1
|
Hlapisi N, Songca SP, Ajibade PA. Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review. Pharmaceutics 2024; 16:1268. [PMID: 39458600 PMCID: PMC11510308 DOI: 10.3390/pharmaceutics16101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are potential cancer treatment methods that are minimally invasive with high specificity for malignant cells. Emerging research has concentrated on the application of metal nanoparticles encapsulated in porphyrin and their derivatives to improve the efficacy of these treatments. Gold and silver nanoparticles have distinct optical properties and biocompatibility, which makes them efficient materials for PDT and PTT. Conjugation of these nanoparticles with porphyrin derivatives increases their light absorption and singlet oxygen generation that create a synergistic effect that increases phototoxicity against cancer cells. Porphyrin encapsulation with gold or silver nanoparticles improves their solubility, stability, and targeted tumor delivery. This paper provides comprehensive review on the design, functionalization, and uses of plasmonic silver and gold nanoparticles in biomedicine and how they can be conjugated with porphyrins for synergistic therapeutic effects. Furthermore, it investigates this dual-modal therapy's potential advantages and disadvantages and offers perspectives for future prospects. The possibility of developing gold, silver, and porphyrin nanotechnology-enabled biomedicine for combination therapy is also examined.
Collapse
Affiliation(s)
| | | | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (N.H.); (S.P.S.)
| |
Collapse
|
2
|
Chen Y, Ma Y, Shi K, Chen H, Han X, Wei C, Lyu Y, Huang Y, Yu R, Song Y, Song Q, Jiang J, Feng J, Lin Y, Chen J, Chen H, Zheng G, Gao X, Jiang G. Self-Disassembling and Oxygen-Generating Porphyrin-Lipoprotein Nanoparticle for Targeted Glioblastoma Resection and Enhanced Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307454. [PMID: 38299428 DOI: 10.1002/adma.202307454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/15/2023] [Indexed: 02/02/2024]
Abstract
The dismal prognosis for glioblastoma multiform (GBM) patients is primarily attributed to the highly invasive tumor residual that remained after surgical intervention. The development of precise intraoperative imaging and postoperative residual removal techniques will facilitate the gross total elimination of GBM. Here, a self-disassembling porphyrin lipoprotein-coated calcium peroxide nanoparticles (PLCNP) is developed to target GBM via macropinocytosis, allowing for fluorescence-guided surgery of GBM and improving photodynamic treatment (PDT) of GBM residual by alleviating hypoxia. By reducing self-quenching and enhancing lysosome escape efficiency, the incorporation of calcium peroxide (CaO2) cores in PLCNP amplifies the fluorescence intensity of porphyrin-lipid. Furthermore, the CaO2 core has diminished tumor hypoxia and improves the PDT efficacy of PLCNP, enabling low-dose PDT and reversing tumor progression induced by hypoxia aggravation following PDT. Taken together, this self-disassembling and oxygen-generating porphyrin-lipoprotein nanoparticle may serve as a promising all-in-one nanotheranostic platform for guiding precise GBM excision and empowering post-operative PDT, providing a clinically applicable strategy to combat GBM in a safe and effective manner.
Collapse
Affiliation(s)
- Yaoxing Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yuxiao Ma
- Brain Injury Centre, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Kexin Shi
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Huan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiao Han
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Chenxuan Wei
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yingqi Lyu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Renhe Yu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jiyao Jiang
- Brain Injury Centre, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Junfeng Feng
- Brain Injury Centre, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Yingying Lin
- Brain Injury Centre, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201210, China
| | - Gang Zheng
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
3
|
Girigoswami A, Girigoswami K. Potential Applications of Nanoparticles in Improving the Outcome of Lung Cancer Treatment. Genes (Basel) 2023; 14:1370. [PMID: 37510275 PMCID: PMC10379962 DOI: 10.3390/genes14071370] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Lung cancer is managed using conventional therapies, including chemotherapy, radiation therapy, or a combination of both. Each of these therapies has its own limitations, such as the indiscriminate killing of normal as well as cancer cells, the solubility of the chemotherapeutic drugs, rapid clearance of the drugs from circulation before reaching the tumor site, the resistance of cancer cells to radiation, and over-sensitization of normal cells to radiation. Other treatment modalities include gene therapy, immunological checkpoint inhibitors, drug repurposing, and in situ cryo-immune engineering (ICIE) strategy. Nanotechnology has come to the rescue to overcome many shortfalls of conventional therapies. Some of the nano-formulated chemotherapeutic drugs, as well as nanoparticles and nanostructures with surface modifications, have been used for effective cancer cell killing and radio sensitization, respectively. Nano-enabled drug delivery systems act as cargo to deliver the sensitizer molecules specifically to the tumor cells, thereby enabling the radiation therapy to be more effective. In this review, we have discussed the different conventional chemotherapies and radiation therapies used for inhibiting lung cancer. We have also discussed the improvement in chemotherapy and radiation sensitization using nanoparticles.
Collapse
Affiliation(s)
- Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai 603103, India
| |
Collapse
|
4
|
Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK. Enhanced Permeability and Retention Effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther 2022; 39:102915. [PMID: 35597441 DOI: 10.1016/j.pdpdt.2022.102915] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.
Collapse
Affiliation(s)
- Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | | | - Surya Prakash Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
5
|
Ávila-Sánchez MA, Isaac-Olivé K, Aranda-Lara L, Morales-Ávila E, Plata-Becerril A, Jiménez-Mancilla NP, Ocampo-García B, Estrada JA, Santos-Cuevas CL, Torres-García E, Camacho-López MA. Targeted photodynamic therapy using reconstituted high-density lipoproteins as rhodamine transporters. Photodiagnosis Photodyn Ther 2021; 37:102630. [PMID: 34798347 DOI: 10.1016/j.pdpdt.2021.102630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/09/2021] [Accepted: 11/12/2021] [Indexed: 01/10/2023]
Abstract
Reconstituted high-density lipoprotein (rHDL) nanoparticles are excellent transporters of molecules and very useful for targeted therapy as they specifically recognize the scavenger receptor, class B1 (SR-B1) that is present on the surface of a wide range of tumor cells. However, they have rarely been employed to transport photosensitizers (PS) for photodynamic therapy (PDT). Rhodamine (R) compounds have been dismissed as useful PSs for PDT due to their low 1O2 production, excitation wavelengths with little tissue penetration, and poor selectivity for tumor cells. It was recently demonstrated that when irradiating at 532 nm or with Cerenkov radiation (CR) from a β-emitting radionuclide, R123, R6G, and RB undergo electron transfer reactions (type I reaction) with folic acid. R6G also produces type I reactions with O2. In this work, the photodynamic effects of the rHDL-R system were evaluated in vitro. rHDL nanoparticles loaded with R123, R6G, and RB were synthesized, and the PS was internalized into T47D tumor cells. When cells were irradiated with a 532-nm laser in the presence of an rHDL-R systems, a cytotoxic photodynamic effect was obtained in the order R6G > R123 > RB. In the presence of CR from a 177Lu source, cytotoxicity showed the order R6G > RB > R123. The higher cytotoxicity induced by R6G in both cases corresponds to higher cellular internalization and larger production of type I and II reactions. Thus, in this work, it is proposed that rHDL-R/177Lu system can be applied in theragnostics as a multimodal radiotherapy-PDT-imaging system (imaging by SPECT or Cerenkov) and in hypoxic solid tumors in which external radiation is not effective and 177Lu-CR acts as light source.
Collapse
Affiliation(s)
- Marcela A Ávila-Sánchez
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico.
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico.
| | - Enrique Morales-Ávila
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México 50120, Mexico
| | - Adriana Plata-Becerril
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México 50120, Mexico
| | - Nallely P Jiménez-Mancilla
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México 52750, Mexico.
| | - Blanca Ocampo-García
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México 52750, Mexico
| | - José A Estrada
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico
| | - Clara L Santos-Cuevas
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México 52750, Mexico
| | - Eugenio Torres-García
- Laboratorio de Dosimetría y Simulación Monte Carlo, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico
| | - Miguel A Camacho-López
- Laboratorio de Fotomedicina, Biofotónica y Espectroscopía Láser de Pulsos Ultracortos, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, Mexico
| |
Collapse
|
6
|
Vikas, Viswanadh MK, Mehata AK, Sharma V, Priya V, Varshney N, Mahto SK, Muthu MS. Bioadhesive chitosan nanoparticles: Dual targeting and pharmacokinetic aspects for advanced lung cancer treatment. Carbohydr Polym 2021; 274:118617. [PMID: 34702448 DOI: 10.1016/j.carbpol.2021.118617] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
The chitosan-folate conjugate was synthesized initially and confirmed by FTIR and NMR spectroscopic studies. Following, docetaxel (DXL) loaded non-targeted, single receptor and dual receptor (folate and EGFR) targeted chitosan nanoparticles were prepared and their shape, particle size, zeta-potential, surface morphology and texture were screened by SEM, TEM, AFM analyses. Surface chemistry analysis by XPS indeed confirmed the successful conjugation of folate and cetuximab on the targeted formulations. In-vitro analysis of dual-targeted chitosan nanoparticles has revealed their superior cytotoxicity against A-549 cells. The IC50 of dual receptor-targeted chitosan NP was almost 34 times lower than DXL control. In-vivo pharmacokinetic study on Wistar rats has demonstrated improved relative bioavailability of all NP in comparison to DXL control. The results illustrated that EGFR and folate dual targeted NP enhanced the cytotoxicity of DXL towards A-549 lung cancer cells and substantially improved DXL pharmacokinetics in rats.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Vishal Sharma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Neelima Varshney
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|
7
|
Silva LB, Castro KADF, Botteon CEA, Oliveira CLP, da Silva RS, Marcato PD. Hybrid Nanoparticles as an Efficient Porphyrin Delivery System for Cancer Cells to Enhance Photodynamic Therapy. Front Bioeng Biotechnol 2021; 9:679128. [PMID: 34604182 PMCID: PMC8484888 DOI: 10.3389/fbioe.2021.679128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a potential non-invasive approach for application in oncological diseases, based on the activation of a photosensitizer (PS) by light at a specific wavelength in the presence of molecular oxygen to produce reactive oxygen species (ROS) that trigger the death tumor cells. In this context, porphyrins are interesting PS because they are robust, have high chemical, photo, thermal, and oxidative stability, and can generate singlet oxygen (1O2). However, porphyrins exhibit low solubility and a strong tendency to aggregate in a biological environment which limits their clinical application. To overcome these challenges, we developed hybrid nanostructures to immobilize 5,10,15,20-tetrakis[(4-carboxyphenyl) thio-2,3,5,6-tetrafluorophenyl] (P), a new third-generation PS. The biological effect of this system was evaluated against bladder cancer (BC) cells with or without light exposition. The nanostructure composed of lipid carriers coated by porphyrin-chitosan (P-HNP), presented a size of ca. 130 nm and low polydispersity (ca. 0.25). The presence of the porphyrin-chitosan (P-chitosan) on lipid nanoparticle surfaces increased the nanoparticle size, changed the zeta potential to positive, decreased the recrystallization index, and increased the thermal stability of nanoparticles. Furthermore, P-chitosan incorporation on nanoparticles increased the stability and enhanced the self-organization of the system and the formation of spherical structures, as observed by small-angle X-ray scattering (SAXS) analysis. Furthermore, the immobilization process maintained the P photoactivity and improved the photophysical properties of PS, minimizing its aggregation in the cell culture medium. In the photoinduction assays, the P-HNP displayed high phototoxicity with IC50 3.2-folds lower than free porphyrin. This higher cytotoxic effect can be correlated to the high cellular uptake of porphyrin immobilized, as observed by confocal images. Moreover, the coated nanoparticles showed mucoadhesive properties interesting to its application in vivo. Therefore, the physical and chemical properties of nanoparticles may be relevant to improve the porphyrin photodynamic activity in BC cells.
Collapse
Affiliation(s)
- Letícia B. Silva
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelly A. D. F. Castro
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Caroline E. A. Botteon
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Roberto S. da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Priscyla D. Marcato
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Lou J, Aragaki M, Bernards N, Kinoshita T, Mo J, Motooka Y, Ishiwata T, Gregor A, Chee T, Chen Z, Chen J, Kaga K, Wakasa S, Zheng G, Yasufuku K. Repeated porphyrin lipoprotein-based photodynamic therapy controls distant disease in mouse mesothelioma via the abscopal effect. NANOPHOTONICS 2021; 10:3279-3294. [PMID: 36405502 PMCID: PMC9646247 DOI: 10.1515/nanoph-2021-0241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/15/2021] [Indexed: 05/05/2023]
Abstract
While photodynamic therapy (PDT) can induce acute inflammation in the irradiated tumor site, a sustained systemic, adaptive immune response is desirable, as it may control the growth of nonirradiated distant disease. Previously, we developed porphyrin lipoprotein (PLP), a ∼20 nm nanoparticle photosensitizer, and observed that it not only efficiently eradicated irradiated primary VX2 buccal carcinomas in rabbits, but also induced regression of nonirradiated metastases in a draining lymph node. We hypothesized that PLP-mediated PDT can induce an abscopal effect and we sought to investigate the immune mechanism underlying such a response in a highly aggressive, dual subcutaneous AE17-OVA+ mesothelioma model in C57BL/6 mice. Four cycles of PLP-mediated PDT was sufficient to delay the growth of a distal, nonirradiated tumor four-fold relative to controls. Serum cytokine analysis revealed high interleukin-6 levels, showing a 30-fold increase relative to phosphate-buffered solution (PBS) treated mice. Flow cytometry revealed an increase in CD4+ T cells and effector memory CD8+ T cells in non-irradiated tumors. Notably, PDT in combination with PD-1 antibody therapy prolonged survival compared to monotherapy and PBS. PLP-mediated PDT shows promise in generating a systemic immune response that can complement other treatments, improving prognoses for patients with metastatic cancers.
Collapse
Affiliation(s)
- Jenny Lou
- Department of Medical Biophysics, University of Toronto, PMCRT 5-354, 101 College Street, Toronto, OntarioM5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, OntarioM5G 1L7, Canada
| | - Masato Aragaki
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth Street, EN 9N‐957, Toronto, OntarioM5G 2C4, Canada
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty and School of Medicine, Sapporo, Hokkaido060-8638, Japan
| | - Nicholas Bernards
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth Street, EN 9N‐957, Toronto, OntarioM5G 2C4, Canada
| | - Tomonari Kinoshita
- Division of Thoracic Surgery, Tachikawa Hospital, 4-2-22 Nishikicho, Tachikawa, Tokyo, 190-8531, Japan
| | - Jessica Mo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, OntarioM5S 1A8Canada
| | - Yamoto Motooka
- Department of Thoracic Surgery, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tsukasa Ishiwata
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth Street, EN 9N‐957, Toronto, OntarioM5G 2C4, Canada
| | - Alexander Gregor
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth Street, EN 9N‐957, Toronto, OntarioM5G 2C4, Canada
| | - Tess Chee
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Zhenchian Chen
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth Street, EN 9N‐957, Toronto, OntarioM5G 2C4, Canada
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, OntarioM5G 1L7, Canada
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty and School of Medicine, Sapporo, Hokkaido060-8638, Japan
| | - Satoru Wakasa
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty and School of Medicine, Sapporo, Hokkaido060-8638, Japan
| | - Gang Zheng
- Department of Medical Biophysics, University of Toronto, PMCRT 5-354, 101 College Street, Toronto, OntarioM5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, OntarioM5G 1L7, Canada
| | - Kazuhiro Yasufuku
- Princess Margaret Cancer Centre, University Health Network, Toronto, OntarioM5G 1L7, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth Street, EN 9N‐957, Toronto, OntarioM5G 2C4, Canada
| |
Collapse
|
9
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
10
|
Li F, Mao C, Yeh S, Sun Y, Xin J, Shi Q, Ming X. MRP1-targeted near infrared photoimmunotherapy for drug resistant small cell lung cancer. Int J Pharm 2021; 604:120760. [PMID: 34077781 DOI: 10.1016/j.ijpharm.2021.120760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC), one of the most aggressive cancers, has a high mortality rate and poor prognosis, and the clinical therapeutic outcomes of multidrug resistant SCLC are even worse. Multidrug resistance protein 1 (MRP1), one of the ATP-binding cassette (ABC) transporter proteins that cause decreased drug accumulation in cancer cells, is overexpressed in drug resistant SCLC cells and could be a promising target for treating the patients suffering from this illness. Near infrared photoimmunotherapy (NIR-PIT) is a newly developed approach for targeted cancer treatment which uses a conjugate of a monoclonal antibody and photoabosorber IR700 followed by NIR light irradiation to induce rapid cancer cell death. In the present study, an anti-MRP1 antibody (Mab) -IR700 conjugate (Mab-IR700) was synthesized, purified and used to treat chemoresistant SCLC H69AR cells that overexpressed MRP1, while non-MRP1-expressing H69 cells were used as a control. Then, the photokilling and tumor suppression effect were separately evaluated in H69AR cells both in vitro and in vivo. Higher cellular delivery of Mab-IR700 was detected in H69AR cells, whereas there was little uptake of IgG-IR700 in both H69 and H69AR cells. Due to the targeting activity of Mab, stronger photokilling effect was found both in H69AR cells and spheroids treated with Mab-IR700, while superior tumor suppression effect was also observed in the mice treated with Mab-IR700 and light illumination. Photoacoustic imaging results proved that oxygen was involved in NIR-PIT treatment, and TUNEL staining images showed the occurrence of cell apoptosis, which was also testified by HE staining. This research provides MRP1 as a novel target for PIT and presents a prospective way for treating drug resistant SCLC and, thus, should be further studied.
Collapse
Affiliation(s)
- Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China; Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Stacy Yeh
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Yao Sun
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| |
Collapse
|
11
|
Dong W, Li K, Wang S, Qiu L, Liu Q, Xie M, Lin J. Targeted Photodynamic Therapy (PDT) of Lung Cancer with Biotinylated Silicon (IV) Phthalocyanine. Curr Pharm Biotechnol 2021; 22:414-422. [PMID: 32386488 DOI: 10.2174/1389201021666200510001627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-associated mortality in the world. Traditional cancer therapies prolong the life expectancy of patients but often suffer from adverse reactions. Photodynamic Therapy (PDT) has been recommended as a treatment option for lung cancer in several countries, due to its non-invasive procedures, high selectivity and weak side effects. OBJECTIVE We have designed and synthesized a biotin receptor-targeted silicon phthalocyanine (IV) (compound 1) which showed a good therapeutic effect on biotin receptor-positive tumors. Since the overexpression of Biotin Receptor (BR) is also present in human lung cancer cells (A549), we explored the therapeutic properties of compound 1 on A549 xenograft tumor models. METHODS The selectivity of compound 1 toward A549 cells was studied with a fluorescence microscope and IVIS Spectrum Imaging System. The cytotoxicity was measured using the MTT assay. In vivo anti-tumor activity was investigated on the nude mice bearing A549 xenografts. RESULTS In vitro assays proved that compound 1 could selectively accumulate in A549 cells via the BR-mediated internalization. In vivo imaging and distribution experiments showed that compound 1 could selectively accumulate in tumor tissues of tumor-bearing mice. After 16 days of the treatment, the volumes of tumor in the PDT group were obviously smaller than that in other groups. CONCLUSION This study demonstrates that compound 1 is a promising photosensitizer and has broad application prospects in clinical PDT of lung cancers.
Collapse
Affiliation(s)
- Wenyi Dong
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Shijie Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
12
|
Ma M, Wang M, Zhang Z, Lin B, Sun Z, Guan H, Lv W, Li J. Apolipoprotein A1 is negatively associated with male papillary thyroid cancer patients: a cross-sectional study of single academic center in China. BMC Endocr Disord 2021; 21:69. [PMID: 33853556 PMCID: PMC8048163 DOI: 10.1186/s12902-021-00714-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most common type of thyroid cancer and the incidence of PTC has continued to increase over the past decades. Many studies have shown that obesity is an independent risk factor for PTC and obese PTC patients tend to have a relative larger tumor size and higher grade of tumor stage. Obesity is associated with disordered lipid metabolism and the relationship between serum lipids and PTC remains unclear. Therefore, this study aimed to investigate the association between serum lipid level and PTC. METHODS We retrospectively analyzed 1018 PTC patients diagnosed and treated in our hospital, all these cases were first diagnosed with PTC and had complete clinical information including ultrasound reports before surgery, serum lipid (CHOL, TG, HDL-c, LDL-c, Apo-A1, Apo-B, Apo-E) results, surgical records and pathological reports. RESULTS None of these lipid markers were associated with tumor size in the whole cohort and in the female group. In the male group, on crude analysis, Apo-A1 showed a marginally association with tumor size, [OR = 0.158 (0.021-1.777)], p = 0.072. After adjusting for age and multifocality, Apo-A1 showed a significant association with tumor size [OR = 0.126 (0.016-0.974)], p = 0.047. This association become more apparent in a young male subgroup, [OR = 0.051 (0.005-0.497)], p = 0.009. CHOL, TG, HDL-c, LDL-c, Apo-B, Apo-E did not show significant association with tumor size. As for LNM, neither in the male group nor in the female group were found to be associated with any serum lipid biomarkers. CONCLUSION As PTC incidences continues to increase, our findings demonstrated a negatively association between PTC and apoA-1 in male PTC patients, which may contribute to further investigation concerning diagnosing and preventing this most common type of thyroid cancer.
Collapse
Affiliation(s)
- Maoguang Ma
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China
| | - Mingdian Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhanqiang Zhang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China
| | - Bo Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China
| | - Zicheng Sun
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China
| | - Haoyan Guan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China.
| | - Jie Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan II Road, No 58, Guangzhou, 510000, China.
| |
Collapse
|
13
|
Delk SC, Chattopadhyay A, Escola-Gil JC, Fogelman AM, Reddy ST. Apolipoprotein mimetics in cancer. Semin Cancer Biol 2020; 73:158-168. [PMID: 33188891 DOI: 10.1016/j.semcancer.2020.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Peptides have many advantages over traditional therapeutics, including small molecules and other biologics, because of their low toxicity and immunogenicity, while still exhibiting efficacy. This review discusses the benefits and mechanism of action of apolipoprotein mimetic peptides in tumor biology and their potential utility in treating various cancers. Among lipoproteins in the circulation, high-density lipoprotein (HDL) and its constituents including apolipoprotein A-I (apoA-I; the predominant protein in HDL), apoJ, and apoE, harbor anti-tumorigenic activities. Peptides that mimic apoA-I function have been developed through molecular mimicry of the amphipathic α-helices of apoA-I. Oral apoA-I mimetic peptides remodel HDL, promote cholesterol efflux, sequester oxidized lipids, and activate anti-inflammatory processes. ApoA-I and apoJ mimetic peptides ameliorate various metrics of cancer progression and have demonstrated efficacy in preclinical models in the inhibition of ovarian, colon, breast, and metastatic lung cancers. Apolipoprotein mimetic peptides are poorly absorbed when administered orally and rapidly degraded when injected into the circulation. The small intestine is the major site of action for apoA-I mimetic peptides and recent studies suggest that modulation of immune cells in the lamina propria of the small intestine is, in part, a potential mechanism of action. Finally, several recent studies underscore the use of reconstituted HDL as target-specific nanoparticles carrying poorly soluble or unstable therapeutics to tumors even across the blood-brain barrier. Preclinical studies suggest that these versatile recombinant lipoprotein based nanoparticles and apolipoprotein mimetics can serve as safe, novel drug delivery, and therapeutic agents for the treatment of a number of cancers.
Collapse
Affiliation(s)
- Samuel C Delk
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Joan Carles Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029, Madrid, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Antoni M. Claret 167, 08025, Barcelona, Spain
| | - Alan M Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Srinivasa T Reddy
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
14
|
Oliveira H, Correia P, Pereira AR, Araújo P, Mateus N, de Freitas V, Oliveira J, Fernandes I. Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. Int J Mol Sci 2020; 21:E7464. [PMID: 33050431 PMCID: PMC7589295 DOI: 10.3390/ijms21207464] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Due to their physical and chemical characteristics, anthocyanins are amongst the most versatile groups of natural compounds. Such unique signature makes these compounds a focus in several different areas of research. Anthocyanins have well been reported as bioactive compounds in a myriad of health disorders such as cardiovascular diseases, cancer, and obesity, among others, due to their anti-inflammatory, antioxidant, anti-diabetic, anti-bacterial, and anti-proliferative capacities. Such a vast number of action mechanisms may be also due to the number of structurally different anthocyanins plus their related derivatives. In this review, we highlight the recent advances on the potential use of anthocyanins in biological systems with particular focus on their photoprotective properties. Topics such as skin aging and eye degenerative diseases, highly influenced by light, and the action of anthocyanins against such damages will be discussed. Photodynamic Therapy and the potential role of anthocyanins as novel photosensitizers will be also a central theme of this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joana Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (H.O.); (P.C.); (A.R.P.); (P.A.); (N.M.); (V.d.F.)
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (H.O.); (P.C.); (A.R.P.); (P.A.); (N.M.); (V.d.F.)
| |
Collapse
|
15
|
Fathi P, Pan D. Current trends in pyrrole and porphyrin-derived nanoscale materials for biomedical applications. Nanomedicine (Lond) 2020; 15:2493-2515. [PMID: 32975469 PMCID: PMC7610151 DOI: 10.2217/nnm-2020-0125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/14/2020] [Indexed: 02/01/2023] Open
Abstract
This article is written to provide an up-to-date review of pyrrole-based biomedical materials. Porphyrins and other tetrapyrrolic molecules possess unique magnetic, optical and other photophysical properties that make them useful for bioimaging and therapy. This review touches briefly on some of the synthetic strategies to obtain porphyrin- and tetrapyrrole-based nanoparticles, as well as the variety of applications in which crosslinked, self-assembled, porphyrin-coated and other nanoparticles are utilized. We explore examples of these nanoparticles' applications in photothermal therapy, drug delivery, photodynamic therapy, stimuli response, fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, computed tomography and positron emission tomography. We anticipate that this review will provide a comprehensive summary of pyrrole-derived nanoparticles and provide a guideline for their further development.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science & Engineering & Beckman Institute, University of Illinois, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science & Engineering & Beckman Institute, University of Illinois, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Departments of Diagnostic Radiology & Nuclear Medicine & Pediatrics, University of Maryland Baltimore, Health Sciences Facility III, 670 W Baltimore St., Baltimore, MD 21201, USA
- Department of Chemical, Biochemical & Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle Baltimore, MD 21250, USA
| |
Collapse
|
16
|
Lipoprotein Drug Delivery Vehicles for Cancer: Rationale and Reason. Int J Mol Sci 2019; 20:ijms20246327. [PMID: 31847457 PMCID: PMC6940806 DOI: 10.3390/ijms20246327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Lipoproteins are a family of naturally occurring macromolecular complexes consisting amphiphilic apoproteins, phospholipids, and neutral lipids. The physiological role of mammalian plasma lipoproteins is to transport their apolar cargo (primarily cholesterol and triglyceride) to their respective destinations through a highly organized ligand-receptor recognition system. Current day synthetic nanoparticle delivery systems attempt to accomplish this task; however, many only manage to achieve limited results. In recent years, many research labs have employed the use of lipoprotein or lipoprotein-like carriers to transport imaging agents or drugs to tumors. The purpose of this review is to highlight the pharmacologic, clinical, and molecular evidence for utilizing lipoprotein-based formulations and discuss their scientific rationale. To accomplish this task, evidence of dynamic drug interactions with circulating plasma lipoproteins are presented. This is followed by epidemiologic and molecular data describing the association between cholesterol and cancer.
Collapse
|
17
|
Harmatys KM, Overchuk M, Zheng G. Rational Design of Photosynthesis-Inspired Nanomedicines. Acc Chem Res 2019; 52:1265-1274. [PMID: 31021599 DOI: 10.1021/acs.accounts.9b00104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The sun is the most abundant source of energy on earth. Phototrophs have discovered clever strategies to harvest this light energy and convert it to chemical energy for biomass production. This is achieved in light-harvesting complexes, or antennas, that funnel the exciton energy into the reaction centers. Antennas contain an array of chlorophylls, linear tetrapyrroles, and carotenoid pigments spatially controlled by neighboring proteins. This fine-tuned regulation of protein-pigment arrangements is crucial for survival in the conditions of both excess and extreme light deficit. Photomedicine and photodiagnosis have long been utilizing naturally derived and synthetic monomer dyes for imaging, photodynamic and photothermal therapy; however, the precise regulation of damage inflicted by these therapies requires more complex architectures. In this Account, we discuss how two mechanisms found in photosynthetic systems, photoprotection and light harvesting, have inspired scientists to create nanomedicines for more effective and precise phototherapies. Researchers have been recapitulating natural photoprotection mechanisms by utilizing carotenoids and other quencher molecules toward the design of photodynamic molecular beacons (PDT beacons) for disease-specific photoactivation. We highlight the seminal studies describing peptide-linked porphyrin-carotenoid PDT beacons, which are locally activated by a disease-specific enzyme. Examples of more advanced constructs include tumor-specific mRNA-activatable and polyionic cell-penetrating PDT beacons. An alternative approach toward harnessing photosynthetic processes for biomedical applications includes the design of various nanostructures. This Account will primarily focus on organic lipid-based micro- and nanoparticles. The phenomenon of nonphotochemical quenching, or excess energy release in the form of heat, has been widely explored in the context of porphyrin-containing nanomedicines. These quenched nanostructures can be implemented toward photoacoustic imaging and photothermal therapy. Upon nanostructure disruption, as a result of tissue accumulation and subsequent cell uptake, activatable fluorescence imaging and photodynamic therapy can be achieved. Alternatively, processes found in nature for light harvesting under dim conditions, such as in the deep sea, can be harnessed to maximize light absorption within the tissue. Specifically, high-ordered dye aggregation that results in a bathochromic shift and increased absorption has been exploited for the collection of more light with longer wavelengths, characterized by maximum tissue penetration. Overall, the profound understanding of photosynthetic systems combined with rapid development of nanotechnology has yielded a unique field of nature-inspired photomedicine, which holds promise toward more precise and effective phototherapies.
Collapse
Affiliation(s)
- Kara M. Harmatys
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Marta Overchuk
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
18
|
The study of killing effect and inducing apoptosis of 630-nm laser on lung adenocarcinoma A549 cells mediated by hematoporphyrin derivatives in vitro. Lasers Med Sci 2019; 35:71-78. [DOI: 10.1007/s10103-019-02794-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
|