. RESULTS Data at every time point were available for 10 animals (experimental group, n = 8; control group, n = 2). Quantitative measurements from DECT pulmonary perfusion maps found iodine attenuation values of the left lung to be the lowest at 2 h post embolization and the highest at 1 h post reperfusion. In the contralateral lung, perfusion values also peaked at 1 h post reperfusion. Continuous hypoxia and acid-based disorders were observed during PIRI, and comprehensive analysis showed physiological changes to be worst at 3 h post reperfusion. CONCLUSION DECT pulmonary perfusion mapping demonstrated pulmonary perfusion of the bilateral lungs to be the greatest at 1 h post reperfusion. These CT findings corresponded with pathophysiological changes. ADVANCES IN KNOWLEDGE DECT pulmonary perfusion mapping can be used to evaluate lung ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- L Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
12
|
Linking inflammation and coagulation: novel drug targets to treat organ ischemia. Curr Opin Anaesthesiol 2011; 24:375-80. [PMID: 21659867 DOI: 10.1097/aco.0b013e3283489ac0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Activation of the coagulation system during ischemia/reperfusion injury is an unavoidable event and even further augmented during cardiovascular surgery. Clotting not only leads to disturbance of blood rheology but also enhances the inflammatory response. We aim to highlight the inflammatory properties of the coagulation system and novel potential therapeutic approaches targeting both features. RECENT FINDINGS Heparin, a thrombin inhibitor, is still the drug of choice for preventing coagulation following, for example, cardiovascular surgery. On the contrary, much effort is done to evaluate the utilization of direct thrombin inhibitors to prevent ischemia/reperfusion injury. Furthermore, targeting the inflammatory potential of the coagulation system seems to be very promising. Fibrin(ogen) and its degradation products modulate the inflammatory response, especially by inducing leukocyte migration. Inhibiting these pro-inflammatory effects, for example, by administration of Bβ15-42 was recently shown to be beneficial under various inflammatory conditions. SUMMARY Ischemia and reperfusion are common activators of coagulation that is also accompanied by inflammation. Therefore, targeting this well orchestrated system might be of therapeutic benefit, as its mode of action is dual: clotting inhibition and anti-inflammation. This novel therapeutic approach might at least be of benefit in the treatment of systemic inflammatory syndromes following, that is, cardiovascular surgery.
Collapse
|
13
|
den Hengst WA, Gielis JF, Lin JY, Van Schil PE, De Windt LJ, Moens AL. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol 2010; 299:H1283-99. [PMID: 20833966 DOI: 10.1152/ajpheart.00251.2010] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lung ischemia-reperfusion injury remains one of the major complications after cardiac bypass surgery and lung transplantation. Due to its dual blood supply system and the availability of oxygen from alveolar ventilation, the pathogenetic mechanisms of ischemia-reperfusion injury in the lungs are more complicated than in other organs, where loss of blood flow automatically leads to hypoxia. In this review, an extensive overview is given of the molecular and cellular mechanisms that are involved in the pathogenesis of lung ischemia-reperfusion injury and the possible therapeutic strategies to reduce or prevent it. In addition, the roles of neutrophils, alveolar macrophages, cytokines, and chemokines, as well as the alterations in the cell-death related pathways, are described in detail.
Collapse
Affiliation(s)
- Willem A den Hengst
- Department of Thorax and Vascular Surgery, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
McCourtie AS, Merry HE, Wolf PS, FitzSullivan E, Keech JC, Farivar AS, Mulligan MS. Synergistic protection in lung ischemia-reperfusion injury with calcineurin and thrombin inhibition. Ann Thorac Surg 2010; 89:1766-71. [PMID: 20494024 DOI: 10.1016/j.athoracsur.2010.02.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury impairs lung transplant outcomes. The transcription factors, activator protein-1, and nuclear factor kappa B, are activated early in reperfusion and drive the development of injury. Thrombin inhibition with hirudin, and calcineurin inhibition with tacrolimus have independently been shown to ameliorate lung ischemia-reperfusion injury by reducing activator protein-1 and nuclear factor kappa B activation, respectively. However, high doses were required to achieve protection using individual agents, raising concerns about potential toxicities. We sought to determine if low-dose combination therapy reduced injury through synergistic inhibition of pretranscriptional signaling events. METHODS Rats were pretreated with either intravenous hirudin or tacrolimus at low doses or high doses, or both at low doses, prior to undergoing left lung ischemia and reperfusion. Lungs were assessed for markers of lung injury, including bronchoalveolar lavage cytokine-chemokine content and transcription factor transactivation of activator protein-1 and nuclear factor kappa B. RESULTS High-dose monotherapy with hirudin or tacrolimus reduced lung injury and transactivation of activator protein-1 and nuclear factor kappa B activation, respectively, whereas low-dose monotherapy with either agent did not alter transcription factor activation or lung injury compared with positive controls. Low-dose combination therapy was more protective than high-dose monotherapy with either drug, and correlated with a reduction in activation of both transcription factors and their associated cytokines. CONCLUSIONS The significant decrease in lung injury severity and transcription factor activation with combined pathway inhibition suggests pretranscriptional signaling redundancy between the calcineurin and thrombin dependent pathways in lung reperfusion injury.
Collapse
Affiliation(s)
- Anton S McCourtie
- Department of Surgery, Division of Cardiothoracic Surgery, University of Washington Medical Center, Seattle, Washington, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Direct thrombin inhibitor prevents delayed graft function in a porcine model of renal transplantation. Transplantation 2009; 87:1636-44. [PMID: 19502954 DOI: 10.1097/tp.0b013e3181a5b154] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Kidney transplantations from donors after cardiac arrest (DCA) are characterized by an increase in the occurrence of delayed graft function and primary nonfunction. In this study, Melagatran, a selective reversible direct thrombin inhibitor was used to limit renal injury in a DCA pig kidney transplantation model. METHODS We used a porcine model of DCA to study the effects of treatment with Melagatran in the peri-conservation period. Thromboelastography was used to check Melagatran antithrombin effect on in vitro clot formation. Reverse-transcriptase polymerase chain reaction was used to analyze the peripheral immune cells activation status. Renal function and morphologic study were performed at days 1 and 7. Finally, we analyzed the mechanisms of Melagatran protection on kidney microvasculature primary endothelial cells. RESULTS Prolongation of coagulation time (Ex-Tem) was observed 10 min after injection; however, Melagatran did not modulate increases of thrombin-antithrombin complexes following reperfusion. Melagatran significant treatment lowered the proinflammatory status of circulating immune cells. Animal's survival was increased in Melagatran-treated groups (9 of 10 in Melagatran groups vs. 4 of 10 in controls at day 7). Renal injury and inflammation were also significantly reduced in treated groups. We also demonstrated a direct protective effect of Melagatran against endothelial cell activation and inflammation in vitro. CONCLUSION Direct thrombin inhibitor administration in the periconservation period improved graft outcome and reduced renal injury in a model of DCA.
Collapse
|
16
|
Lau CL, Zhao Y, Kim J, Kron IL, Sharma A, Yang Z, Laubach VE, Linden J, Ailawadi G, Pinsky DJ. Enhanced fibrinolysis protects against lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2009; 137:1241-8. [PMID: 19379998 DOI: 10.1016/j.jtcvs.2008.12.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/18/2008] [Accepted: 12/25/2008] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Ischemia-reperfusion injury continues to plague the field of lung transplantation, resulting in suboptimal outcomes. In acute lung injury, processes such as ventilator-induced injury, sepsis, or acute respiratory distress syndrome, extravascular fibrin has been shown to promote lung dysfunction and the acute inflammatory response. This study investigates the role of the fibrinolytic cascade in lung ischemia-reperfusion injury and investigates the interplay between the fibrinolytic system and the inflammatory response. METHODS Mice lacking the plasminogen activator inhibitor-1 gene (PAI-1 knock out, PAI-1 KO; and thus increased lysis of endogenous fibrin) and wild-type mice underwent in situ left lung ischemia and reperfusion. Fibrin content in the lung was evaluated by immunoblotting. Reperfusion injury was assessed by histologic and physiologic parameters. Proinflammatory mediators were measured in bronchoalveolar lavage fluid and plasma using enzyme-linked immunosorbent assays. RESULTS Ischemia-reperfusion causes fibrin deposition in murine lungs. Less fibrin was seen in PAI-1 KO mice than in wild-type mice subjected to the same ischemia-reperfusion conditions. By histologic criteria, more evidence of ischemia-reperfusion injury was noted (thickening of the interstium, cellular infiltration in the alveoli) in the wild-type than in PAI-1 KO mice. Physiologic parameters also revealed more ischemia-reperfusion injury in the wild-type than in PAI-1 KO mice. Cytokine and chemokines were elevated more in the wild-type group than the PAI-1 KO group. CONCLUSIONS Lung ischemia-reperfusion injury triggers fibrin deposition in the murine lungs and fibrin creates a proinflammatory environment. Preventing fibrin deposition may reduce ischemia-reperfusion injury and inflammation. This finding may lead to novel treatment strategies for ischemia-reperfusion.
Collapse
Affiliation(s)
- Christine L Lau
- Division of Thoracic and Cardiovascular Surgery, University of Virginia, Charlottesville, Va., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ding BS, Hong N, Christofidou-Solomidou M, Gottstein C, Albelda SM, Cines DB, Fisher AB, Muzykantov VR. Anchoring fusion thrombomodulin to the endothelial lumen protects against injury-induced lung thrombosis and inflammation. Am J Respir Crit Care Med 2009; 180:247-56. [PMID: 19342415 DOI: 10.1164/rccm.200809-1433oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Endothelial thrombomodulin (TM) regulates thrombosis and inflammation. Diverse forms of pulmonary and vascular injury are accompanied by down-regulation of TM, which aggravates tissue injury. We postulated that anchoring TM to the endothelial surface would restore its protective functions. OBJECTIVES To design an effective and safe strategy to treat pulmonary thrombotic and inflammatory injury. METHODS We synthesized a fusion protein, designated scFv/TM, by linking the extracellular domain of mouse TM to a single-chain variable fragment of an antibody to platelet endothelial cell adhesion molecule-1 (PECAM-1). The targeting and protective functions of scFv/TM were tested in mouse models of lung ischemia-reperfusion and acute lung injury (ALI) caused by intratracheal endotoxin and hyperoxia, both of which caused approximately 50% reduction in the endogenous expression of TM. MEASUREMENTS AND MAIN RESULTS Biochemical assays showed that scFv/TM accelerated protein C activation by thrombin and bound mouse PECAM-1 and cytokine high mobility group-B1. After intravenous injection, scFv/TM preferentially accumulated in the mouse pulmonary vasculature. In a lung model of ischemia-reperfusion injury, scFv/TM attenuated elevation of early growth response-1, inhibited pulmonary deposition of fibrin and leukocyte infiltration, and preserved blood oxygenation more effectively than soluble TM. In an ALI model, scFv/TM, but not soluble TM, suppressed activation of nuclear factor-kappaB, inflammation and edema in the lung and reduced mortality without causing hemorrhage. CONCLUSIONS Targeting TM to the endothelium using an scFv anchor enhances its antithrombotic and antiinflammatory effectiveness in models of ALI.
Collapse
Affiliation(s)
- Bi-Sen Ding
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
After more than 70 years of effective clinical use, heparin remains the most common anticoagulant in use and one of the most commonly prescribed drugs to hospitalized patients. However, the biologic variability and immunogenicity limit its utility. With increasing volumes of vascular intervention and an aging population, an increase in the need for anticoagulation can be anticipated. This article reviews current viable options and barriers to the use of heparin.
Collapse
Affiliation(s)
- Leila Mureebe
- Department of Surgery, Section of Vascular Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
19
|
Stress-activated protein kinase inhibition to ameliorate lung ischemia reperfusion injury. J Thorac Cardiovasc Surg 2008; 135:656-65. [DOI: 10.1016/j.jtcvs.2007.11.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/09/2007] [Accepted: 11/26/2007] [Indexed: 11/19/2022]
|
20
|
|