1
|
Hoshida T, Tsubaki M, Takeda T, Asano R, Choi IH, Takimoto K, Inukai A, Imano M, Tanabe K, Nagai N, Nishida S. Oxaliplatin and 5-fluorouracil promote epithelial-mesenchymal transition via activation of KRAS/ERK/NF-κB pathway in KRAS-mutated colon cancer cells. Mol Cell Biochem 2025; 480:2985-2999. [PMID: 39586908 DOI: 10.1007/s11010-024-05157-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024]
Abstract
Oxaliplatin (L-OHP) and 5-fluorouracil (5-FU) are used to treat colon cancer; however, resistance contributes to poor prognosis. Epithelial-mesenchymal transition (EMT) has been induced in tumor tissues after administration of anticancer drugs and may be involved in drug resistance. We investigated the mechanism of EMT induction in colon cancer cells treated with 5-FU and L-OHP. We found that L-OHP and 5-FU at clinical steady-state concentrations induced EMT in LoVo and DLD-1 cells (KRAS G13D-mutated), but not in HT-29 and Caco-2 cells (KRAS wild type). L-OHP and 5-FU elevated vimentin, N-cadherin, Twist, Slug, and Snail and decreased E-cadherin expressions. Moreover, 5-FU- and L-OHP -induced EMT cells showed increased cell migration and decreased sensitivity to 5-FU and L-OHP. L-OHP and 5-FU treatment promoted KRAS, ERK1/2, and NF-κB activation. Combined administration with KRAS siRNA, MEK1/2 inhibitor trametinib, and NF-κB inhibitor dimethyl fumarate (DMF), suppressed L-OHP- and 5-FU-induced EMT. These results suggest that KRAS/ERK/NF-κB pathway activation is important for EMT induction by L-OHP and 5-FU treatment. Thus, MEK1/2 and NF-κB inhibitors may facilitate the resistance acquisition to L-OHP and 5-FU therapy in KRAS G13D-mutated colon cancer.
Collapse
Affiliation(s)
- Tadafumi Hoshida
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
- Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Wakayama, Japan
| | - Masanobu Tsubaki
- Laboratory of Pharmacotherapy, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Tomoya Takeda
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Ryota Asano
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Ik-Hyun Choi
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Koudai Takimoto
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Ayano Inukai
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University School of Medicine, Osakasayama, Osaka, 589-8511, Japan
| | - Kazufumi Tanabe
- Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Wakayama, Japan
| | - Noriaki Nagai
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Shozo Nishida
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
Cui Y, Wen J, Fu J, Leng C. Identification of key genes to predict response to chemoradiotherapy and prognosis in esophageal squamous cell carcinoma. Front Mol Biosci 2024; 11:1512715. [PMID: 39633985 PMCID: PMC11614722 DOI: 10.3389/fmolb.2024.1512715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background Chemoradiotherapy is a crucial treatment modality for esophageal squamous cell carcinoma (ESCC). This study aimed to identify chemoradiotherapy sensitivity-related genes and analyze their prognostic value and potential associations with the tumor microenvironment in ESCC. Methods Utilizing the Gene Expression Omnibus database, we identified differentially expressed genes between ESCC patients who achieved complete and incomplete pathological responses following chemoradiotherapy. Prognostic genes were then screened, and key genes associated with chemoradiotherapy sensitivity were determined using random survival forest analysis. We examined the relationships between key genes, infiltrating immune cells, and immunoregulatory genes. Additionally, drug sensitivity and enrichment analyses were conducted to assess the impact of key genes on chemotherapy responses and signaling pathways. A prognostic nomogram for ESCC was developed incorporating key genes, and its effectiveness was evaluated. Genome-wide association study data were employed to investigate chromosomal pathogenic regions associated with key genes. Results Three key genes including ATF2, SLC27A5, and ALOXE3 were identified. These genes can predict the sensitivity of ESCC patients to neoadjuvant chemoradiotherapy and hold significant clinical relevance in prognostication. These genes were also found to be significantly correlated with certain immune cells and immunoregulatory genes within the tumor microenvironment and were involved in critical tumor-related signaling pathways, including the epithelial-mesenchymal transition and P53 pathways. A nomogram was established to predict the prognosis of ESCC by integrating key genes with clinical stages, demonstrating favorable predictability and reliability. Conclusion This study identified three key genes that predict chemoradiotherapy sensitivity and prognosis and are involved in multiple tumor-related biological processes in ESCC. These findings provide predictive biomarkers for chemoradiotherapy response and support the development of individualized treatment strategies for ESCC patients.
Collapse
Affiliation(s)
- Yingying Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Jianhua Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Changsen Leng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Tamtaji Z, Sheikhsagha E, Behnam M, Nabavizadeh F, Shafiee Ardestani M, Rahmati-Dehkordi F, Aschner M, Mirzaei H, Tamtaji OR. Berberine and Lung Cancer: From Pure Form to Its Nanoformulations. Asia Pac J Clin Oncol 2024. [PMID: 39568275 DOI: 10.1111/ajco.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
Lung cancer is the most fatal cancer worldwide. The etiology of lung cancer has yet to be fully characterized. Smoking and air pollution are several risk factors for lung cancer. Berberine, an isoquinoline alkaloid, is an antihyperglycemic, antidepressant, antioxidative, anti-inflammatory, and anticancer compound. Evidence substantiates that berberine has antitumor effects, exerting its effects by targeting a variety of cellular and molecular processes, such as apoptosis, autophagy, cell cycle arrest, migration, and metastasis. Although the beneficial effects of berberine have been reported, some limitations including low bioavailability and absorption as well as poor aqueous solubility have hindered its clinical application. Nanotechnology and nanodelivery bioformulation approaches may bypass these limitations. In addition, the combination of berberine with other therapies has been shown to result in greater treatment efficacy for lung cancer. Herein, we summarize cellular and molecular pathways that are affected by berberine, its clinical efficacy upon various combinations, and the potential for nanotechnology in lung cancer therapy.
Collapse
Affiliation(s)
- Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Elham Sheikhsagha
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fatemeh Rahmati-Dehkordi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Omid R Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
4
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
5
|
Shih FC, Lin CF, Wu YC, Hsu CC, Chen BC, Chang YC, Lin YS, Satria RD, Lin PY, Chen CL. Desmethylclomipramine triggers mitochondrial damage and death in TGF-β-induced mesenchymal type of A549 cells. Life Sci 2024; 351:122817. [PMID: 38871113 DOI: 10.1016/j.lfs.2024.122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Lung cancer is the leading cause of cancer deaths, where the metastasis often causes chemodrug resistance and leads to recurrence after treatment. Desmethylclomipramine (DCMI), a bioactive metabolite of clomipramine, shows the therapeutic efficacy with antidepressive agency as well as potential cytostatic effects on lung cancer cells. Here, we demonstrated that DCMI effectively caused transforming growth factor (TGF)-β1-mediated mesenchymal type of A549 cells to undergo mitochondrial death via myeloid cell leukemia-1 (Mcl-1) suppression and activation of truncated Bid (tBid). TGF-β1 induced epithelial mesenchymal transition in A549 cells with the increase of fibronectin and decrease of E-cadherin, the activation of Akt/glycogen synthase kinase-3β (GSK-β)/Mcl-1 axis, and the hypo-responsiveness to cisplatin. DCMI initiated a dose-dependent cytotoxicity on TGF-β1-mediated mesenchymal type of A549 cells through inactivating Akt/GSK-β/Mcl-1 axis, in which mitochondria instability and caspase-9/3 activation also occurred concurrently. Pharmacological inhibition of caspase-8 and cathepsin B partly reversed tBid expression and mitochondrial damage to further attenuate DCMI-mediated cytotoxicity. Additionally, DCMI presented partial therapeutic effects in treating mesenchymal type of A549 tumor bearing nude mice through an acceleration of cancer cell death. Taken together, DCMI exerts antitumor effects via initiating the mechanisms of Akt/GSK-β/Mcl-1 inactivation and cathepsin B/caspase-8-regulated mitochondrial death, which suggests its potential role in mesenchymal type of cancer cell therapy.
Collapse
Affiliation(s)
- Fu-Chia Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Wu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chun Hsu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Syuan Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Division of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Rahmat Dani Satria
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta 55281, Indonesia
| | - Pei-Yun Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Liu H, Weng J, Huang CLH, Jackson AP. Voltage-gated sodium channels in cancers. Biomark Res 2024; 12:70. [PMID: 39060933 PMCID: PMC11282680 DOI: 10.1186/s40364-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory β-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
7
|
Xia X, Ge Y, Ge F, Gu P, Liu Y, Li P, Xu P. MAP4 acts as an oncogene and prognostic marker and affects radioresistance by mediating epithelial-mesenchymal transition in lung adenocarcinoma. J Cancer Res Clin Oncol 2024; 150:88. [PMID: 38341398 PMCID: PMC10858930 DOI: 10.1007/s00432-024-05614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE To explore the effect of microtubule-associated protein 4 (MAP4) on lung adenocarcinoma cells in vitro and evaluate its prognostic value. Radioresistance, indicated by reduced efficiency of radiotherapy, is a key factor in treatment failure in lung adenocarcinoma (LADC). This study aims to explore the primary mechanism underlying the relationship between MAP4 and radiation resistance in lung adenocarcinoma. METHODS We analysed the expression of MAP4 in lung adenocarcinoma by real-time quantitative polymerase chain reaction (RT‒qPCR), immunohistochemistry (IHC) and bioinformatics online databases, evaluated the prognostic value of MAP4 in lung adenocarcinoma and studied its relationship with clinicopathological parameters. Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis identified independent prognostic factors associated with lung adenocarcinoma that were used to construct a nomogram, internal validation was performed. We then evaluated the accuracy and clinical validity of the model using a receiver operating characteristic (ROC) curve, time-dependent C-index analysis, a calibration curve, and decision curve analysis (DCA). Scratch assays and transwell assays were used to explore the effect of MAP4 on the migration and invasion of lung adenocarcinoma cells. Bioinformatics analysis, RT‒qPCR, Cell Counting Kit-8 (CCK-8) assays and Western blot experiments were used to study the relationship between MAP4, epithelial-mesenchymal transition (EMT) and radiation resistance in lung adenocarcinoma. RESULTS MAP4 expression in lung adenocarcinoma tissues was significantly higher than that in adjacent normal lung tissues. High expression of MAP4 is associated with poorer overall survival (OS) in patients with lung adenocarcinoma. Univariate Cox regression analysis showed that pT stage, pN stage, TNM stage and MAP4 expression level were significantly associated with poorer OS in LADC patients. Multivariate Cox regression analysis and LASSO regression analysis showed that only the pT stage and MAP4 expression level were associated with LADC prognosis. The nomogram constructed based on the pT stage and MAP4 expression showed good predictive accuracy. ROC curves, corrected C-index values, calibration curves, and DCA results showed that the nomogram performed well in both the training and validation cohorts and had strong clinical applicability. The results of in vitro experiments showed that the downregulation of MAP4 significantly affected the migration and invasion of lung adenocarcinoma cells. MAP4 was strongly correlated with EMT-related markers. Further studies suggested that the downregulation of MAP4 can affect the viability of lung adenocarcinoma cells after irradiation and participate in the radiation resistance of lung adenocarcinoma cells by affecting EMT. CONCLUSION MAP4 is highly expressed in lung adenocarcinoma; it may affect prognosis by promoting the migration and invasion of cancer cells. We developed a nomogram including clinical factors and MAP4 expression that can be used for prognosis prediction in patients with lung adenocarcinoma. MAP4 participates in radiation resistance in lung adenocarcinoma by regulating the radiation-induced EMT process. MAP4 may serve as a biomarker for lung adenocarcinoma prognosis evaluation and as a new target for improving radiosensitivity.
Collapse
Affiliation(s)
- Xiaochun Xia
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yangyang Ge
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Fanghong Ge
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Pei Gu
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yuanyuan Liu
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Peng Li
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian Cancer Hospital, Huaian, China.
| | - Pengqin Xu
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China.
| |
Collapse
|
8
|
Ramesh V, Gollavilli PN, Pinna L, Siddiqui MA, Turtos AM, Napoli F, Antonelli Y, Leal‐Egaña A, Havelund JF, Jakobsen ST, Boiteux EL, Volante M, Færgeman NJ, Jensen ON, Siersbæk R, Somyajit K, Ceppi P. Propionate reinforces epithelial identity and reduces aggressiveness of lung carcinoma. EMBO Mol Med 2023; 15:e17836. [PMID: 37766669 PMCID: PMC10701619 DOI: 10.15252/emmm.202317836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) plays a central role in the development of cancer metastasis and resistance to chemotherapy. However, its pharmacological treatment remains challenging. Here, we used an EMT-focused integrative functional genomic approach and identified an inverse association between short-chain fatty acids (propionate and butanoate) and EMT in non-small cell lung cancer (NSCLC) patients. Remarkably, treatment with propionate in vitro reinforced the epithelial transcriptional program promoting cell-to-cell contact and cell adhesion, while reducing the aggressive and chemo-resistant EMT phenotype in lung cancer cell lines. Propionate treatment also decreased the metastatic potential and limited lymph node spread in both nude mice and a genetic NSCLC mouse model. Further analysis revealed that chromatin remodeling through H3K27 acetylation (mediated by p300) is the mechanism underlying the shift toward an epithelial state upon propionate treatment. The results suggest that propionate administration has therapeutic potential in reducing NSCLC aggressiveness and warrants further clinical testing.
Collapse
Affiliation(s)
- Vignesh Ramesh
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
- Interdisciplinary Centre for Clinical ResearchUniversity Hospital Erlangen, FAU‐Erlangen‐NurembergErlangenGermany
| | - Paradesi Naidu Gollavilli
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
- Interdisciplinary Centre for Clinical ResearchUniversity Hospital Erlangen, FAU‐Erlangen‐NurembergErlangenGermany
| | - Luisa Pinna
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | | | | | - Francesca Napoli
- Department of Oncology at San Luigi HospitalUniversity of TurinTurinItaly
| | - Yasmin Antonelli
- Institute for Molecular Systems Engineering and Advanced MaterialsHeidelberg UniversityHeidelbergGermany
| | - Aldo Leal‐Egaña
- Institute for Molecular Systems Engineering and Advanced MaterialsHeidelberg UniversityHeidelbergGermany
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | | | - Elisa Le Boiteux
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Marco Volante
- Department of Oncology at San Luigi HospitalUniversity of TurinTurinItaly
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Rasmus Siersbæk
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Kumar Somyajit
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Paolo Ceppi
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
- Interdisciplinary Centre for Clinical ResearchUniversity Hospital Erlangen, FAU‐Erlangen‐NurembergErlangenGermany
| |
Collapse
|
9
|
Liu H, Zhu Y, Niu H, Jie J, Hua S, Bai X, Wang S, Song L. Activation of PI3K/Akt pathway by G protein-coupled receptor 37 promotes resistance to cisplatin-induced apoptosis in non-small cell lung cancer. Cancer Med 2023; 12:19777-19793. [PMID: 37732632 PMCID: PMC10587962 DOI: 10.1002/cam4.6543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVES Lung cancer is a major public health concern and represents the most common cause of cancer-related death worldwide. Among eukaryotes, the G protein-coupled receptor (GPCR) family stands as the largest group of membrane proteins. Alterations in GPCR gene expression and dysregulation of signal transduction have been recognized as the markers of malignancy. As a member of the GPCR family, G protein-coupled receptor 37 (GPR37) exhibits unknown functions in tumors, particularly in non-small-cell lung cancer (NSCLC) METHODS: We explored the expression and prognosis of GPR37 in NSCLC through TCGA, GTEx, GEO, and GEPIA2. We detected the expression of GPR37 in NSCLC tissues and cell lines. The study explored the influence of GPR37 on tumor cell proliferation. Furthermore, we examined the effects of GPR37 on tumor cell apoptosis and invasion. Most importantly, we investigated whether GPR37 affects cisplatin-induced drug resistance in NSCLC. Furthermore, by conducting animal experiments, we assessed the impact of GPR37 on NSCLC and delved into underlying mechanisms. RESULTS (1) In NSCLC, the expression of GPR37 is markedly higher than that in corresponding normal tissues. We found that elevated GPR37 expression predicts an unfavorable prognosis. (2) It was demonstrated that GPR37 positively regulates NSCLC cell invasion, migration, and proliferation, suppresses cell apoptosis, heightens resistance to cisplatin, and promotes tumor formation and growth. Conversely, we observed that GPR37 knockdown suppresses NSCLC cell invasion, migration, and proliferation, promotes cell apoptosis, increases sensitivity to cisplatin, and affects tumor formation and growth. (3) GPR37 activates PI3K/Akt/mTOR signal transduction pathways to mediate epithelial-mesenchymal transition (EMT), thereby promoting the progression of NSCLC. CONCLUSIONS It was suggested that GPR37 acts a crucial role in promoting the occurrence and development of NSCLC. Knockdown of GPR37 significantly inhibits the occurrence and development of NSCLC. Therefore, our findings demonstrated that GPR37 may represent a viable therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Han Liu
- Department of Respiratory MedicineThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yingjie Zhu
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Huikun Niu
- Department of Respiratory MedicineThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Jing Jie
- Department of Respiratory MedicineThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Shucheng Hua
- Department of Respiratory MedicineThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Xiaoxue Bai
- Department of General PracticeThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Shuai Wang
- Department of Vascular Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Lei Song
- Department of Respiratory MedicineThe First Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
10
|
Therapeutic Targeting of Cancer-Associated Fibroblasts in the Non-Small Cell Lung Cancer Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15020335. [PMID: 36672284 PMCID: PMC9856659 DOI: 10.3390/cancers15020335] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer death worldwide. The most common lung cancer is non-small cell lung cancer (NSCLC), with an overall 5-year survival rate of around 20% because NSCLC is a metastatic disease. A better understanding of the mechanism underlying lung cancer metastasis is therefore urgently needed. The tumor microenvironment involves different types of stromal cells and functions as key components in the progression of NSCLC. Through epithelial-mesenchymal transition (EMT), in which epithelial cells lose their polarity and acquire mesenchymal potential, cancer cells acquire metastatic abilities, as well as cancer stem-cell-like potential. We previously reported that cancer-associated fibroblasts (CAFs) interact with lung cancer cells to allow for the acquisition of malignancy and treatment resistance by paracrine loops via EMT signals in the tumor microenvironment. Furthermore, CAFs regulate the cytotoxic activity of immune cells via various cytokines and chemokines, creating a microenvironment of immune tolerance. Regulation of CAFs can therefore affect immune responses. Recent research has shown several roles of CAFs in NSCLC tumorigenesis, owing to their heterogeneity, so molecular markers of CAFs should be elucidated to better classify tumor-promoting subtypes and facilitate the establishment of CAF-specific targeted therapies. CAF-targeted cancer treatments may suppress EMT and regulate the niche of cancer stem cells and the immunosuppressive network and thus may prove useful for NSCLC treatment through multiple mechanisms.
Collapse
|
11
|
Yamazaki M, Hosokawa M, Matsunaga H, Arikawa K, Takamochi K, Suzuki K, Hayashi T, Kambara H, Takeyama H. Integrated spatial analysis of gene mutation and gene expression for understanding tumor diversity in formalin-fixed paraffin-embedded lung adenocarcinoma. Front Oncol 2022; 12:936190. [PMID: 36505794 PMCID: PMC9731154 DOI: 10.3389/fonc.2022.936190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction A deeper understanding of intratumoral heterogeneity is essential for prognosis prediction or accurate treatment plan decisions in clinical practice. However, due to the cross-links and degradation of biomolecules within formalin-fixed paraffin-embedded (FFPE) specimens, it is challenging to analyze them. In this study, we aimed to optimize the simultaneous extraction of mRNA and DNA from microdissected FFPE tissues (φ = 100 µm) and apply the method to analyze tumor diversity in lung adenocarcinoma before and after erlotinib administration. Method Two magnetic beads were used for the simultaneous extraction of mRNA and DNA. The decross-linking conditions were evaluated for gene mutation and gene expression analyses of microdissected FFPE tissues. Lung lymph nodes before treatment and lung adenocarcinoma after erlotinib administration were collected from the same patient and were preserved as FFPE specimens for 4 years. Gene expression and gene mutations between histologically classified regions of lung adenocarcinoma (pre-treatment tumor in lung lymph node biopsies and post-treatment tumor, normal lung, tumor stroma, and remission stroma, in resected lung tissue) were compared in a microdissection-based approach. Results Using the optimized simultaneous extraction of DNA and mRNA and whole-genome amplification, we detected approximately 4,000-10,000 expressed genes and the epidermal growth factor receptor (EGFR) driver gene mutations from microdissected FFPE tissues. We found the differences in the highly expressed cancer-associated genes and the positive rate of EGFR exon 19 deletions among the tumor before and after treatment and tumor stroma, even though they were collected from tumors of the same patient or close regions of the same specimen. Conclusion Our integrated spatial analysis method would be applied to various FFPE pathology specimens providing area-specific gene expression and gene mutation information.
Collapse
Affiliation(s)
- Miki Yamazaki
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroko Matsunaga
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Koji Arikawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Kazuya Takamochi
- Department of Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenji Suzuki
- Department of Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hideki Kambara
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan,Frontier BioSystems Inc., Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan,*Correspondence: Haruko Takeyama,
| |
Collapse
|
12
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
13
|
Bhattacharyya T, Koto M, Windisch P, Ikawa H, Hagiwara Y, Tsuji H, Adeberg S. Emerging Role of Carbon Ion Radiotherapy in Reirradiation of Recurrent Head and Neck Cancers: What Have We Achieved So Far? Front Oncol 2022; 12:888446. [PMID: 35677171 PMCID: PMC9167994 DOI: 10.3389/fonc.2022.888446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Administering reirradiation for the treatment of recurrent head and neck cancers is extremely challenging. These tumors are hypoxic and radioresistant and require escalated radiation doses for adequate control. The obstacle to delivering this escalated dose of radiation to the target is its proximity to critical organs at risk (OARs) and possible development of consequent severe late toxicities. With the emergence of highly sophisticated technologies, intensity-modulated radiotherapy (IMRT) and stereotactic body radiotherapy have shown promising outcomes. Proton beam radiotherapy has been used for locally recurrent head and neck cancers because of its excellent physical dose distribution, exploring sharp Bragg peak properties with negligible entrance and exit doses. To further improve these results, carbon ion radiotherapy (CIRT) has been explored in several countries across Europe and Asia because of its favorable physical properties with minimal entrance and exit doses, sharper lateral penumbra, and much higher and variable relative biological efficacy, which cannot be currently achieved with any other form of radiation. Few studies have described the role of CIRT in recurrent head and neck cancers. In this article, we have discussed the different aspects of carbon ions in reirradiation of recurrent head and neck cancers, including European and Asian experiences, different dose schedules, dose constraints of OARs, outcomes, and toxicities, and a brief comparison with proton beam radiotherapy and IMRT.
Collapse
Affiliation(s)
- Tapesh Bhattacharyya
- Department of Radiation Oncology, Tata Medical Centre, Kolkata, India
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Paul Windisch
- Department of Radiation Oncology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Hiroaki Ikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasuhito Hagiwara
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Sebastian Adeberg
- National Center for Tumor Diseases (NCT), University Hospital Heidelberg (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Heidelberg (UKHD), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| |
Collapse
|
14
|
Shi WK, Li YH, Bai XS, Lin GL. The Cell Cycle-Associated Protein CDKN2A May Promotes Colorectal Cancer Cell Metastasis by Inducing Epithelial-Mesenchymal Transition. Front Oncol 2022; 12:834235. [PMID: 35311137 PMCID: PMC8929760 DOI: 10.3389/fonc.2022.834235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy, and recurrence and metastasis contribute considerably to its high mortality. It is well known that the epithelial-mesenchymal transition (EMT) accelerates the rate of cancer cell dissemination and migration, thus promoting cancer metastasis. Targeted therapy is a common modality for cancer treatment, and it can play a role in inhibiting cancer progression. In this study, bioinformatics was used to search for genes associated with the prognosis of CRC. First, differential analysis was performed on colon and rectal cancer samples to obtain 2,840 and 3,177 differentially expressed genes (DEGs), respectively. A Venn diagram was then used to identify 262 overlapping genes from the two groups of DEGs and EMT-related genes. The overlapping genes were subjected to batch survival analysis and batch expression analysis successively, and nine genes were obtained whose high expression in CRC led to a poor prognosis. The least absolute shrinkage and selection operator (LASSO) prognostic model was then constructed to obtain the risk score formula. A nomogram was constructed to seek prognostic independent factors to obtain CDKN2A. Finally, CCK-8 assay, flow cytometry and western blotting assays were performed to analyze the cellular biological function of CDKN2A. The results showed that knockdown of CDKN2A expression inhibited HT-29 cell proliferation, promoted apoptosis and cell cycle progression, and affected the EMT process in CRC.
Collapse
Affiliation(s)
- Wei-Kun Shi
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yun-Hao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xue-Shan Bai
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Le Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Hu P, So K, Chen H, Lin Q, Xu M, Lin Y. A monoclonal antibody against basic fibroblast growth factor attenuates cisplatin resistance in lung cancer by suppressing the epithelial-mesenchymal transition. Int J Immunopathol Pharmacol 2022; 36:3946320221105134. [PMID: 35649742 PMCID: PMC9168941 DOI: 10.1177/03946320221105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: To investigate the underlying mechanisms of how the basic fibroblast growth factor monoclonal antibody (bFGFmAb) attenuates cisplatin (DDP) resistance in lung cancer using A549 cells and cisplatin-resistant A549 cells (A549/DDP). Methods: Cancer cell proliferation, cell viability, and 50% inhibitory concentration (IC50) of cisplatin were assessed. Transwell assays were utilized to evaluate the invasion activity of tumor cells in response to treatment. Epithelial-to-mesenchymal transition markers and drug resistance proteins were analysed using Western blots. Results: We demonstrate that the bFGFmAb inhibits the proliferation and invasion of both A549 and A549/DDP cells. The bFGFmAb increases cisplatin sensitivity of both A549 and A549/DDP cells as evidenced by an increase in the IC50 of cisplatin in A549 and A549/DDP cells. Furthermore, bFGFmAb significantly increases the expression of E-cadherin, whilst decreasing the expression of N-cadherin and bFGF in both cell lines, thereby showing inhibition of epithelial-to-mesenchymal transition. In addition, we demonstrate that bFGFmAb significantly reduces the expression of the lung resistance protein. Conclusions: Our data suggests that the humanized bFGFmAb is a promising agent to attenuate cisplatin resistance in NSCLC. The underlying mechanism for this effect of bFGFmAb may be associated with the inhibition of epithelial-to-mesenchymal transition and reduced expression of lung resistance protein.
Collapse
Affiliation(s)
- Penghui Hu
- Department of Oncology, 162698The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Oncology, 71537Jiangmen Central Hospital, Jiangmen, China
| | - Kaman So
- Department of Oncology, 162698The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongjie Chen
- Department of Traditional Chinese Medicine, 144991Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qimou Lin
- Department of Surgery, 71537Jiangmen Central Hospital, Jiangmen, China
| | - Meng Xu
- Department of Oncology, 162698The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiguang Lin
- Department of Traditional Chinese Medicine, 144991Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, 1994University of Technology Sydney, Sydney, NSW, Australia
- Centre Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
16
|
Yamato H, Kimura K, Fukui E, Kanou T, Ose N, Funaki S, Minami M, Shintani Y. Periostin secreted by activated fibroblasts in idiopathic pulmonary fibrosis promotes tumorigenesis of non-small cell lung cancer. Sci Rep 2021; 11:21114. [PMID: 34702952 PMCID: PMC8548404 DOI: 10.1038/s41598-021-00717-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) patients with idiopathic pulmonary fibrosis (IPF) show poor prognosis. Periostin is an extracellular matrix protein highly expressed in the lung tissues of IPF. This study aimed to investigate the possibility that periostin secreted by fibroblasts derived from IPF lung might affect proliferation of NSCLC cells. Periostin was more highly expressed and secreted by fibroblasts from diseased human lung with IPF (DIPF) than by normal human lung fibroblasts (NHLF). Cocultivation of NSCLC cells with conditioned media (CM) from DIPF increased proliferation of NSCLC cells through pErk signaling, with this proliferation attenuated by periostin-neutralizing antibodies. Knockdown of integrin β3, a subunit of the periostin receptor, in NSCLC cells suppressed proliferation of NSCLC cells promoted by recombinant human periostin and CM of DIPF. On in vivo examination, DIPF promoted tumor progression more than NHLF, and knockdown of integrin β3 in NSCLC cells suppressed tumor progression promoted by DIPF. Fibroblasts derived from surgical specimens from IPF patients also increased secretion of periostin compared to those from non-IPF patients. Periostin secreted from IPF-activated fibroblasts plays critical roles in the proliferation of NSCLC cells. The present study provides a solid basis for considering periostin-targeted therapy for NSCLC patients with IPF.
Collapse
Affiliation(s)
- Hiroyuki Yamato
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Kimura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naoko Ose
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masato Minami
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
17
|
The pan-cancer landscape of crosstalk between epithelial-mesenchymal transition and immune evasion relevant to prognosis and immunotherapy response. NPJ Precis Oncol 2021; 5:56. [PMID: 34158591 PMCID: PMC8219790 DOI: 10.1038/s41698-021-00200-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
An emerging body of evidence has recently recognized the coexistence of epithelial-mesenchymal transition (EMT) and immune response. However, a systems-level view and survey of the interplay between EMT and immune escape program, and their impact on tumor behavior and clinical outcome across various types of cancer is lacking. Here, we performed comprehensive multi-omics analyses to characterize the landscape of crosstalk between EMT and immune evasion and their clinical relevance across 17 types of solid cancer. Our study showed the presence of complex and dynamic immunomodulatory crosstalk between EMT and immune evasion shared by pan-cancer, and the crosstalk was significantly associated with cancer prognosis and immunotherapy response. Integrative quantitative analyses of genomics and immunogenomics revealed that cellular composition of immune infiltrates, non-synonymous mutation burden, chromosomal instability and oncogenic gene alterations are associated with the balance between EMT and immune evasion. Finally, we proposed a scoring model termed EMT-CYT Index (ECI) to quantify the EMT-immunity axis, which was a superior predictor of prognosis and immunotherapy response across different malignancies. By providing a systematic overview of crosstalk between EMT and immune evasion, our study highlights the potential of pan-cancer EMT-immunity crosstalk as a paradigm for dissecting molecular mechanisms underlying cancer progression and guiding more effective and generalized immunotherapy strategies.
Collapse
|
18
|
Li G, Liu B, Xu W, Li D, Ji W. Poriaic Acid Affecting Epithelial-Mesenchymal Transition and Apoptosis of A549/DDP Cells via Glycogen Synthesis Kinase-3 β/Snail Signaling Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: The paper explored the mechanism of Poriaic acid-containing serum interfering with EMT and apoptosis of A549/DDP cells. The aim is to find experimental evidence of Poriaic acid intervening cisplatin resistance in lung cancer, searching for effective targets, and to
explore the mechanism of cisplatin resistance in lung cancer. Material and methods: Immunochemistry and western blotting were employed to detect the effects of Poriaic acid-containing serum on the expressions of p-GSK-3β (ser9), Snail protein and mRNA in GSK-3β/Snail
signaling pathway, and the effects of Poriaic acid-containing serum on the expressions of EMT markers and related apop-totic factors. Results: The results of immunoblotting and immunocytochemistry rendered that the expressions of p-GSK-3β (ser9), Snail protein and mRNA decreased
in the administration group as contrast to the blank group. As to the effect of Poriaic acid-containing serum on EMT markers, the immunoblotting results showed that the E-cadherin protein and mRNA expressions increased while the expressions of N-cadherin protein and mRNA decreased. Poriaic
acid-containing serum can up-regulate the expressions of P53, Bax protein and mRNA, and down-regulate the expressions of Bcl-2 protein and mRNA. Conclusion: Poriaic acid-containing serum can affect EMT and apoptosis of A549/DDP cells by interfering with GSK-3β/Snail signaling
pathway.
Collapse
Affiliation(s)
- Gengyao Li
- Department of General Medicine, Qian Wei Hospital of Jilin Province, 1445 Qianjin Street, Chaoyang District, Qian Wei Hospital of Jilin Province, Changchun, 130012, Jilin, China
| | - Bin Liu
- Department of Urology Surgery, Qian Wei Hospital of Jilin Province, 1445 Qianjin Street, Chaoyang District, Qian Wei Hospital of Jilin Province, Changchun, 130012, Jilin, China
| | - Weiwei Xu
- Department of General Medicine, Qian Wei Hospital of Jilin Province, 1445 Qianjin Street, Chaoyang District, Qian Wei Hospital of Jilin Province, Changchun, 130012, Jilin, China
| | - Dongmei Li
- Department of Medical, Qian Wei Hospital of Jilin Province,1445 Qianjin Street, Chaoyang District, Qian Wei Hospital of Jilin Province, Changchun, 130012, Jilin, China
| | - Wei Ji
- Department of General Medicine, Qian Wei Hospital of Jilin Province, 1445 Qianjin Street, Chaoyang District, Qian Wei Hospital of Jilin Province, Changchun, 130012, Jilin, China
| |
Collapse
|
19
|
Increased Extracellular Adenosine in Radiotherapy-Resistant Breast Cancer Cells Enhances Tumor Progression through A2AR-Akt-β-Catenin Signaling. Cancers (Basel) 2021; 13:cancers13092105. [PMID: 33925516 PMCID: PMC8123845 DOI: 10.3390/cancers13092105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary In our previous study, purinergic P2Y2 receptor (P2Y2R) activation by ATP was found to play an important role in tumor progression and metastasis by regulating various responses in cancer cells and modulating crosstalk between cancer cells and endothelial cells (ECs). Therefore, we expected that P2Y2R would play a critical role in radioresistance and enhanced tumor progression in radioresistant triple-negative breast cancer (RT-R-TNBC). However, interestingly, P2Y2R expression was slightly decreased in RT-R-TNBC cells, while the expression of A2AR was significantly increased both in RT-R-TNBC cells and in tumor tissues, especially triple negative breast cancer (TNBC) tissues of breast cancer (BC) patients. Thus, we aimed to investigate the role of adenosine A2A receptor (A2AR) and its signaling pathway in the progression of RT-R-TNBC. The results reveal for the first time the role of A2AR in the progression and metastasis of RT-R-BC cells and suggest that the adenosine (ADO)-activated intracellular A2AR signaling pathway is linked to the AKT-β-catenin pathway to regulate RT-R-BC cell invasiveness and metastasis. Abstract Recently, we found that the expressions of adenosine (ADO) receptors A2AR and A2BR and the ectonucleotidase CD73 which is needed for the conversion of adenosine triphosphate (ATP) to adenosine diphosphate (ADP) and the extracellular ADO level are increased in TNBC MDA-MB-231 cells and RT-R-MDA-MB-231 cells compared to normal cells or non-TNBC cells. The expression of A2AR, but not A2BR, is significantly upregulated in breast cancer tissues, especially TNBC tissues, compared to normal epithelial tissues. Therefore, we further investigated the role of ADO-activated A2AR and its signaling pathway in the progression of RT-R-TNBC. ADO treatment induced MDA-MB-231 cell proliferation, colony formation, and invasion, which were enhanced in RT-R-MDA-MB-231 cells in an A2AR-dependent manner. A2AR activation by ADO induced AKT phosphorylation and then β-catenin, Snail, and vimentin expression, and these effects were abolished by A2AR-siRNA transfection. In an in vivo animal study, compared to 4T1-injected mice, RT-R-4T1-injected mice exhibited significantly increased tumor growth and lung metastasis, which were decreased by A2AR-knockdown. The upregulation of phospho-AKT, β-catenin, Snail, and vimentin expression in mice injected with RT-R-4T1 cells was also attenuated in mice injected with RT-R-4T1-A2AR-shRNA cells. These results suggest that A2AR is significantly upregulated in BC tissues, especially TNBC tissues, and ADO-mediated A2AR activation is involved in RT-R-TNBC invasion and metastasis through the AKT-β-catenin pathway.
Collapse
|
20
|
Sun HN, Ren CX, Gong YX, Xie DP, Kwon T. Regulatory function of peroxiredoxin I on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung cancer development. Oncol Lett 2021; 21:465. [PMID: 33907575 PMCID: PMC8063228 DOI: 10.3892/ol.2021.12726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Smoking is a major cause of lung cancer, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the most important carcinogens in cigarette smoke. NNK modulates the expression of peroxiredoxin (Prdx) I in lung cancer. Prdx1 is upregulated in lung squamous cell carcinoma and lung adenocarcinoma, and considered a potential biomarker for lung cancer. The current article reviewed the role and regulatory mechanisms of Prdx1 in NNK-induced lung cancer cells. Prdx1 protects erythrocytes and DNA from NNK-induced oxidative damage, prevents malignant transformation of cells and promotes cytotoxicity of natural killer cells, hence suppressing tumor formation. In addition, Prdx1 has the ability to prevent NNK-induced lung tumor metabolic activity and generation of large amount of reactive oxygen species (ROS) and ROS-induced apoptosis, thus promoting tumor cell survival. In contrast to this, Prdx1, together with NNK, can promote the epithelial-mesenchymal transition and migration of lung tumor cells. The signaling pathways associated with NNK and Prdx1 in lung cancer cells have been discussed in present review; however, numerous potential pathways are yet to be studied. To develop novel methods for treating NNK-induced lung cancer, and improve the survival rate of patients with lung cancer, further research is needed to understand the complete mechanism associated with NNK.
Collapse
Affiliation(s)
- Hu-Nan Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Chen-Xi Ren
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yi-Xi Gong
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dan-Ping Xie
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk 56216, Republic of Korea
| |
Collapse
|
21
|
Yuan S, Si W, Zhuang K, Li Y, Zhang Y, Liu J, Yang L, Zhang X. LncRNA UCID Promotes Hepatocellular Carcinoma Metastasis via Stabilization of Snail. Onco Targets Ther 2021; 14:725-736. [PMID: 33536764 PMCID: PMC7850577 DOI: 10.2147/ott.s277951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2023] Open
Abstract
Background LncRNAs are functional regulators in tumor progression which act by regulating mRNAs in multiple types of cancer. However, the effect of lnc-UCID on hepatocellular carcinoma (HCC) metastasisremains unclear. Methods Lnc-UCID expression was quantified in HCC tissues and HCC cell lines by qRT-PCR. HCC cell lines with lnc-UCID knockdown were established by lentivirus transduction. The migration and invasion abilities of HCC cells were analyzed by Transwell and wound-healing assays. Protein expression of epithelial–mesenchymal transition (EMT)-related factors was examined by Western blot assay. Dual-luciferase assays and actinomycin D treatment were conducted to explore the relationship between lnc-UCID and Snail mRNA. The direct interaction between lnc-UCID and Snail mRNA was subjected to quantification analysis by biotinylated lnc-UCID pulldown assays. Pearson’s correlation coefficient was used to analyze correlations between lnc-UCID and Snail expression level in clinical samples. Rescue experiments were performed to uncover the role of Snail in the HCC metastasis process. Results Lnc-UCID was upregulated in human HCC tissues and HCC cell lines. Lnc-UCID promoted the cells’ mobility and invasiveness by enhancing the EMT process of HCC cells. The expression of Snail positively correlated with lnc-UCID abundance, and the interaction between lnc-UCID and Snail mRNA prevented miR-122, miR-203, miR-30b, miR-34a or miR-153 binding to the 3ʹ-UTR of Snail. Transfection of Snail greatly rescued the migration and invasion of HCC cells. Conclusion Lnc-UCID was upregulated in clinical HCC samples and directly interacted with Snail mRNA to enhance the stability of Snail mRNA, thus promoting the EMT process to accelerate HCC metastasis.
Collapse
Affiliation(s)
- Shanshan Yuan
- Department of Gastroenterology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Wangli Si
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Kun Zhuang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Yijun Li
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Yanting Zhang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Jiaming Liu
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Li Yang
- Department of Ultrasonography, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xin Zhang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
22
|
Li Y, Sun C, Tan Y, Zhang H, Li Y, Zou H. ITGB1 enhances the Radioresistance of human Non-small Cell Lung Cancer Cells by modulating the DNA damage response and YAP1-induced Epithelial-mesenchymal Transition. Int J Biol Sci 2021; 17:635-650. [PMID: 33613118 PMCID: PMC7893583 DOI: 10.7150/ijbs.52319] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives: Radiotherapy has played a limited role in the treatment of non-small cell lung cancer (NSCLC) due to the risk of tumour radioresistance. We previously established the radioresistant non-small cell lung cancer (NSCLC) cell line H460R. In this study, we identified differentially expressed genes between these radioresistant H460R cells and their radiosensitive parent line. We further evaluated the role of a differentially expressed gene, ITGB1, in NSCLC cell radioresistance and as a potential target for improving radiosensitivity. Materials and Methods: The radiosensitivity of NSCLC cells was evaluated by flow cytometry, colony formation assays, immunofluorescence, and Western blotting. Bioinformatics assay was used to identify the effect of ITGB1 and YAP1 expression in NSCLC tissues. Results: ITGB1 mRNA and protein expression levels were higher in H460R than in the parental H460 cells. We observed lower clonogenic survival and cell viability and a higher rate of apoptosis of ITGB1-knockdown A549 and H460R cells than of wild type cells post-irradiation. Transfection with an ITGB1 short hairpin (sh) RNA enhanced radiation-induced DNA damage and G2/M phase arrest. Moreover, ITGB1 induced epithelial-mesenchymal transition (EMT) of NSCLC cells. Silencing ITGB1 suppressed the expression and intracellular translocation of Yes-associated protein 1 (YAP1), a downstream effector of ITGB1. Conclusions: ITGB1 may induce radioresistance via affecting DNA repair and YAP1-induced EMT. Taken together, our data suggest that ITGB1 is an attractive therapeutic target to overcome NSCLC cell radioresistance.
Collapse
Affiliation(s)
- Yuexian Li
- Department of Oncology, Shengjing Hospital affiliated with China Medical University, Shenyang 110004, China
| | - Cheng Sun
- Department of Oncology, Shengjing Hospital affiliated with China Medical University, Shenyang 110004, China
| | - Yonggang Tan
- Department of Oncology, Shengjing Hospital affiliated with China Medical University, Shenyang 110004, China
| | - Heying Zhang
- Department of Oncology, Shengjing Hospital affiliated with China Medical University, Shenyang 110004, China
| | - Yuchao Li
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital affiliated with China Medical University, Shenyang 110004, China
| |
Collapse
|
23
|
Xia HW, Zhang ZQ, Yuan J, Niu QL. Human RECQL5 promotes metastasis and resistance to cisplatin in non-small cell lung cancer. Life Sci 2020; 265:118768. [PMID: 33217443 DOI: 10.1016/j.lfs.2020.118768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) patients have a lower 5-year survival rate, and the distant tumor metastasis and drug resistance are the main reasons for the high mortality. RECQL5, a member of RecQ helicases family, has been linked to tumorigenesis of various cancers expect NSCLC. In the current study, analysis with the Cancer Genome Atlas (TCGA) dataset showed that the level of RECQL5 was elevated in LUAD (Lung Adenocarcinoma) and LUSC (lung squamous carcinomas), two major subtypes of NSCLC, which was confirmed by immunohistochemistry staining on Tissue array slides. The level of RECQL5 was also elevated in NSCLC cell lines. Further, Kaplan-Meier analysis of TCGA dataset suggested that the up-regulated RECQL5 was associated with poor prognosis of LUAD, but not with that of LUSC. Knockdown of RECQL5 significantly inhibited the invasion and migration of NSCLC cells, and suppressed epithelial-mesenchymal transition (EMT) as indicated by the changes of EMT-related proteins, while overexpression of RECQL5 displayed reverse effects. Lung metastasis was also suppressed by RECQL5 knockdown. Additionally, the addition of Akt inhibitor LY294002 reversed the effects of RECQL5 overexpression on cell migration, invasion and EMT. Moreover, knockdown of RECQL5 increased the apoptosis of cisplatin-resistant A549 cell line (A549/DDP) caused by cisplatin treatment. In summary, RECQL5 contributed to the metastasis of NSCLC and assisted NSCLC cells incompletely response to cisplatin therapy, and could be considered as a biomarker or clinical target for NSCLC.
Collapse
Affiliation(s)
- Hong-Wei Xia
- Department of Thoracic Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, PR China
| | - Zhi-Qiang Zhang
- Department of Thoracic Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, PR China
| | - Jun Yuan
- Department of Thoracic Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, PR China
| | - Qing-Ling Niu
- Department of Pediatrics, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, PR China.
| |
Collapse
|
24
|
CircRNAs in lung cancer - Biogenesis, function and clinical implication. Cancer Lett 2020; 492:106-115. [PMID: 32860847 DOI: 10.1016/j.canlet.2020.08.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/26/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the leading cause of malignancy-related incidence and mortality worldwide. Molecular mechanisms underlying tumorigenesis and development of lung cancer are still warranted to be elucidated. Previous studies have shown that non-coding RNAs are related to the tumorigenesis and progression of various cancers. However, the expression patterns and clinical implications of circRNAs in lung cancer remain obscure. CircRNAs are a special class of non-coding RNAs with stable covalently closed circular structures, high abundance and tissue/cell/development-specific expression patterns. Thus, circRNAs are a new frontier in lung cancer research. Therefore, in this review, we elucidated the biological function and mechanism of circRNAs, as well as the role of aberrant expressed circRNAs in proliferation, invasion, drug resistance and tumor microenvironment. Furthermore, we discussed that circRNAs may serve as potential clinical biomarkers for the diagnosis, prognosis and treatment of lung cancer.
Collapse
|
25
|
Yang SS, Yu DY, Du YT, Wang L, Gu L, Zhang YY, Xiao M. Inhibition of Delta-like Ligand 4 enhances the radiosensitivity and inhibits migration in cervical cancer via the reversion of epithelial-mesenchymal transition. Cancer Cell Int 2020; 20:344. [PMID: 32742191 PMCID: PMC7388465 DOI: 10.1186/s12935-020-01434-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/18/2020] [Indexed: 12/24/2022] Open
Abstract
Background Concurrent chemoradiotherapy is the common first-line treatment for patients with advanced cervical cancer. However, radioresistance remains a major clinical challenge, which results in recurrence and poor survival. Many studies have shown the potential of Delta-like Ligand 4 (DLL4) as a novel prognostic biomarker and therapeutic target in many solid tumors. Previously, we have found that high DLL4 expression in tumor cells may predict the pelvic lymph node metastasis and poor prognosis in patients with cervical cancer. In our present study, we further studied the effects of DLL4 on the biological behavior and radiosensitivity of cervical cancer cells. Methods The expression of DLL4 and epithelial–mesenchymal transition (EMT) phenotype markers in cervical cancer cell lines or tissues were detected using Western blotting, and the expression of DLL4 mRNA in cervical cancer cell lines or tissues was detected using Quantitative real-time PCR. The effect of DLL4 on cell proliferation, migration, and radiosensitivity was evaluated using the CCK8 assay, flow cytometry, Transwell assays for cell invasion and migration, and Immunofluorescence staining in vitro. Results The expression of DLL4 in radiotherapy-resistant SiHa cells was significantly higher than that in radiotherapy-sensitive Me-180 cells. Furthermore, downregulation of DLL4 enhanced the radiosensitivity of SiHa and Caski cells via the inhibition of cell proliferation, promotion of radiation-induced apoptosis, and inhibition of the DNA damage repair. Moreover, downregulation of DLL4 inhibited the EMT and reduced the proliferation, invasion, and migration ability in SiHa and Caski cells. Consistent with the DLL4 expression in the cell lines, the expression of DLL4 in the tissues of the radioresistant group was also higher than that of the radiosensitive group. Conclusions Downregulation of DLL4 inhibited the progression and increased the radiosensitivity in cervical cancer cells by reversing EMT. These results indicated the promising prospect of DLL4 against the radioresistance and metastasis of cervical cancer and its potential as a predictive biomarker for radiosensitivity and prognosis in patients with cervical cancer patients receiving concurrent chemoradiotherapy (cCRT).
Collapse
Affiliation(s)
- Shan-Shan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 HaPing Road, Nangang District, Harbin, 150081 China
| | - De-Yang Yu
- Department of Radiation Physics, Harbin Medical University Cancer Hospital, Harbin, 150081 China
| | - Yu-Ting Du
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 HaPing Road, Nangang District, Harbin, 150081 China
| | - Le Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 HaPing Road, Nangang District, Harbin, 150081 China
| | - Lina Gu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 HaPing Road, Nangang District, Harbin, 150081 China
| | - Yun-Yan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 HaPing Road, Nangang District, Harbin, 150081 China
| | - Min Xiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, No. 150 HaPing Road, Nangang District, Harbin, 150081 China
| |
Collapse
|
26
|
Fujiwara A, Funaki S, Fukui E, Kimura K, Kanou T, Ose N, Minami M, Shintani Y. Effects of pirfenidone targeting the tumor microenvironment and tumor-stroma interaction as a novel treatment for non-small cell lung cancer. Sci Rep 2020; 10:10900. [PMID: 32616870 PMCID: PMC7331721 DOI: 10.1038/s41598-020-67904-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Targeting cancer-associated fibroblasts (CAFs), as well as the crosstalk between stroma and cancer cells, could be of value in managing cancers. Pirfenidone (PFD) is an anti-fibrotic agent for idiopathic pulmonary fibrosis. This study aimed to investigate the possibility that PFD might exert an anti-tumor effect through inhibition of fibroblast activation and the tumor-stroma interaction in non-small cell lung cancer (NSCLC) cell lines in vitro and in vivo. PFD significantly inhibited myofibroblast differentiation and activation of both primary cultured normal human lung fibroblasts and CAFs. Cocultivation of NSCLC cells with conditioned media (CM) of fibroblasts changed the morphology or epithelial to mesenchymal transition (EMT) status, and PFD suppressed these changes. Cocultivation of CAFs with CM of NSCLC cells also induced activation of CAFs, and these changes were suppressed by PFD. On in vivo examination, CAFs promoted tumor progression, and PFD suppressed tumor progression with an inhibitory effect on tumor-stroma crosstalk. PFD might inhibit not only fibroblast activity, but also the crosstalk between cancer cells and fibroblasts. PFD may have great potential as a novel treatment for NSCLC from multiple perspectives.
Collapse
Affiliation(s)
- Ayako Fujiwara
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Kimura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naoko Ose
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masato Minami
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
27
|
miR-410 induces both epithelial-mesenchymal transition and radioresistance through activation of the PI3K/mTOR pathway in non-small cell lung cancer. Signal Transduct Target Ther 2020; 5:85. [PMID: 32528035 PMCID: PMC7290026 DOI: 10.1038/s41392-020-0182-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy remains one of the major treatments for non-small cell lung cancer (NSCLC) patients; whereas intrinsic or acquired radioresistance limits its efficacy. Nevertheless, most studies so far have only focused on acquired resistance. The exact mechanisms of intrinsic radioresistance in NSCLC are still unclear. A few studies have suggested that epithelial–mesenchymal transition (EMT) is associated with radioresistance in NSCLC. However, little is known about whether the abnormal expression of specific microRNAs induces both EMT and radioresistance. We previously found that miR-410 has multiple roles as an oncomiRNA in NSCLC. In this study, we revealed that miR-410 overexpression promoted EMT and radioresistance, accompanied by enhanced DNA damage repair both in vitro and in vivo. Conversely, knockdown of miR-410 showed the opposite effects. We further demonstrated that PTEN was a direct target of miR-410 by using bioinformatic tools and dual-luciferase reporter assays, and the miR-410-induced EMT and radioresistance were reversed by PI3K, Akt, and mTOR inhibitors or by restoring the expression of PTEN in NSCLC cells. In addition, we preliminarily found that the expression of miR-410 was positively correlated with EMT and negatively associated with the expression of PTEN in NSCLC specimens. In summary, these results demonstrated that miR-410 is an important regulator on enhancing both NSCLC EMT and radioresistance by targeting the PTEN/PI3K/mTOR axis. The findings suggest that miR-410-induced EMT might significantly contribute to the enhanced radioresistance. Therefore, miR-410 may serve as a potential biomarker or therapeutic target for NSCLC radiotherapy.
Collapse
|
28
|
Bera A, Lewis SM. Regulation of Epithelial-to-Mesenchymal Transition by Alternative Translation Initiation Mechanisms and Its Implications for Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21114075. [PMID: 32517298 PMCID: PMC7312463 DOI: 10.3390/ijms21114075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Translation initiation plays a critical role in the regulation of gene expression for development and disease conditions. During the processes of development and disease, cells select specific mRNAs to be translated by controlling the use of diverse translation initiation mechanisms. Cells often switch translation initiation from a cap-dependent to a cap-independent mechanism during epithelial-to-mesenchymal transition (EMT), a process that plays an important role in both development and disease. EMT is involved in tumor metastasis because it leads to cancer cell migration and invasion, and is also associated with chemoresistance. In this review we will provide an overview of both the internal ribosome entry site (IRES)-dependent and N6-methyladenosine (m6A)-mediated translation initiation mechanisms and discuss how cap-independent translation enables cells from primary epithelial tumors to achieve a motile mesenchymal-like phenotype, which in turn drives tumor metastasis.
Collapse
Affiliation(s)
- Amit Bera
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada;
| | - Stephen M. Lewis
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada;
- Department of Chemistry & Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Correspondence: ; Tel.: +1-506-869-2892
| |
Collapse
|
29
|
Park J, Lee W, Yun S, Kim SP, Kim KH, Kim JI, Kim SK, Wang KC, Lee JY. STAT3 is a key molecule in the oncogenic behavior of diffuse intrinsic pontine glioma. Oncol Lett 2020; 20:1989-1998. [PMID: 32724445 DOI: 10.3892/ol.2020.11699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/17/2020] [Indexed: 11/06/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is one of the most lethal childhood brain tumors. This tumor is unique because it is detected exclusively in the ventral pons of patients aged between 6 and 7 years, which suggests a developmental nature of its formation. Signal transducer and activator of transcription 3 (STAT3) is a critical molecule for the differentiation of neural stem cells into astrocytes during neurodevelopment. Additionally, STAT3 is associated with oncogenesis and the epithelial-mesenchymal transition (EMT) in various types of tumor. In recent years, several studies have demonstrated the oncogenic role of STAT3 in high-grade gliomas. However, the role of STAT3 in DIPG at the cellular level remains unknown. To assess the possible association between gliogenesis and DIPG, the expression levels of various molecules participating in the differentiation of neural stem cells were compared between normal brain control tissues and DIPG tissues using open public data. All of the screened genes exhibited significantly increased expression in DIPG tissues compared with normal tissues. As STAT3 expression was the most increased, the effect of STAT3 inhibition in a DIPG cell line was assessed via STAT3 short hairpin (sh)RNA transfection and treatment with AG490, a STAT3 inhibitor. Changes in viability, apoptosis, EMT and radiation therapy efficiency were also evaluated. Downregulation of STAT3 resulted in decreased cyclin D1 expression and cell viability, migration and invasion. Additionally, treatment with STAT3 shRNA or AG490 suppressed the EMT phenotype. Finally, when radiation was administered in combination with STAT3 inhibition, the therapeutic efficiency, assessed by cell viability and DNA damage repair, was increased. The present results suggest that STAT3 is a potential therapeutic target in DIPG, especially when combined with radiation therapy.
Collapse
Affiliation(s)
- Jinju Park
- Neural Development and Anomaly Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Woochan Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sangil Yun
- Neural Development and Anomaly Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Saet Pyoul Kim
- Neural Development and Anomaly Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyung Hyun Kim
- Neural Development and Anomaly Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 03080, Republic of Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 03080, Republic of Korea
| | - Kyu-Chang Wang
- Neural Development and Anomaly Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 03080, Republic of Korea
| | - Ji Yeoun Lee
- Neural Development and Anomaly Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
30
|
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT Factors and Metabolic Pathways in Cancer. Front Oncol 2020; 10:499. [PMID: 32318352 PMCID: PMC7154126 DOI: 10.3389/fonc.2020.00499] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) represents a biological program during which epithelial cells lose their cell identity and acquire a mesenchymal phenotype. EMT is normally observed during organismal development, wound healing and tissue fibrosis. However, this process can be hijacked by cancer cells and is often associated with resistance to apoptosis, acquisition of tissue invasiveness, cancer stem cell characteristics, and cancer treatment resistance. It is becoming evident that EMT is a complex, multifactorial spectrum, often involving episodic, transient or partial events. Multiple factors have been causally implicated in EMT including transcription factors (e.g., SNAIL, TWIST, ZEB), epigenetic modifications, microRNAs (e.g., miR-200 family) and more recently, long non-coding RNAs. However, the relevance of metabolic pathways in EMT is only recently being recognized. Importantly, alterations in key metabolic pathways affect cancer development and progression. In this review, we report the roles of key EMT factors and describe their interactions and interconnectedness. We introduce metabolic pathways that are involved in EMT, including glycolysis, the TCA cycle, lipid and amino acid metabolism, and characterize the relationship between EMT factors and cancer metabolism. Finally, we present therapeutic opportunities involving EMT, with particular focus on cancer metabolic pathways.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Venetsana Kyriazopoulou
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Apostolos Zaravinos
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar.,Department of Life Sciences European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
31
|
Oike T, Ohno T. Molecular mechanisms underlying radioresistance: data compiled from isogenic cell experiments. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:273. [PMID: 32355717 PMCID: PMC7186667 DOI: 10.21037/atm.2020.02.90] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Gunma, Japan
| |
Collapse
|
32
|
Yu B, Qu L, Wu T, Yan B, Kan X, Zhao X, Yang L, Li Y, Liu M, Tian L, Sun Y, Li Q. A Novel LncRNA, AC091729.7 Promotes Sinonasal Squamous Cell Carcinomas Proliferation and Invasion Through Binding SRSF2. Front Oncol 2020; 9:1575. [PMID: 32039035 PMCID: PMC6992602 DOI: 10.3389/fonc.2019.01575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/31/2019] [Indexed: 01/31/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in various biological progresses of carcinogenesis. However, the function of lncRNAs in human sinonasal squamous cell carcinoma (SNSCC) remains greatly unclear. In the current study, lncRNA AC091729.7 expression was examined in SNSCC samples by using microarray, RNA in situ hybridization (ISH) and real-time fluorescence quantitative PCR (qRT-PCR). Cell viability, colony-formation, wound-healing, and transwell assays were applied to SNSCC cells. Xenograft mouse models were employed to evaluate the role of AC091729.7 in growth of SNSCC in vivo. Human protein microarray (HuprotTM Protoarray) and RNA immunoprecipitation (RIP) were used for identifying AC091729.7 binding proteins in SNSCC. Results showed AC091729.7 was upregulated and closely connected with the survival of the SNSCC patients. Knockdown of AC091729.7 suppressed SNSCC cell migration, proliferation, invasion in vitro. Furthermore, downregulation of AC091729.7 could inhibit the growth of SNSCC in vivo. Moreover, Human protein microarray and RIP suggested that AC091729.7 directly combine with the serine/arginine rich splicing factor 2 (SRSF2). Our results suggest that in the cell progression of SNSCC, lncRNA AC091729.7 plays a carcinogenic role and serves as a novel biomarker and latent curative target in SNSCC patients.
Collapse
Affiliation(s)
- Boyu Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linmei Qu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital, Harbin Medical University, Daqing, China
| | - Tianyi Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingrui Yan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xuan Kan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xuehui Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Like Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yushan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qiuying Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Huang W, Wu Y, Cheng D, He Z. Mechanism of epithelial‑mesenchymal transition inhibited by miR‑203 in non‑small cell lung cancer. Oncol Rep 2019; 43:437-446. [PMID: 31894278 PMCID: PMC6967097 DOI: 10.3892/or.2019.7433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/25/2019] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to investigate whether miR-203 can inhibit transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition (EMT), and the migration and invasion ability of non-small cell lung cancer (NSCLC) cells by targeting SMAD3. In the present study, the expression levels of miR-203, SMAD3 mRNA and protein in NSCLC tissues were examined, as well as their corresponding paracancerous samples. The miR-203 mimics and miR-203 inhibitor were transfected into the H226 cell line. RT-qPCR was used to assess the expression levels of E-cadherin, Snail, N-cadherin and vimentin mRNA, and western blotting was performed to detect the expression levels of p-SMAD2, SMAD2, p-SMAD3, SMAD3 and SMAD4. The cell migration and invasion abilities were detected by Transwell assays. The target site of SMAD3 was predicted by the combined action between miR-203 and dual luciferase. The results revealed that the RNA levels of miR-203, compared with paracancerous tissues, were decreased in NSCLC tissues, while SMAD3 mRNA and protein levels were upregulated, and miR-203 inhibited SMAD3 expression. Induction of TGF-β led to decreased E-cadherin mRNA levels, upregulation of Snail, N-cadherin and vimentin mRNA levels (P<0.05), and significant increase in cell migration and invasion, whereas transfection of miR-203 mimics reversed the aforementioned results (P<0.05). Conversely, miR-203 inhibitor could further aggravate the aforementioned results (P<0.05). Western blot results revealed that transfection of miR-203 mimics significantly reduced the protein expression of SMAD3 and p-SMAD3 (P<0.05). Furthermore, the results of the Dual-Luciferase assay revealed that miR-203 inhibited SMAD3 expression by interacting with specific regions of its 3′-UTR. Overall, a novel mechanism is revealed, in which, miR-203 can inhibit SMAD3 by interacting with specific regions of the 3′-UTR of SMAD3, thereby restraining TGF-β-induced EMT progression and migration and invasion of NSCLC cells.
Collapse
Affiliation(s)
- Weicong Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuanbo Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Dezhi Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhifeng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
34
|
Jeong YJ, Park YY, Park KK, Choi YH, Kim CH, Chang YC. Bee Venom Suppresses EGF-Induced Epithelial-Mesenchymal Transition and Tumor Invasion in Lung Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1869-1883. [PMID: 31786944 DOI: 10.1142/s0192415x19500952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Bee venom of Apis mellifera is a traditional medicine in Asia. It has been used with promoting results for the treatment of pain, rheumatoid, and cancer disease. The purpose of this study was to investigate the effects of bee venom on epidermal growth factor (EGF)-induced epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC) and determine possible signaling pathway affected in EGF-induced EMT in A549 cells. Bee venom inhibited EGF-induced F-actin reorganization and cell invasion, and suppressed EGF-induced EMT, processes associated with tumor metastasis in NSCLC. Bee venom enhanced the upregulation of E-cadherin and the downregulation of vimentin and inhibited EGF-induced ERK, JNK, FAK, and mTOR phosphorylation in A549 cells. However, the inhibition of JNK phosphorylation by bee venom was not related to the inhibitory effects of EMT. Furthermore, we found that bee venom suppressed the EMT-related transcription factors ZEB2 and Slug by blocking EGF-induced ERK, FAK and mTOR phosphorylation. Bee venom inhibits EGF-induced EMT by blocking the phosphorylation of ERK, FAK, and mTOR, resulting in the suppression of ZEB2 and Slug. These data suggest bee venom as a potential antimetastatic agent for NSCLC.
Collapse
Affiliation(s)
- Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Korea
| | - Yoon-Yub Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Korea
| | - Kwan-Kyu Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-Do 16419, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Korea
| |
Collapse
|
35
|
Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer 2019; 19:716-732. [PMID: 31666716 PMCID: PMC7055151 DOI: 10.1038/s41568-019-0213-x] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
Experimental evidence accumulated over decades has implicated epithelial-mesenchymal plasticity (EMP), which collectively encompasses epithelial-mesenchymal transition and the reverse process of mesenchymal-epithelial transition, in tumour metastasis, cancer stem cell generation and maintenance, and therapeutic resistance. However, the dynamic nature of EMP processes, the apparent need to reverse mesenchymal changes for the development of macrometastases and the likelihood that only minor cancer cell subpopulations exhibit EMP at any one time have made such evidence difficult to accrue in the clinical setting. In this Perspectives article, we outline the existing preclinical and clinical evidence for EMP and reflect on recent controversies, including the failure of initial lineage-tracing experiments to confirm a major role for EMP in dissemination, and discuss accumulating data suggesting that epithelial features and/or a hybrid epithelial-mesenchymal phenotype are important in metastasis. We also highlight strategies to address the complexities of therapeutically targeting the EMP process that give consideration to its spatially and temporally divergent roles in metastasis, with the view that this will yield a potent and broad class of therapeutic agents.
Collapse
Affiliation(s)
- Elizabeth D Williams
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Translational Research Institute (TRI), Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, Queensland, Australia
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology and Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Redfern
- Department of Medicine, School of Medicine, University of Western Australia, Fiona Stanley Hospital Campus, Perth, Western Australia, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- Translational Research Institute (TRI), Brisbane, Queensland, Australia.
| |
Collapse
|
36
|
Sato K, Shimokawa T, Imai T. Difference in Acquired Radioresistance Induction Between Repeated Photon and Particle Irradiation. Front Oncol 2019; 9:1213. [PMID: 31799186 PMCID: PMC6863406 DOI: 10.3389/fonc.2019.01213] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
In recent years, advanced radiation therapy techniques, including stereotactic body radiotherapy and carbon–ion radiotherapy, have progressed to such an extent that certain types of cancer can be treated with radiotherapy alone. The therapeutic outcomes are particularly promising for early stage lung cancer, with results matching those of surgical resection. Nevertheless, patients may still experience local tumor recurrence, which might be exacerbated by the acquisition of radioresistance after primary radiotherapy. Notwithstanding the risk of tumors acquiring radioresistance, secondary radiotherapy is increasingly used to treat recurrent tumors. In this context, it appears essential to comprehend the radiobiological effects of repeated photon and particle irradiation and their underlying cellular and molecular mechanisms in order to achieve the most favorable therapeutic outcome. However, to date, the mechanisms of acquisition of radioresistance in cancer cells have mainly been studied after repeated in vitro X-ray irradiation. By contrast, other critical aspects of radioresistance remain mostly unexplored, including the response to carbon-ion irradiation of X-ray radioresistant cancer cells, the mechanisms of acquisition of carbon-ion resistance, and the consequences of repeated in vivo X-ray or carbon-ion irradiation. In this review, we discuss the underlying mechanisms of acquisition of X-ray and carbon-ion resistance in cancer cells, as well as the phenotypic differences between X-ray and carbon-ion-resistant cancer cells, the biological implications of repeated in vivo X-ray or carbon-ion irradiation, and the main open questions in the field.
Collapse
Affiliation(s)
- Katsutoshi Sato
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, United States
| | - Takashi Shimokawa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Takashi Imai
- Medical Databank, Department of Radiation Medicine, QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
37
|
Hisamitsu S, Miyashita T, Hashimoto H, Neri S, Sugano M, Nakamura H, Yamazaki S, Ochiai A, Goto K, Tsuboi M, Ishii G. Interaction between cancer cells and cancer-associated fibroblasts after cisplatin treatment promotes cancer cell regrowth. Hum Cell 2019; 32:453-464. [PMID: 31441010 DOI: 10.1007/s13577-019-00275-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Regrowth of cancer cells following chemotherapy is a significant problem for cancer patients. This study examined whether cancer-associated fibroblasts (CAFs), a major component of a tumor microenvironment, promote cancer cell regrowth after chemotherapy. First, we treated human lung adenocarcinoma cell line A549 and CAFs from four patients with cisplatin. Cisplatin treatment inhibited the viable cell number of A549 cells and induced epithelial-mesenchymal transition. After cisplatin was removed, A549 cells continued to manifest the mesenchymal phenotype and proliferated 2.2-fold in 4 days (regrowth of A549 cells). Cisplatin treatment inhibited the viable cell number of CAFs from four patients also. The CM (derived from cisplatin-pretreated CAFs from two patients) significantly enhanced the regrowth of cisplatin-pretreated A549 cells, and the CM derived from cisplatin-naïve CAFs marginally enhanced A549 regrowth. By contrast, the CM derived from either cisplatin-pretreated CAFs or cisplatin-naïve CAFs failed to enhance the growth of cisplatin-naïve A549 cells. The CM derived from cisplatin-pretreated CAFs did not enhance the proliferation of A549 cells in which epithelial-mesenchymal transition was induced by TGFβ-1. Our findings indicate the possibility that humoral factors from cisplatin-pretreated CAFs promote the regrowth of cisplatin-pretreated A549 cells. These results suggest that interactions between cancer cells and CAFs may significantly enhance cancer cell regrowth within the tumor microenvironment after cisplatin treatment.
Collapse
Affiliation(s)
- Shoshi Hisamitsu
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Chiba, Japan
| | - Tomoyuki Miyashita
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Chiba, Japan
| | - Hiroko Hashimoto
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Chiba, Japan
| | - Shinya Neri
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masato Sugano
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroshi Nakamura
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Chiba, Japan
| | - Shota Yamazaki
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Chiba, Japan
| | - Atsushi Ochiai
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Kashiwa, Chiba, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital, Kashiwa, Chiba, Japan
| | - Genichiro Ishii
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan. .,Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Chiba, Japan.
| |
Collapse
|
38
|
Lin Z, Zhang L, Zhou J, Zheng J. Silencing Smad4 attenuates sensitivity of colorectal cancer cells to cetuximab by promoting epithelial‑mesenchymal transition. Mol Med Rep 2019; 20:3735-3745. [PMID: 31485652 PMCID: PMC6755154 DOI: 10.3892/mmr.2019.10597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/04/2019] [Indexed: 12/13/2022] Open
Abstract
The aberrant expression of tumor suppressor Smad4 often occurs in colorectal cancer (CRC), and this phenomenon is believed to be associated with drug resistance. The present study aimed to investigate the effects of Smad4 on the sensitivity of CRC cells to cetuximab, and the possible mechanism underlying such an effect. A total of 629 colorectal adenocarcinoma cases were downloaded from The Cancer Genome Atlas (TCGA) database, and a Smad4 mutation rate of ~21% was demonstrated among the cases. Low expression of Smad4 was present in CRC tissues analyzed by TCGA and in four CRC cell lines, as determined by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis. Cell Counting kit‑8 (CCK‑8) was used to measure the effects of different concentrations of cetuximab on SW480 cell viability at 24 and 48 h. The results demonstrated that treatment of SW480 cells with 20 µg/ml cetuximab for 48 h markedly reduced cell viability. In addition, plasmids were transfected into SW480 cells to induce Smad4 silencing or overexpression. Silencing Smad4 attenuated the sensitivity of SW480 CRC cells to cetuximab; this effect was reflected in increased cell viability and slightly increased migration and invasion, as determined by CCK‑8, wound scratch and Transwell analyses. RT‑qPCR and western blotting was performed to assess the expression levels of apoptosis‑ and epithelial‑mesenchymal transition (EMT)‑related genes. Silencing Smad4 partly reversed the effects of cetuximab on the mRNA and protein expression levels of vimentin, Bax/Bcl‑2 and E‑cadherin. However, Smad4 overexpression enhanced SW480 cell sensitivity to cetuximab. In conclusion, Smad4 may serve a vital role in the sensitivity of CRC cells to chemotherapeutic drugs by promoting EMT.
Collapse
Affiliation(s)
- Zhenlv Lin
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lin Zhang
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Junfeng Zhou
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jiantao Zheng
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
39
|
Lu HY, Zu YX, Jiang XW, Sun XT, Liu TY, Li RL, Wu Q, Zhang YS, Zhao QC. Novel ADAM-17 inhibitor ZLDI-8 inhibits the proliferation and metastasis of chemo-resistant non-small-cell lung cancer by reversing Notch and epithelial mesenchymal transition in vitro and in vivo. Pharmacol Res 2019; 148:104406. [PMID: 31442576 DOI: 10.1016/j.phrs.2019.104406] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/21/2019] [Accepted: 08/19/2019] [Indexed: 01/09/2023]
Abstract
Acquired drug-resistant non-small cell lung cancer (NSCLC) has strong proliferation ability and is prone to epithelial-mesenchymal transition (EMT) and subsequent metastasis. Notch pathway mediates cell survival and EMT and is involved in the induction of multidrug resistance (MDR). ZLDI-8 is an inhibitor of Notch activating/cleaving enzyme ADAM-17 we found before. However, the effects of ZLDI-8 on resistant NSCLC was unclear. Here, we demonstrated for the first time that ZLDI-8 could induce apoptosis in lung cancer, especially in chemotherapy-resistant non-small cell lung cancer cells, and also inhibit migration, invasion and EMT phenotype of drug-resistant lung cancer. ZLDI-8 inhibits the Notch signaling pathway, thereby regulating the expression of survival/apoptosis and EMT-related proteins. Moreover, ZLDI-8 suppresses multidrug-resistant lung cancer xenograft growth in vivo and blocks metastasis in a tail vein injection mice model. Therefore, ZLDI-8 is expected to be an effective agent in the treatment of drug-resistant lung cancer.
Collapse
Affiliation(s)
- Hong-Yuan Lu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Yu-Xin Zu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Wen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Tong Sun
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian-Yi Liu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruo-Lan Li
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiong Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying-Shi Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qing-Chun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China.
| |
Collapse
|
40
|
mTORC1 inhibitor RAD001 (everolimus) enhances non-small cell lung cancer cell radiosensitivity in vitro via suppressing epithelial-mesenchymal transition. Acta Pharmacol Sin 2019; 40:1085-1094. [PMID: 30796356 DOI: 10.1038/s41401-019-0215-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
Abstract
Resistance to radiotherapy causes non-small cell lung cancer (NSCLC) treatment failure associated with local recurrence and metastasis. Thus, understanding the radiosensitization of NSCLC cells is crucial for developing new treatments and improving prognostics. mTORC1 has been shown to regulate tumor cell radiosensitivity, but the underlying mechanisms are unclear. Moreover, mTORC1 also regulates epithelial-mesenchymal transition (EMT) that is important to metastasis and recurrence. In this study we explored whether mTORC1 regulated NSCLC cell radiosensitivity by altering EMT. We performed immunohistichemical analysis using tumor, adjacent and normal tissues from 50 NSCLC patients, which confirmed significantly elevated mTOR protein expression in NSCLC tissue. Then we used NCI-H460 and NCI-H661 cell lines to examine the effects of the mTORC1 inhibitor RAD001 (everolimus) on in vitro radiosensitivity, protein expression and dose-survival curves. RAD001 (10 nmol/L) significantly inhibited the mTORC1 pathway in both the cell lines. Pretreatment with RAD001 (0.1 nmol/L) enhanced the radiosensitivity in NCI-H661 cells with wild-type PIK3CA and KRAS but not in NCI-H460 cells with mutant PIK3CA and KRAS; the sensitivity enhancement ratios in the two NSCLC cell lines were 1.40 and 1.03, respectively. Furthermore, pretreatment with RAD001 (0.1 nmol/L) significantly decreased the migration and invasion with altered expression of several EMT-associated proteins (significantly increased E-cadherin and decreased vimentin expression) in irradiated NCI-H661 cells. Publicly available expression data confirmed that irradiation affected mTOR and EMT-associated genes at the transcript level in NSCLC cells. These results suggest that mTORC1 inhibition enhances the in vitro radiosensitivity of NSCLC cells with wild-type PIK3CA and KRAS by affecting EMT. Our preclinical data may provide a potential new strategy for NSCLC treatment.
Collapse
|
41
|
Poh ME, Liam CK, Mun KS, Chai CS, Wong CK, Tan JL, Loh TC, Chin KK. Epithelial-to-mesenchymal transition (EMT) to sarcoma in recurrent lung adenosquamous carcinoma following adjuvant chemotherapy. Thorac Cancer 2019; 10:1841-1845. [PMID: 31350945 PMCID: PMC6718027 DOI: 10.1111/1759-7714.13156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/19/2022] Open
Abstract
Adjuvant chemotherapy has long been indicated to extend survival in completely resected stage IB to IIIA non‐small cell lung cancer (NSCLC). However, there is accumulating evidence that chemotherapy or chemoradiotherapy can induce epithelial‐to‐mesenchymal transition (EMT) in disseminated or circulating NSCLC cells. Here, we describe the first case of EMT as the cause of recurrence and metastasis in a patient with resected stage IIB lung adenosquamous carcinoma after adjuvant chemotherapy. We review the literature and explore the possible mechanisms by which EMT occurs in disseminated tumor cells (DTC) or circulating tumor cells (CTC) in response to adjuvant chemotherapy (cisplatin) as a stressor. We also explore the possible therapeutic strategies to reverse EMT in patients with recurrence. In summary, although adjuvant cisplatin‐based chemotherapy in resected NSCLC does extend survival, it may lead to the adverse phenomenon of EMT in disseminated tumor cells (DTC) or circulating tumor cells (CTC) causing recurrence and metastasis.
Collapse
Affiliation(s)
- Mau Ern Poh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chong Kin Liam
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kein Seong Mun
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Shee Chai
- Department of Medicine, Faculty of Medicine, University Malaysia Sarawak, Sarawak, Malaysia
| | - Chee Kuan Wong
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jiunn Liang Tan
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Thian Chee Loh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ka Kiat Chin
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Gladilin E, Ohse S, Boerries M, Busch H, Xu C, Schneider M, Meister M, Eils R. TGFβ-induced cytoskeletal remodeling mediates elevation of cell stiffness and invasiveness in NSCLC. Sci Rep 2019; 9:7667. [PMID: 31113982 PMCID: PMC6529472 DOI: 10.1038/s41598-019-43409-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Importance of growth factor (GF) signaling in cancer progression is widely acknowledged. Transforming growth factor beta (TGFβ) is known to play a key role in epithelial-to-mesenchymal transition (EMT) and metastatic cell transformation that are characterized by alterations in cell mechanical architecture and behavior towards a more robust and motile single cell phenotype. However, mechanisms mediating cancer type specific enhancement of cell mechanical phenotype in response to TGFβ remain poorly understood. Here, we combine high-throughput mechanical cell phenotyping, microarray analysis and gene-silencing to dissect cytoskeletal mediators of TGFβ-induced changes in mechanical properties of on-small-cell lung carcinoma (NSCLC) cells. Our experimental results show that elevation of rigidity and invasiveness of TGFβ-stimulated NSCLC cells correlates with upregulation of several cytoskeletal and motor proteins including vimentin, a canonical marker of EMT, and less-known unconventional myosins. Selective probing of gene-silenced cells lead to identification of unconventional myosin MYH15 as a novel mediator of elevated cell rigidity and invasiveness in TGFβ-stimulated NSCLC cells. Our experimental results provide insights into TGFβ-induced cytoskeletal remodeling of NSCLC cells and suggest that mediators of elevated cell stiffness and migratory activity such as unconventional cytoskeletal and motor proteins may represent promising pharmaceutical targets for restraining invasive spread of lung cancer.
Collapse
Affiliation(s)
- E Gladilin
- German Cancer Research Center, Div. Bioinformatics and Omics Data Analytics, Mathematikon - Berliner Str. 41, 69120, Heidelberg, Germany. .,University Heidelberg, BioQuant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben Corrensstrasse 3, 06466, Seeland, Germany.
| | - S Ohse
- University of Freiburg, Institute of Molecular Medicine and Cell Research (IMMZ), Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - M Boerries
- University of Freiburg, Institute of Molecular Medicine and Cell Research (IMMZ), Stefan-Meier-Str. 17, 79104, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department for Biometry, Epidemiology and Medical Bioinformatics and Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstrasse 153, 79110, Freiburg, Germany
| | - H Busch
- University of Freiburg, Institute of Molecular Medicine and Cell Research (IMMZ), Stefan-Meier-Str. 17, 79104, Freiburg, Germany.,University of Lübeck, Institute of Experimental Dermatology, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - C Xu
- Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany
| | - M Schneider
- Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - M Meister
- Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany
| | - R Eils
- Center for Digital Health, Berlin Institute of Health, and Charité Universitätsmedizin Berlin, Kapelle-Ufer 2, 10117, Berlin, Germany.,Health Data Science Unit, Heidelberg University Hospital, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| |
Collapse
|
43
|
Mohammed AA, Allen JT, Rogan MT. Echinococcus granulosus cyst fluid enhances epithelial-mesenchymal transition. Parasite Immunol 2019; 40:e12533. [PMID: 29719047 DOI: 10.1111/pim.12533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022]
Abstract
Cystic echinococcosis is characterized by fluid-filled hydatid cysts in the liver and lungs. The cysts are surrounded by a host fibrous layer (the pericyst) which acts to isolate the parasite from surrounding tissues. Previous studies in liver cysts have indicated that the parasite may be a stimulating fibrosis. The aim of this study was to investigate whether hydatid cyst fluid (HCF) could influence the potential for fibrosis to occur in lung tissue by stimulating epithelial to mesenchymal transition (EMT) in a human lung epithelial cell line. An adenocarcinoma-derived alveolar basal epithelial cell line (A549) was used as a model for human alveolar epithelial cells (AEC II). These were cultured in vitro with HCF (UK sheep origin). Assays to investigate cell proliferation, cell migration and expression of cytoskeletal markers showed that HCF could stimulate changes indicative of EMT, including enhanced cell proliferation and migration; increased expression of mesenchymal cytoskeletal markers (fibronectin and vimentin) accompanied by a down-regulation of an epithelial marker (E-cadherin). Molecules within hydatid cyst fluid are capable of inducing phenotypic changes in A549 cells indicating that the parasite has the potential to modify lung epithelial cells which could contribute to fibrotic reactions.
Collapse
Affiliation(s)
- A A Mohammed
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - J T Allen
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - M T Rogan
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| |
Collapse
|
44
|
Meng F, Meyer CM, Joung D, Vallera DA, McAlpine MC, Panoskaltsis-Mortari A. 3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806899. [PMID: 30663123 PMCID: PMC6996245 DOI: 10.1002/adma.201806899] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/13/2018] [Indexed: 05/18/2023]
Abstract
The development of 3D in vitro models capable of recapitulating native tumor microenvironments could improve the translatability of potential anticancer drugs and treatments. Here, 3D bioprinting techniques are used to build tumor constructs via precise placement of living cells, functional biomaterials, and programmable release capsules. This enables the spatiotemporal control of signaling molecular gradients, thereby dynamically modulating cellular behaviors at a local level. Vascularized tumor models are created to mimic key steps of cancer dissemination (invasion, intravasation, and angiogenesis), based on guided migration of tumor cells and endothelial cells in the context of stromal cells and growth factors. The utility of the metastatic models for drug screening is demonstrated by evaluating the anticancer efficacy of immunotoxins. These 3D vascularized tumor tissues provide a proof-of-concept platform to i) fundamentally explore the molecular mechanisms of tumor progression and metastasis, and ii) preclinically identify therapeutic agents and screen anticancer drugs.
Collapse
Affiliation(s)
- Fanben Meng
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carolyn M Meyer
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daeha Joung
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel A Vallera
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
45
|
Phillips RM, Lam C, Wang H, Tran PT. Bittersweet tumor development and progression: Emerging roles of epithelial plasticity glycosylations. Adv Cancer Res 2019; 142:23-62. [PMID: 30885363 DOI: 10.1016/bs.acr.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Altered metabolism is one of the hallmarks of cancer. The best-known cancer metabolic anomaly is an increase in aerobic glycolysis, which generates ATP and other basic building blocks, such as nucleotides, lipids, and proteins to support tumor cell growth and survival. Epithelial plasticity (EP) programs such as the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are evolutionarily conserved processes that are essential for embryonic development. EP also plays an important role during tumor progression toward metastasis and treatment resistance, and new roles in the acceleration of tumorigenesis have been found. Recent evidence has linked EMT-related transcriptomic alterations with metabolic reprogramming in cancer cells, which include increased aerobic glycolysis. More recent studies have revealed a novel connection between EMT and altered glycosylation in tumor cells, in which EMT drives an increase in glucose uptake and flux into the hexosamine biosynthetic pathway (HBP). The HBP is a side-branch pathway from glycolysis which generates the end product uridine-5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc). A key downstream utilization of UDP-GlcNAc is for the post-translational modification O-GlcNAcylation which involves the attachment of the GlcNAc moiety to Ser/Thr/Asn residues of proteins. Global changes in protein O-GlcNAcylation are emerging as a general characteristic of cancer cells. In our recent study, we demonstrated that the EMT-HBP-O-GlcNAcylation axis drives the O-GlcNAcylation of key proteins such as c-Myc, which previous studies have shown to suppress oncogene-induced senescence (OIS) and contribute to accelerated tumorigenesis. Here, we review the HBP and O-GlcNAcylation and their putative roles in driving EMT-related cancer processes with examples to illuminate potential new therapeutic targets for cancer.
Collapse
Affiliation(s)
- Ryan M Phillips
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christine Lam
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
46
|
Miura K, Oba T, Hamanaka K, Ito KI. FGF2-FGFR1 pathway activation together with thymidylate synthase upregulation is induced in pemetrexed-resistant lung cancer cells. Oncotarget 2019; 10:1171-1192. [PMID: 30838090 PMCID: PMC6383826 DOI: 10.18632/oncotarget.26622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 01/09/2019] [Indexed: 11/25/2022] Open
Abstract
Pemetrexed (MTA) is a folate antimetabolite used for treating non-small cell lung cancer. To elucidate the mechanisms of pemetrexed resistance in lung cancer, we established pemetrexed-resistant sublines in PC9 (mutant EGFR) and H1993 (wild-type EGFR) lung adenocarcinoma cell lines (PC9-MTA, H1993-MTA). Gene expression profile comparison by microarray analyses revealed enhanced fibroblast growth factor 2 (FGF2) and FGF receptor 1 (FGFR1) expression, confirmed by Western blotting, enzyme-linked immunosorbent assay, and reverse transcription-polymerase chain reaction. ERK phosphorylation was increased in PC9-MTA but decreased in H1993-MTA along with decreased downstream signaling molecule phosphorylation. Cellular morphological change from epithelial to spindle-shape together with increased mesenchymal marker protein expression was observed in H1993-MTA. SiRNA-mediated FGF2 knockdown partially restored pemetrexed sensitivity in both lines, whereas anti-FGFR1 inhibitor PD173074 restored pemetrexed sensitivity in PC9-MTA. FGF2 or FGFR1 inhibition decreased pERK levels in PC9-MTA but increased pEGFR levels together with downstream signaling molecule activation and reversed epithelial-mesenchymal transition marker protein expression in H1993-MTA. Although thymidylate synthase strongly facilitates the development of pemetrexed resistance, our results reveal involvement of the FGF2-FGFR1 pathway in pemetrexed resistance in lung cancer cells and suggest that cellular function alterations induced by FGF2-FGFR1 pathway activation depend on the innate feature of cancer cells.
Collapse
Affiliation(s)
- Kentaro Miura
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Takaaki Oba
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazutoshi Hamanaka
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Ken-Ichi Ito
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
47
|
Funaki S, Shintani Y, Fukui E, Yamamoto Y, Kanzaki R, Ose N, Kanou T, Minami M, Mori E, Okumura M. The prognostic impact of programmed cell death 1 and its ligand and the correlation with epithelial-mesenchymal transition in thymic carcinoma. Cancer Med 2019; 8:216-226. [PMID: 30600651 PMCID: PMC6346217 DOI: 10.1002/cam4.1943] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/18/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Background The significance of epithelial‐mesenchymal transition (EMT) and immune checkpoint proteins in thymic carcinoma remains unknown. We examined the clinical significance of EMT, tumor‐infiltrating lymphocytes expressing the immune checkpoint protein, programmed cell death 1 (PD‐1 + TILs), and the expression of PD‐1 ligand 1 (PD‐L1) in thymic carcinoma (TC). We also investigated the relationships between these immune checkpoint proteins and the EMT status and examined the impact of induction chemotherapy on patients with tumors that express these proteins. Methods The relationship between PD‐1 + TILs/PD‐L1 and clinicopathological findings including EMT was investigated by immunohistochemistry (IHC) of surgically resected samples from 43 patients with TC. In 15 patients receiving induction therapy (IT), those factors were compared before and after IT. Results With IHC, 26 cases (60.5%) were positive for PD‐L1, and 19 cases were positive for PD‐1 + TILs (44.2%). The disease‐free survival rate in patients showing EMT and who were PD‐1/PD‐L1 positive was significantly worse compared to negative cases (EMT; P = 0.0095, PD‐1; P = 0.001, PD‐L1; P = 0.0037). We found a significant relationship between PD‐L1 and EMT status (P = 0.01). In patients who received IT, PD‐L1 increased, and the change was strongly correlated with EMT status (P = 0.01). Conclusion Epithelial‐mesenchymal transition, PD‐L1, and PD‐1 + TILs have prognostic impact, and PD‐L1 is correlated with EMT status. PD‐L1 expression after IT was significantly higher compared to before IT and was correlated with the EMT change. Thus, PD‐L1 may be upregulated during EMT, and anti‐PD‐1/PD‐L1 immunotherapy may provide reliable treatment of TC in combination with chemotherapy.
Collapse
Affiliation(s)
- Soichiro Funaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Yoko Yamamoto
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Ryu Kanzaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Naoko Ose
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Masato Minami
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Eiichi Mori
- Department of Pathology, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Meinoshin Okumura
- General Thoracic Surgery, Toneyama National Hospital, Toneyama, Japan
| |
Collapse
|
48
|
Chen Y, Sun W, Kang L, Wang Y, Zhang M, Zhang H, Hu P. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions. Analyst 2019; 144:4233-4240. [DOI: 10.1039/c9an00612e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatic stellate cells (HSCs), a major component of the tumor microenvironment in liver cancer, play important roles in cancer progression as well as drug resistance.
Collapse
Affiliation(s)
- Yuqing Chen
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wei Sun
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Lu Kang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yuerong Wang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Min Zhang
- Shanghai Key Laboratory of New Drug Design & Modern Engineering Center for TCM
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
49
|
Attar-Schneider O, Drucker L, Gottfried M. The effect of mesenchymal stem cells' secretome on lung cancer progression is contingent on their origin: primary or metastatic niche. J Transl Med 2018; 98:1549-1561. [PMID: 30089856 DOI: 10.1038/s41374-018-0110-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
The fatality of non-small-cell lung cancer (NSCLC) and the role of the cancer microenvironment in its resistance to therapy are long recognized. Accumulating data allocate a significant role for mesenchymal stem cells (MSCs) in the malignant environment. Previously, we have demonstrated that MSCs from NSCLC metastatic bone marrow (BM) niche deleteriously affected NSCLC cells. Here, we have decided to examine the effect of MSCs from the primary niche of the lung (healthy or adjacent to tumor) on NSCLC phenotype. We cultured NSCLC cell lines with healthy/NSCLC lung-MSCs conditioned media (secretome) and showed elevation in cells' MAPKs and translation initiation signals, proliferation, viability, death, and migration. We also established enhanced autophagy and epithelial to mesenchymal transition processes. Moreover, we observed that MSCs from tumor adjacent sites (pathological niche) exhibited a more profound effect than MSCs from healthy lung tissue. Our findings underscore the capacity of the lung-MSCs to modulate NSCLC phenotype. Interestingly, both tumor adjacent (pathological) and distant lung-MSCs (healthy) promoted the NSCLC's TI, proliferation, migration, and epithelial to mesenchymal transition, yet the pathological MSCs displayed a greater affect. In conclusion, by comparing the effects of normal lung-MSCs, NSCLC adjacent MSCs, and BM-MSCs, we have established that the primary and metastatic niches display opposite and critical effects that promote the cancerous systemic state. Specifically, the primary site MSCs promote the expansion of the malignant clone and its dispersion, whereas the metastatic site MSCs facilitates the cells re-seeding. We suggest that sabotaging the cross-talk between MSCs and NSCLC affords effective means to inhibit lung cancer progression and will require different targeting strategies in accordance with niche/disease stage.
Collapse
Affiliation(s)
- Oshrat Attar-Schneider
- Lung Cancer Research, Lung Cancer Unit, Meir Medical Center, Kfar Saba, 44281, Israel. .,Oncogenetic Laboratories, Lung Cancer Unit, Meir Medical Center, Kfar Saba, 44281, Israel. .,Department of Oncology, Lung Cancer Unit, Meir Medical Center, Kfar Saba, 44281, Israel.
| | - Liat Drucker
- Oncogenetic Laboratories, Lung Cancer Unit, Meir Medical Center, Kfar Saba, 44281, Israel.,Sackler Faculty of Medicine, Tel Aviv University Ramat Aviv, Tel Aviv, 69978, Israel
| | - Maya Gottfried
- Lung Cancer Research, Lung Cancer Unit, Meir Medical Center, Kfar Saba, 44281, Israel.,Department of Oncology, Lung Cancer Unit, Meir Medical Center, Kfar Saba, 44281, Israel.,Sackler Faculty of Medicine, Tel Aviv University Ramat Aviv, Tel Aviv, 69978, Israel
| |
Collapse
|
50
|
Kanzaki R, Ose N, Kawamura T, Funaki S, Shintani Y, Minami M, Takakura N, Okumura M. Stromal PDGFR-β Expression is Associated with Postoperative Survival of Non-Small Cell Lung Cancer Patients Receiving Preoperative Chemo- or Chemoradiotherapy Followed by Surgery. World J Surg 2018; 42:2879-2886. [PMID: 29511870 DOI: 10.1007/s00268-018-4560-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND PDGFR-β is used as a stromal biomarker and is functional in mesenchymal cells of the tumor microenvironment. The significance of stromal PDGFR-β expression in non-small cell lung cancer (NSCLC) in patients undergoing preoperative chemo- or chemoradiotherapy had not been determined. METHODS Patients with NSCLC undergoing preoperative chemo- or chemoradiotherapy between 1996 and 2014 were assessed for expression of stromal PDGFR-β by immunohistochemistry using resected specimens. Relationships between stromal PDGFR-β expression and survival after operation were analyzed. Forty-three patients who underwent surgery without preoperative treatment in 2005 were also analyzed as a chemo-naïve control group. RESULTS The mean age of the 92 patients was 60.2 years. Seventy-eight (85%) were male, and 14 (15%) were female. Fifty-four patients (59%) underwent preoperative chemoradiotherapy, and 38 patients (41%) underwent preoperative chemotherapy. Regimens for preoperative chemotherapy were cisplatin (CDDP) based in 48 patients (52%) and carboplatin (CBDCA) based in 43 (42%). While stromal cells expressed PDGFR-β in 21 chemo-naïve patients (49%), stromal cells expressed PDGFR-β in 65 patients who underwent preoperative therapy (p = 0.02). The 5-year disease-free survival rate (DFS) of the PDGFR-β-positive group was significantly worse than that of the negative group (27 vs. 48%, p = 0.04). The 5-year disease-specific survival rate (DSS) in the stromal PDGFR-β-positive group was also significantly worse than in the negative group (43 vs. 70%, p = 0.01). On the other hand, stromal PDGFR-β expression did not influence survival in chemo-naïve patients. CONCLUSIONS Stromal PDGFR-β expression is negatively associated with DFS and DSS in patients with NSCLC undergoing preoperative chemo- or chemoradiotherapy.
Collapse
Affiliation(s)
- Ryu Kanzaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, L5-2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Naoko Ose
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, L5-2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomohiro Kawamura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, L5-2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, L5-2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, L5-2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masato Minami
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, L5-2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, L5-2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|