1
|
Recher M, Prevost ALD, Sharma D, De Jonckheere J, Garabedian C, Storme L. Roles of parasympathetic outflow and sympathetic outflow in the cardiovascular response to brief umbilical cord occlusion in fetal sheep. PLoS One 2021; 16:e0254155. [PMID: 34228770 PMCID: PMC8259953 DOI: 10.1371/journal.pone.0254155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/21/2021] [Indexed: 01/08/2023] Open
Abstract
Fetal heart rate (FHR) deceleration is the most common change seen during labor. The role of the autonomic nervous system in regulating the fetal cardiovascular response during multiple uterine contractions has been well-established. However, the mechanism underlying the hemodynamic response remains unclear and the specific reflex that mediates the cardiovascular modifications is still controversial. This study aimed to determine the role of the sympathetic and parasympathetic systems on fetal hemodynamics in complete cord occlusion. Chronically instrumented fetal sheep were randomized to receive an intravenous injection of atropine 2.5 mg (n = 8), propranolol 5 mg (n = 7), atropine and propranolol (n = 7), or a control protocol (n = 9), followed by three episodes of 1-minute umbilical cord occlusion repeated every 5 minutes. Cord compression induces a rapid decrease in the FHR and a rapid increase in MAP. The decrease in FHR is caused by an increase in parasympathetic activity, (atropine and atropine-propranolol abolish the FHR response to the occlusion). The change in FHR during occlusion was not modified by propranolol injection, showing no effect of sympathetic tone. The increase in MAP during occlusion was similar in the four protocols. After releasing occlusion, the FHR was still lower than that at baseline due to a sustained parasympathetic tone. Suppression of the parasympathetic output to the cardiovascular system unmasks an increase in the FHR above baseline values. The lower FHR with the propranolol protocol further supports an increase in myocardial β-adrenoceptor stimulation after cord release. The increase in MAP after cord release was similar in the four protocols, except after the early stage of interocclusion period in atropine protocol. Four minutes after cord release, the FHR returned to baseline irrespective of the drugs that were infused, thereby showing recovery of ANS control. Blood gases (pH, PaCO2, PaO2) and plasma lactate concentrations was similar between the four protocols at the end of three applications of UCO. Complete cord compression-induced deceleration is likely due to acute activation of parasympathetic output. β-adrenoceptor activity is involved in the increase in FHR after cord release. Understanding the reflexes involved in FHR deceleration may help us understand the mechanisms underlying fetal autonomic adaptation during cord occlusion.
Collapse
Affiliation(s)
- Morgan Recher
- Univ. Lille, ULR 2694 – METRICS: Evaluation des technologies de santé et des pratiques médicales, Lille, France
- Department of Pediatric Intensive Care Unit, CHU Lille, Jeanne de Flandre Hospital, Lille, France
| | - Arthur Lauriot Dit Prevost
- Univ. Lille, ULR 2694 – METRICS: Evaluation des technologies de santé et des pratiques médicales, Lille, France
- Department of Pediatric Surgery, CHU Lille, Jeanne de Flandre Hospital, Lille, France
| | - Dyuti Sharma
- Univ. Lille, ULR 2694 – METRICS: Evaluation des technologies de santé et des pratiques médicales, Lille, France
- Department of Pediatric Surgery, CHU Lille, Jeanne de Flandre Hospital, Lille, France
| | - Julien De Jonckheere
- Univ. Lille, ULR 2694 – METRICS: Evaluation des technologies de santé et des pratiques médicales, Lille, France
- CHU Lille, Centre d’Innovation Technologique, Lille, France
| | - Charles Garabedian
- Univ. Lille, ULR 2694 – METRICS: Evaluation des technologies de santé et des pratiques médicales, Lille, France
- Department of Obstetrics, CHU Lille, Jeanne de Flandre Hospital, Lille, France
| | - Laurent Storme
- Univ. Lille, ULR 2694 – METRICS: Evaluation des technologies de santé et des pratiques médicales, Lille, France
- Department of Neonatology, CHU Lille, Jeanne de Flandre Hospital, Lille, France
| |
Collapse
|
2
|
Ton AT, Biet M, Delabre JF, Morin N, Dumaine R. In-utero exposure to nicotine alters the development of the rabbit cardiac conduction system and provides a potential mechanism for sudden infant death syndrome. Arch Toxicol 2017; 91:3947-3960. [PMID: 28593499 DOI: 10.1007/s00204-017-2006-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/01/2017] [Indexed: 01/06/2023]
Abstract
In-utero exposure to tobacco smoke remains the highest risk factor for sudden infant death syndrome (SIDS). To alleviate the risks, nicotine replacement therapies are often prescribed to women who wish to quit smoking during their pregnancy. Cardiac arrhythmias is considered the final outcome leading to sudden death. Our goal in this study was to determine if exposing rabbit fetus to nicotine altered the cardiac conduction system of newborn kittens in a manner susceptible to cause SIDS. Using neuronal markers and a series of immunohistological and electrophysiological techniques we found that nicotine delayed the development of the cardiac pacemaker center (sinoatrial node) and decreased its innervation. At the molecular level, nicotine favored the expression of cardiac sodium channels with biophysical properties that will tend to slow heart rate and diminish electrical conduction. Our results show that alterations of the cardiac sodium current may contribute to the bradycardia, conduction disturbances and other cardiac arrhythmias often associated to SIDS and raise awareness on the use of replacement therapy during pregnancy.
Collapse
Affiliation(s)
- Anh Tuan Ton
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th ave, Sherbrooke, QC, Canada
- Montreal Heart Institute, University of Montreal, Montréal, QC, Canada
| | - Michael Biet
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th ave, Sherbrooke, QC, Canada
| | - Jean-Francois Delabre
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th ave, Sherbrooke, QC, Canada
| | - Nathalie Morin
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th ave, Sherbrooke, QC, Canada
| | - Robert Dumaine
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th ave, Sherbrooke, QC, Canada.
| |
Collapse
|
3
|
Recursive Model Identification for the Evaluation of Baroreflex Sensitivity. Acta Biotheor 2016; 64:469-478. [PMID: 27757742 DOI: 10.1007/s10441-016-9295-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
A method for the recursive identification of physiological models of the cardiovascular baroreflex is proposed and applied to the time-varying analysis of vagal and sympathetic activities. The proposed method was evaluated with data from five newborn lambs, which were acquired during injection of vasodilator and vasoconstrictors and the results show a close match between experimental and simulated signals. The model-based estimation of vagal and sympathetic contributions were consistent with physiological knowledge and the obtained estimators of vagal and sympathetic activities were compared to traditional markers associated with baroreflex sensitivity. High correlations were observed between traditional markers and model-based indices.
Collapse
|
4
|
Campeiro JD, Neshich IP, Sant’Anna OA, Lopes R, Ianzer D, Assakura MT, Neshich G, Hayashi MA. Identification of snake bradykinin-potentiating peptides (BPPs)-simile sequences in rat brain – Potential BPP-like precursor protein? Biochem Pharmacol 2015; 96:202-15. [DOI: 10.1016/j.bcp.2015.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
5
|
Pladys P, Beuchée A, Hernandez A, Carrault G. Variabilité du rythme cardiaque de l’enfant : principes et applications. Arch Pediatr 2008; 15:611-3. [DOI: 10.1016/s0929-693x(08)71850-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|