1
|
Sah JP, Dominguez De Leon JE, Berg IC, Cornelius BL, Dekle DB, Ismail E, Cheng X, Giridharan GA, Sethu P. Understanding the role of vascular stretch on modulation of VWF and ANGPT-2 in continuous flow left ventricular assist device (CF-VAD) patients. LAB ON A CHIP 2025. [PMID: 40314578 PMCID: PMC12047207 DOI: 10.1039/d4lc01065e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Non-surgical bleeding is a common complication in patients on continuous flow left ventricular assist device (CF-VAD) support. This study investigates how the transition from cyclic to constant stretch following CF-VAD implantation affects endothelial biosynthesis and release of Von Willebrand factor (VWF) and angiopoietin-2 (ANGPT-2), two molecules that play an essential role in the development of non-surgical bleeding. Human aortic endothelial and umbilical vein endothelial cells (HAECs and HUVECs) were cultured within a uniaxial stretch device that mimics stretch associated with both normal pulsatile and CF-VAD conditions. Following 72 hours of stretch, transcriptional regulation, intracellular accumulation, and secretion of VWF and ANGPT-2 were evaluated using molecular expression profiling and immunofluorescence microscopy. Constant stretch associated with CF-VADs upregulates transcriptional levels of VWF and ANGPT-2 in HAECs and HUVECs compared to physiological cyclic stretch (p < 0.05). Transcriptional increases in both VWF and ANGPT-2 in HAECs also resulted in increased intracellular protein levels of VWF and ANGPT-2 measured using ELISA, western blots and immunofluorescence microscopy, whereas in HUVECs, the intracellular increase was evident only with western blots and immunofluorescence microscopy. Finally, constant stretch appears to promote ANGPT-2 release and inhibit release of VWF from both HAECs and HUVECs compared to cyclic stretch. Our study found that constant stretch upregulates the production of both VWF and ANGPT-2. However, while the release of ANGPT-2 is elevated under constant stretch, the release of VWF declines, resulting in elevated extracellular levels of ANGPT-2, but not VWF.
Collapse
Affiliation(s)
- Jay Prakash Sah
- Division of Cardiovascular Disease, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
- Department of Biomedical Engineering, School of Engineering and School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Javier E Dominguez De Leon
- Division of Cardiovascular Disease, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
- Department of Biomedical Engineering, School of Engineering and School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ian C Berg
- Division of Cardiovascular Disease, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
- Department of Biomedical Engineering, School of Engineering and School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Braden L Cornelius
- Division of Cardiovascular Disease, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
- Department of Biomedical Engineering, School of Engineering and School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Daniel B Dekle
- Division of Cardiovascular Disease, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
- Department of Biomedical Engineering, School of Engineering and School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Esraa Ismail
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Xuanhong Cheng
- Department of Bioengineering and Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Guruprasad A Giridharan
- Department of Bioengineering, J. B. Speed School of Engineering, University of Louisville, Louisville, Kentucky, USA
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
- Department of Biomedical Engineering, School of Engineering and School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Smith AG, McNamee AP, Chan CHH, Headrick J, Simmonds MJ. An enhanced and rapid method for von Willebrand factor multimer analysis for mechanical circulatory device testing. Artif Organs 2024; 48:1438-1448. [PMID: 39101288 DOI: 10.1111/aor.14838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Von Willebrand factor (VWF) is a critical glycoprotein in hemostasis and is an important factor in diagnosing bleeding disorders. Albeit the analysis of VWF is often compromised by inconsistent methodologies and challenges quantifying multimeric size. Current VWF multimer analysis methods are costly, time-consuming, and often inconsistent; thus, demanding skilled professionals. This study aimed to streamline and optimize the VWF multimer analysis technique, making it more efficient and reproducible, particularly for identifying or predicting mechanical circulatory support (MCS) induced bleeding disorders. METHODS Blood samples from healthy volunteers were exposed to high shear forces via a Medtronic HeartWare ventricular assist device. VWF multimers were analyzed using vertical-gel agarose electrophoresis and Western blotting. Differences in VWF distribution were determined using densitometry, and two methods of densitometric analysis were compared: proprietary software against open-source software. RESULTS Using the developed method: (i) protocol duration was accelerated from three days (in classical methods) to ~ eight hours; (ii) the resolution of the high molecular weight (HMW) VWF multimers were substantially improved; and (iii) densitometric analysis tools were validated. Additionally, the densitometry analysis using two software types showed a strong correlation between results, with the proprietary software reporting slightly higher HMW VWF percentages. CONCLUSION This methodology is recommended for affordable, accurate, and reproducible VWF multimer evaluations during MCS use and testing. Further research comparing this method with semi-automated methods would provide additional insight and improve inter-laboratory comparisons.
Collapse
Affiliation(s)
- Amanda G Smith
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Antony P McNamee
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Chris H H Chan
- Innovative Device & Engineering Applications (IDEA) Lab, Texas Heart Institute, Houston, Texas, USA
| | - John Headrick
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
3
|
Nascimbene A, Bark D, Smadja DM. Hemocompatibility and biophysical interface of left ventricular assist devices and total artificial hearts. Blood 2024; 143:661-672. [PMID: 37890145 PMCID: PMC10900168 DOI: 10.1182/blood.2022018096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
ABSTRACT Over the past 2 decades, there has been a significant increase in the utilization of long-term mechanical circulatory support (MCS) for the treatment of cardiac failure. Left ventricular assist devices (LVADs) and total artificial hearts (TAHs) have been developed in parallel to serve as bridge-to-transplant and destination therapy solutions. Despite the distinct hemodynamic characteristics introduced by LVADs and TAHs, a comparative evaluation of these devices regarding potential complications in supported patients, has not been undertaken. Such a study could provide valuable insights into the complications associated with these devices. Although MCS has shown substantial clinical benefits, significant complications related to hemocompatibility persist, including thrombosis, recurrent bleeding, and cerebrovascular accidents. This review focuses on the current understanding of hemostasis, specifically thrombotic and bleeding complications, and explores the influence of different shear stress regimens in long-term MCS. Furthermore, the role of endothelial cells in protecting against hemocompatibility-related complications of MCS is discussed. We also compared the diverse mechanisms contributing to the occurrence of hemocompatibility-related complications in currently used LVADs and TAHs. By applying the existing knowledge, we present, for the first time, a comprehensive comparison between long-term MCS options.
Collapse
Affiliation(s)
- Angelo Nascimbene
- Advanced Cardiopulmonary Therapies and Transplantation, University of Texas, Houston, TX
| | - David Bark
- Division of Hematology and Oncology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - David M. Smadja
- Université de Paris-Cité, Innovative Therapies in Haemostasis, INSERM, Paris, France
- Hematology Department, Assistance Publique–Hôpitaux de Paris, Georges Pompidou European Hospital, Paris, France
| |
Collapse
|
4
|
Hennessy-Strahs S, Kang J, Krause E, Dowling RD, Rame JE, Bartoli CR. Patient-specific severity of von Willebrand factor degradation identifies patients with a left ventricular assist device at high risk for bleeding. J Thorac Cardiovasc Surg 2024; 167:196-204. [PMID: 35501195 DOI: 10.1016/j.jtcvs.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Continuous-flow left ventricular assist devices (LVADs) cause an acquired von Willebrand factor (VWF) deficiency and bleeding. Models to risk-stratify for bleeding are urgently needed. We developed a model of continuous-flow LVAD bleeding risk from patient-specific severity of VWF degradation. METHODS In a prospective, longitudinal cohort study, paired blood samples were obtained from patients (n = 67) with a continuous-flow LVAD before and during support. After 640 ± 395 days, patients were categorized as all-cause bleeders, gastrointestinal (GI) bleeders, or nonbleeders. VWF multimers and VWF clotting function were evaluated to determine bleeding risk. RESULTS Of 67 patients, 34 (51%) experienced bleeding, 26 (39%) experienced GI bleeding, and 33 (49%) did not bleed. In all patients, LVAD support significantly reduced high-molecular-weight VWF multimers (P < .001). Bleeders exhibited greater loss of high-molecular-weight VWF multimers (mean ± standard deviation, -10 ± 5% vs -7 ± 4%, P = .008) and reduced VWF clotting function versus nonbleeders (median [interquartile range], -12% [-31% to 4%] vs 0% [-9 to 26%], P = .01). A combined metric of VWF multimers and VWF function generated the All-Cause Bleeding Risk Score, which stratified bleeders versus nonbleeders (86 ± 56% vs 41 ± 48%, P < .001) with a positive predictive value of 86% (95% confidence interval, 66%-95%) and diagnostic odds ratio of 11 (95% confidence interval, 2.9-44). A separate GI Bleeding Risk Score stratified GI bleeders versus nonbleeders (202 ± 114 vs 120 ± 86, P = .003) with a positive predictive value of 88% (64%-97%) and diagnostic odds ratio of 18 (3.1-140). CONCLUSIONS The severity of loss of VWF multimers and VWF clotting function generated Bleeding Risk Scores with high predictive value for LVAD-associated bleeding. This model may guide personalized antithrombotic therapy and patient surveillance.
Collapse
Affiliation(s)
| | - Jooeun Kang
- Vanderbilt University School of Medicine, Nashville, Tenn
| | - Eric Krause
- Division of Cardiothoracic Surgery, University of Maryland Medical Center, Baltimore, Md
| | - Robert D Dowling
- Division of Cardiac Surgery, Penn State College of Medicine, Hershey, Pa
| | - J Eduardo Rame
- Division of Cardiology, Jefferson University Hospital, Philadelphia, Pa
| | - Carlo R Bartoli
- Division of Cardiothoracic Surgery, Geisinger Medical Center, Danville, Pa.
| |
Collapse
|
5
|
Drop JG, Wildschut ED, de Maat MPM, van Rosmalen J, de Boode WP, de Hoog M, Heleen van Ommen C. Acquired von Willebrand disease in children undergoing extracorporeal membrane oxygenation: a prospective observational study. J Thromb Haemost 2023; 21:3383-3392. [PMID: 37579879 DOI: 10.1016/j.jtha.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) provides cardiopulmonary support for children with severe cardiac and/or pulmonary failure. The incidence of bleeding complications during ECMO support is high. Acquired von Willebrand disease (AVWD) might contribute to the development of bleeding complications. OBJECTIVE To study the incidence and longitudinal profile of AVWD during the first 14 days of ECMO support in children and to investigate the association between AVWD and bleeding complications. METHODS This prospective observational study included pediatric patients (0-17 years) receiving ECMO. Blood was sampled prior to and after ECMO start, daily and 12 to 24 hours after stopping ECMO. von Willebrand factor (VWF) parameters and multimer patterns were determined. Clinical data were collected for each patient. AVWD was defined as loss of high-molecular weight multimers (ie, decreased compared with baseline) or a VWF:collagen binding/VWF: antigen (Ag) ratio or VWF:activity/VWF:Ag ratio below 0.7. RESULTS All of 50 (100%) patients developed AVWD during ECMO. The VWF:collagen binding /VWF:Ag ratio, VWF:activity/VWF:Ag ratio, and high-molecular weight multimers decreased during the initial days and recovered to baseline level within 24 hours after stopping ECMO. The incidence and longitudinal profile of AVWD were similar in patients with and without major bleeding complications. CONCLUSION Children receiving ECMO support commonly develop AVWD. AVWD develops rapidly after ECMO initiation and recovers quickly after ECMO cessation. Importantly, AVWD appears to be independent of major bleeding.
Collapse
Affiliation(s)
- Joppe G Drop
- Department of Paediatrics, Division of Paediatric Hematology, Erasmus Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Paediatrics, Division of Pediatric Intensive care and Pediatric surgery, Erasmus Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Enno D Wildschut
- Department of Paediatrics, Division of Pediatric Intensive care and Pediatric surgery, Erasmus Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Moniek P M de Maat
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Willem P de Boode
- Division of Neonatology, Dept. of Perinatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Matthijs de Hoog
- Department of Paediatrics, Division of Pediatric Intensive care and Pediatric surgery, Erasmus Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - C Heleen van Ommen
- Department of Paediatrics, Division of Paediatric Hematology, Erasmus Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Li Y, Xi Y, Wang H, Sun A, Wang L, Deng X, Chen Z, Fan Y. Development and validation of a mathematical model for evaluating shear-induced damage of von Willebrand factor. Comput Biol Med 2023; 164:107379. [PMID: 37597407 DOI: 10.1016/j.compbiomed.2023.107379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE To develop a mathematical model for predicting shear-induced von Willebrand factor (vWF) function modification which can be used to guide ventricular assist devices (VADs) design, and evaluate the damage of high molecular weight multimers (HMWM)-vWF in VAD patients for reducing clinical complications. METHODS Mathematical models were constructed based on three morphological variations (globular vWF, unfolded vWF and degraded vWF) of vWF under shear stress conditions, in which parameters were obtained from previous studies or fitted by experimental data. Different clinical support modes (pediatric vs. adult mode), different VAD operating states (pulsation vs. constant mode) and different clinical VADs (HeartMate II, HeartWare and CentriMag) were utilized to analyze shear-induced damage of HMWM-vWF based on our vWF model. The accuracy and feasibility of the models were evaluated using various experimental and clinical cases, and the biomechanical mechanisms of HMWM-vWF degradation induced by VADs were further explained. RESULTS The mathematical model developed in this study predicted VAD-induced HMWM-vWF degradation with high accuracy (correlation with experimental data r2 > 0.99). The numerical results showed that VAD in the pediatric mode resulted in more HMWM-vWF degradation per unit time and per unit flow rate than in the adult mode. However, the total degradation of HMWM-vWF is less in the pediatric mode than in the adult mode because the pediatric mode has fewer times of blood circulation than the adult mode in the same amount of time. The ratio of HMWM-vWF degradation was lower in the pulsation mode than in the constant mode. This is due to the increased flushing of VADs in the pulsation mode, which avoids prolonged stagnation of blood in high shear regions. This study also found that the design feature, rotor size and volume of the VADs, and the superimposed regions of high shear stress and long residence time inside VADs affect the degradation of HMWM-vWF. The axial flow VADs (HeartMate II) showed higher degradation of HMWM-vWF compared to centrifugal VADs (HeartWare and CentriMag). Compared to fully magnetically suspended VADs (CentriMag), hydrodynamic suspended VADs (HeartWare) produced extremely high degradation of HWMW-vWF in its narrow hydrodynamic clearance. Finally, the study used a mathematical model of HMWM-vWF degradation to interpret the clinical statistics from a biomechanical perspective and found that minimizing the rotating speed of VADs within reasonable limits helps to reduce HWMW-vWF degradation. All predicted conclusions are supported by the experimental and clinical data. CONCLUSION This study provides a validated mathematical model to assess the shear-induced degradation of HMWM-vWF, which can help to evaluate the damage of HMWM-vWF in patients implanted with VADs for reducing clinical complications, and to guide the optimization of VADs for improving hemocompatibility.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
7
|
Jhun CS, Xu L, Siedlecki C, Bartoli CR, Yeager E, Lukic B, Scheib CM, Newswanger R, Cysyk JP, Shen C, Bohnenberger K, Weiss WJ, Rosenberg G. Kinetic and Dynamic Effects on Degradation of von Willebrand Factor. ASAIO J 2023; 69:467-474. [PMID: 36399789 PMCID: PMC10143388 DOI: 10.1097/mat.0000000000001848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The loss of high molecular weight multimers (HMWM) of von Willebrand factor (vWF) in aortic stenosis (AS) and continuous-flow left ventricular assist devices (cf-LVADs) is believed to be associated with high turbulent blood shear. The objective of this study is to understand the degradation mechanism of HMWM in terms of exposure time (kinetic) and flow regime (dynamics) within clinically relevant pathophysiologic conditions. A custom high-shear rotary device capable of creating fully controlled exposure times and flows was used. The system was set so that human platelet-poor plasma flowed through at 1.75 ml/sec, 0.76 ml/sec, or 0.38 ml/sec resulting in the exposure time ( texp ) of 22, 50, or 100 ms, respectively. The flow was characterized by the Reynolds number (Re). The device was run under laminar (Re = 1,500), transitional (Re = 3,000; Re = 3,500), and turbulent (Re = 4,500) conditions at a given texp followed by multimer analysis. No degradation was observed at laminar flow at all given texp . Degradation of HMWM at a given texp increases with the Re. Re ( p < 0.0001) and texp ( p = 0.0034) are significant factors in the degradation of HMWM. Interaction between Re and texp , however, is not always significant ( p = 0.73).
Collapse
Affiliation(s)
- Choon-Sik Jhun
- From the Division of Applied Biomedical Engineering, Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Lichong Xu
- From the Division of Applied Biomedical Engineering, Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Christopher Siedlecki
- From the Division of Applied Biomedical Engineering, Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
- Department of Biomedical Engineering, College of Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - Carlo R. Bartoli
- Department of Cardiothoracic Surgery, Geisinger Medical Center, Danville, Pennsylvania
| | - Eric Yeager
- From the Division of Applied Biomedical Engineering, Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Branka Lukic
- From the Division of Applied Biomedical Engineering, Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Christopher M. Scheib
- From the Division of Applied Biomedical Engineering, Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Raymond Newswanger
- From the Division of Applied Biomedical Engineering, Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Joshua P. Cysyk
- From the Division of Applied Biomedical Engineering, Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Chan Shen
- Division of Outcomes Research and Quality, Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Karl Bohnenberger
- From the Division of Applied Biomedical Engineering, Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - William J. Weiss
- From the Division of Applied Biomedical Engineering, Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
- Department of Biomedical Engineering, College of Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - Gerson Rosenberg
- From the Division of Applied Biomedical Engineering, Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
- Department of Biomedical Engineering, College of Engineering, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
8
|
Del Rio-Pertuz G, Nair N. Gastrointestinal bleeding in patients with continuous-flow left ventricular assist devices: A comprehensive review. Artif Organs 2023; 47:12-23. [PMID: 36334280 DOI: 10.1111/aor.14432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Gastrointestinal bleeding is a major cause of morbidity that plagues the quality of life of patients supported on contemporary continuous-flow left ventricular assist devices (CF-LVADs). Despite benefits in survival and the nearly 50% reduction in complications provided by CF-LVADs, bleeding remains one of the most frequent adverse events with CF-LVAD implants. The CF-LVADs cause an increased risk of bleeding mainly due to the activation of the coagulation cascade. METHODS A literature search was done using PubMed and Google Scholar from Inception to February 2022. Qualitative analyses of the articles retrieved were used to construct this review. This review attempts to provide a comprehensive summary of the epidemiology, pathophysiology, risk stratification, and management of gastrointestinal bleeding as a complication of CF-LVAD as well as propose an algorithm for diagnosis and treatment. RESULTS Bleeding can occur at different sites in the gastrointestinal tract, the most common underlying pathology being arteriovenous malformations located in the upper gastrointestinal tract The increased prevalence of gastrointestinal (GI) bleeding in CF-LVAD patients has been attributed to the physiology of the LVAD itself, the use of anticoagulants, as well as patient comorbidities. Management involves pharmacologic and nonpharmacologic strategies. CONCLUSIONS CF-LVAD-supported patients have a significant risk of GI bleeding that is mainly caused by arteriovenous malformations located in the upper GI tract. The increased prevalence of GI bleeding in CF-LVAD patients is attributed to several etiologies that include factors attributed to the device itself and extrinsic factors such as the use of anticoagulation.
Collapse
Affiliation(s)
- Gaspar Del Rio-Pertuz
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Nandini Nair
- Division of Cardiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
9
|
Chan CHH, Simmonds MJ, Fraser KH, Igarashi K, Ki KK, Murashige T, Joseph MT, Fraser JF, Tansley GD, Watanabe N. Discrete responses of erythrocytes, platelets, and von Willebrand factor to shear. J Biomech 2021; 130:110898. [PMID: 34896790 DOI: 10.1016/j.jbiomech.2021.110898] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023]
Abstract
Despite decades of technological advancements in blood-contacting medical devices, complications related to shear flow-induced blood trauma are still frequently observed in clinic. Blood trauma includes haemolysis, platelet activation, and degradation of High Molecular Weight von Willebrand Factor (HMW vWF) multimers, all of which are dependent on the exposure time and magnitude of shear stress. Specifically, accumulating evidence supports that when blood is exposed to shear stresses above a certain threshold, blood trauma ensues; however, it remains unclear how various constituents of blood are affected by discrete shears experimentally. The aim of this study was to expose blood to discrete shear stresses and evaluate blood trauma indices that reflect red cell, platelet, and vWF structure. Citrated human whole blood (n = 6) was collected and its haematocrit was adjusted to 30 ± 2% by adding either phosphate buffered saline (PBS) or polyvinylpyrrolidone (PVP). Viscosity of whole blood was adjusted to 3.0, 12.5, 22.5 and 37.5 mPa·s to yield stresses of 3, 6, 9, 12, 50, 90 and 150 Pa in a custom-developed shearing system. Blood samples were exposed to shear for 0, 300, 600 and 900 s. Haemolysis was measured using spectrophotometry, platelet activation using flow cytometry, and HMW vWF multimer degradation was quantified with gel electrophoresis and immunoblotting. For tolerance to 300, 600 and 900 s of exposure time, the critical threshold of haemolysis was reached after blood was exposed to 90 Pa for 600 s (P < 0.05), platelet activation and HMW vWF multimer degradation were 50 Pa for 600 s and 12 Pa for 300 s respectively (P < 0.05). Our experimental results provide simultaneous comparison of blood trauma indices and thus also the relation between shear duration and magnitude required to induce damage to red cells, platelets, and vWF. Our results also demonstrate that near-physiological shear stress (<12 Pa) is needed in order to completely avoid any form of blood trauma. Therefore, there is an urgent need to design low shear-flow medical devices in order to avoid blood trauma in this blood-contacting medical device field.
Collapse
Affiliation(s)
- Chris H H Chan
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia.
| | - Michael J Simmonds
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Katharine H Fraser
- Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| | - Kosuke Igarashi
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Department of Life Sciences, Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Katrina K Ki
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia
| | - Tomotaka Murashige
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Mary T Joseph
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia; School of Medicine, Griffith University, Queensland, Australia
| | - Geoff D Tansley
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia
| | - Nobuo Watanabe
- Department of Life Sciences, Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
10
|
Bruckner BA, Spotnitz WD, Suarez E, Loebe M, Ngo U, Gillen DL, Manson RJ. Evaluation of the Safety and Efficacy of a Novel Thrombin Containing Combination Hemostatic Powder Using a Historical Control. Clin Appl Thromb Hemost 2021; 27:10760296211017238. [PMID: 34024165 PMCID: PMC8150456 DOI: 10.1177/10760296211017238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This clinical study compares 2 hemostatic agents, a novel combination powder (CP) (HEMOBLAST™ Bellows) and an established polysaccharide starch powder (PP) (Arista™ AH) to assess the usefulness of CP. Retrospective comparative analysis of CP (July 2018 to July 2019, 68 patients) to PP (January 2011 to January 2013, 94 patients) in cardiothoracic patients was performed using linear regression models adjusting for age, sex, and procedure type for the endpoints: blood loss; protamine to skin closure time (hemostasis time); chest tube output and blood products required 48 hours postoperatively; ICU stay; postoperative comorbidities; and 30 day mortality. 162 patients (108 M: 54 F) underwent 162 cardiothoracic surgical procedures including: transplantation (n = 44), placement of ventricular assist device (n = 87), and others (n = 31). Use of CP compared to PP (Estimated Mean Difference [95% CI], P-value) produced significant reductions: blood loss (mL) (-886.51 [-1457.76, -312.26], P = 0.003); protamine to skin closure time (min) (-16.81 [-28.03, -5.59], P = 0.004); chest tube output (48 hrs, mL) (-445.76 [-669.38, -222.14], P < 0.001); packed red blood cell transfusions (units) (-0.98 [-1.56, -0.4], P = 0.001); and postoperative comorbidities (-0.31 [-0.55, -0.07], P = 0.012). There were no differences in the ICU stay (4.07 [-2.01, 10.15], P = 0.188) or 30-day mortality (0.57 [0.20, 1.63], P = 0.291). The use of CP in complex cardiothoracic operations resulted in improved hemostasis and significant clinical benefits in blood loss, transfusion requirements, morbidity, and time in operating room.
Collapse
Affiliation(s)
- Brian A Bruckner
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - William D Spotnitz
- Department of Surgery, University of Virginia, Charlottesville, VA, USA.,Department of Medical Affairs, Biom'Up France SAS, Lyon, France
| | - Erik Suarez
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Matthias Loebe
- Miami Transplant Institute, University of Miami Health System, Miami, FL, USA
| | - Uy Ngo
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Daniel L Gillen
- Department of Statistics, University of California at Irvine, Irvine, CA, USA.,Department of Epidemiology, University of California at Irvine, Irvine, CA, USA
| | - Roberto J Manson
- Department of Medical Affairs, Biom'Up France SAS, Lyon, France.,Department of Surgery, Duke University, Durham, NC, USA.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| |
Collapse
|
11
|
Bartoli CR. Pathologic von Willebrand factor degradation is a major contributor to left ventricular assist device-associated bleeding: pathophysiology and evolving clinical management. Ann Cardiothorac Surg 2021; 10:389-392. [PMID: 34159121 DOI: 10.21037/acs-2020-cfmcs-29] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carlo R Bartoli
- Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Abnormalities in the Von Willebrand-Angiopoietin Axis Contribute to Dysregulated Angiogenesis and Angiodysplasia in Children With a Glenn Circulation. JACC Basic Transl Sci 2021; 6:222-235. [PMID: 33778210 PMCID: PMC7987544 DOI: 10.1016/j.jacbts.2020.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
Children with a bidirectional superior cavopulmonary connection (Glenn circulation) develop dysregulated angiogenesis and pulmonary angiodysplasia in the form of arteriovenous malformations (AVMs). No targeted therapy exists. The von Willebrand factor (vWF)–angiopoietin axis plays a major role in normal angiogenesis, angiodysplasia, and AVM formation in multiple diseases. vWF and angiopoietin-2 (which destabilizes vessel formation) were abnormal in children with a Glenn circulation versus control children. Within Glenn patients, angiopoietin-1 (which stabilizes vessel formation) and angiogenesis were different in the systemic versus pulmonary circulation. Plasma angiopoietin-1 was lower in the pulmonary circulation of Glenn patients with pulmonary AVMs than Glenn patients without AVMs. In parallel, differences in multiple angiogenic and inflammatory signaling peptides were observed between Glenn patients and controls, which indicated derangements in multiple angiogenic pathways in Glenn patients. These findings support the novel hypothesis that abnormal vWF metabolism and angiopoietin signaling dysregulate angiogenesis and contribute to pulmonary AVM formation in children with a Glenn circulation. The vWF-angiopoietin axis may be a target to correct angiogenic imbalance and reduce pulmonary angiodysplasia in Glenn patients.
Children with a bidirectional superior cavopulmonary (Glenn) circulation develop angiodysplasia and pulmonary arteriovenous malformations (AVMs). The von Willebrand factor (vWF)–angiopoietin axis plays a major role in AVM formation in multiple diseases. We observed derangements in global angiogenic signaling, vWF metabolism, angiopoietins, and in vitro angiogenesis in children with a Glenn circulation versus controls and within Glenn pulmonary versus systemic circulations. These findings support the novel hypothesis that abnormalities in the vWF-angiopoietin axis may dysregulate angiogenesis and contribute to Glenn pulmonary AVMs. The vWF-angiopoietin axis may be a target to correct angiogenic imbalance in Glenn patients, for whom no targeted therapy exists.
Collapse
Key Words
- ADAMTS-13, a disintegrin and metalloproteinase thrombospondin (motif) #13
- AVM, arteriovenous malformation
- EBM, endothelial basal media
- EGM, endothelial growth media
- Glenn
- HUVEC, human umbilical vein endothelial cell
- IVC, inferior vena cava
- LVAD, left ventricular assist device
- PA, pulmonary artery
- SVC, superior vena cava
- angiogenesis
- angiopoietin
- arteriovenous malformation
- vWF, von Willebrand factor
- von Willebrand factor
Collapse
|
13
|
Hibino M, Mazer CD, Verma S. Quantifying von Willebrand Factor Degradation During Continuous LVAD Support. Ann Thorac Surg 2020; 112:1264-1265. [PMID: 33359133 DOI: 10.1016/j.athoracsur.2020.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Makoto Hibino
- Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, 30 Bond St, Toronto, Ontario M5B 1W8, Canada.
| | - C David Mazer
- Department of Anesthesia, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|