1
|
Chen HS, van Roon L, Ge Y, van Gils JM, Schoones JW, DeRuiter MC, Zeppenfeld K, Jongbloed MRM. The relevance of the superior cervical ganglion for cardiac autonomic innervation in health and disease: a systematic review. Clin Auton Res 2024; 34:45-77. [PMID: 38393672 PMCID: PMC10944423 DOI: 10.1007/s10286-024-01019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE The heart receives cervical and thoracic sympathetic contributions. Although the stellate ganglion is considered the main contributor to cardiac sympathetic innervation, the superior cervical ganglia (SCG) is used in many experimental studies. The clinical relevance of the SCG to cardiac innervation is controversial. We investigated current morphological and functional evidence as well as controversies on the contribution of the SCG to cardiac innervation. METHODS A systematic literature review was conducted in PubMed, Embase, Web of Science, and COCHRANE Library. Included studies received a full/text review and quality appraisal. RESULTS Seventy-six eligible studies performed between 1976 and 2023 were identified. In all species studied, morphological evidence of direct or indirect SCG contribution to cardiac innervation was found, but its contribution was limited. Morphologically, SCG sidedness may be relevant. There is indirect functional evidence that the SCG contributes to cardiac innervation as shown by its involvement in sympathetic overdrive reactions in cardiac disease states. A direct functional contribution was not found. Functional data on SCG sidedness was largely unavailable. Information about sex differences and pre- and postnatal differences was lacking. CONCLUSION Current literature mainly supports an indirect involvement of the SCG in cardiac innervation, via other structures and plexuses or via sympathetic overdrive in response to cardiac diseases. Morphological evidence of a direct involvement was found, but its contribution seems limited. The relevance of SCG sidedness, sex, and developmental stage in health and disease remains unclear and warrants further exploration.
Collapse
Affiliation(s)
- H Sophia Chen
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lieke van Roon
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yang Ge
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Janine M van Gils
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Zeppenfeld
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Wei YZ, Yang S, Li W, Tang YH. Gefapixant, a Novel P2X3 Antagonist, Protects against Post Myocardial Infarction Cardiac Dysfunction and Remodeling Via Suppressing NLRP3 Inflammasome. Curr Med Sci 2023; 43:58-68. [PMID: 36622629 DOI: 10.1007/s11596-022-2658-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/19/2022] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The ATP responsive P2 purinergic receptors can be subdivided into metabotropic P2X family and ionotropic P2Y family. Among these, P2X3 is a type of P2X receptor which is specifically expressed on nerves, especially on pre-ganglionic sensory fibers. This study investigates whether gefapixant possesses the potential of inhibiting cardiac sympathetic hypersensitivity to protect against cardiac remodeling in the context of myocardial infarction. METHODS The Sprague-Dawley rats were divided randomly into three groups: sham group-myocardial infarction group, and myocardial infarction with gefapixant treatment group. Myocardial infarction was induced by left anterior descending branch ligation. The gefapixant solution was intraperitoneally injected each time per day for 7 days and the appropriate dosage of gefapixant was determined according to the results of hematoxylin-eosin (HE) staining and myocardial injury biomarkers. Conditions of cardiac function were assessed by echocardiograph and cardiac fibrosis was evaluated by Western blotting and immunofluorescence staining of collagen I and collagen III. The sympathetic innervation was detected by norepinephrine concentration (pg/mL), in-vivo electrophysiology, and typical sympathetic biomarkers. Inflammatory cell infiltration was shown from immunofluorescence staining and pro-inflammatory signaling pathway activation was checked by immunohistology, quantitative realtime PCR (qPCR) and Western blotting. RESULTS It was found that gefapixant injection of 10 mg/kg per day had the highest dosage-efficacy ratio. Furthermore, gefapixant treatment improved cardiac pump function as shown by increased LVEF and LVFS, and decreased LVIDd and LVIDs. The expression levels of collagen I and collagen III, and TNF-α were all decreased by P2X3 inhibition. Mechanistically, the decreased activation of nucleotide-binding and oligomerization domain-like receptors family pyrin-domain-containing 3 (NLRP3) inflammasome and subsequent cleavage of caspase-1 which modulated interleukin-1β (IL-1β) and IL-18 level in heart after gefapixant treatment were associated with the suppressed cardiac inflammation. CONCLUSION It is suggested that P2X3 inhibition by gefapixant ameliorates post-infarct autonomic nervous imbalance, cardiac dysfunction, and remodeling possibly via inactivating NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yan-Zhao Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Shuang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Wei Li
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China.
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| |
Collapse
|
3
|
Hu S, Jiang L, Yan Q, Zhou C, Guo X, Chen T, Ma S, Luo Y, Hu C, Yang F, Yuan L, Ma X, Zeng J. Evidence construction of baicalin for treating myocardial ischemia diseases: A preclinical meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154476. [PMID: 36191551 DOI: 10.1016/j.phymed.2022.154476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/12/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis Georgi, has shown potential pharmacological effects on myocardial ischemia diseases. Nevertheless, systematic preclinical studies on baicalin in the treatment of ischemic diseases are scarce. PURPOSE To assess the efficacy and potential mechanisms of baicalin in myocardial ischemia (RI), myocardial ischemia-reperfusion (IR) injury and myocardial infarction (MI) animal models for future clinical research. METHODS Preclinical studies published prior to August 27th, 2022 were retrieved from PubMed, Embase, Web of Science and Cochrane Library. CAMARADES list was used to evaluate the quality of included researches. Meta-analyses of cardiac pathology and function parameters, myocardial injury markers and other indicators were performed by STATA 15.0 software. Potential mechanisms are categorized and summarized. Dose-response interval analyses were used to analyze the dose-response relationship between baicalin and myocardial ischemia disease. RESULTS Fourteen studies and 222 animals were included in the analysis. The results showed that compared with the control group, baicalin could reduce myocardial infarction size associated with cardiac pathological condition and the corresponding cardiac pathological index containing CK-MB, CK and cTnT. Additionally, heart function indicators including LVSP, LVFS, LVEF, -dp/dt max, dp/dt max were increased by baicalin. As for subgroup analyses, baicalin also demonstrated certain effect on CK-MB and LVSP by administration method or stage. Furthermore, it displayed obvious effect on myocardial ischemia diseases when the dose is maintained at 100-150 mg/kg based on dosage analyses. CONCLUSION Based on the relevant literature retrieved, this is the first meta-analysis on baicalin in treating myocardial ischemia diseases. Notably, we linked the dynamic development of the disease and discussed it pertinently, from RI, IR injury to MI. Baicalin exhibits positive effects on myocardial ischemia diseases (especially when the dose is 100-150 mg/kg), which is achieved by regulating key pathological indicators and various signaling pathways.
Collapse
Affiliation(s)
- Sihan Hu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Lan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qi Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chenyang Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaochuan Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Tong Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Siting Ma
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yimiao Luo
- Department of Integrated Traditional Chinese and Western Medicine of Peking University Health Science Center, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, 100191, China
| | - Caiyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Fumin Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lishan Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
4
|
Tan YQ, Lin F, Ding YK, Dai S, Liang YX, Zhang YS, Li J, Chen HW. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154458. [PMID: 36152591 DOI: 10.1016/j.phymed.2022.154458] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Scutellaria baicalensis, a medicinal herb belonging to the Lamiaceae family, has been recorded in the Chinese, European, and British Pharmacopoeias. The medicinal properties of this plant are attributed to the total flavonoids of Scutellaria baicalensis (TFSB), particularly the main component, baicalin. This study provides a systematic and comprehensive list of the identified TFSB components and their chemical structures. The quality control process, pharmacokinetics, clinical application, and safety of Scutellaria baicalensis are discussed, and its pharmacological effect on cardiovascular diseases (CVDs) is detailed. Finally, the future research trends and prospects of this medicinal plant are provided. METHODS The Chinese and English papers related to TFSB were collected from the PubMed and CNKI databases using the relevant keywords. To highlight the pharmacological mechanism, clinical application, and safety of TFSB, the collected articles were screened and classified based on their research content. RESULTS TFSB contains at least 100 different kinds of flavonoids, of which baicalin, baicalein, wogonin, wogonoside, scutellarin, and scutellarein are the main active ingredients. The preparation process of TFSB is relatively well established, and the extraction rate can be significantly increased by enzymatic pretreatment and ultrasonication. The low oral availability of TFSB may be effectively enhanced using nanoformulations. The available pharmacokinetic data show that flavonoid glycosides and aglycones with the same parent nucleus may be converted to structures that are conducive to absorption in vivo. Moreover, TFSB can protect against CVDs by inhibiting apoptosis, regulating oxidative stress response, participating in inflammatory response, protecting against myocardial fibrosis, inhibiting myocardial hypertrophy, and regulating blood vessels. In terms of clinical application and animal safety, the available studies show that TFSB can be applied in a wide range of clinical treatments and is safe to use is animals. CONCLUSION This article systematically reviews the therapeutic effect and underlying pharmacological mechanism of TFSB against CVDs. The available studies clearly suggest that TFSB has great potential for the treatment of CVDs and is worthy of in-depth research and development.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Lin
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100 Henan, China
| | - Yu-Kun Ding
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Cardiology, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Shuang Dai
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying-Xin Liang
- Traditional Chinese Medicine Orthopedics, Liuzhou Worker's Hospital, Liuzhou 545007, China
| | - Yun-Shu Zhang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Heng-Wen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
Shi L, Hu Q, Li L, Yang R, Xu X, Du J, Zou L, Li G, Liu S, Li G, Liang S. Beneficial Effects of lncRNA-UC.360+ shRNA on Diabetic Cardiac Sympathetic Damage via NLRP3 Inflammasome-Induced Pyroptosis in Stellate Ganglion. ACS OMEGA 2022; 7:27714-27721. [PMID: 35967043 PMCID: PMC9366958 DOI: 10.1021/acsomega.2c03619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Hyperglycemia is one of the common symptoms of diabetes, and it produces excessive reactive oxygen species (ROS). This study investigated whether the long noncoding RNA (lncRNA) UC.360+ is involved in diabetic cardiac autonomic neuropathy (DCAN) mediated by NLRP3 inflammasome-induced pyroptosis in the stellate ganglion (SG). Using a rat type 2 diabetes model, we found that lncRNA UC.360+ short hairpin RNA (shRNA) ameliorated the dyslipidaemia of type 2 diabetic rats and reduced serum adrenaline and ROS production in SG under hyperglycemia. In addition, UC.360+ shRNA also reduced the expression of nuclear factor kappa-B (NF-κB), NLRP3, ASC, caspase-1, interleukin-1β (IL-1β), and IL-18 in the SG of diabetic rats and inhibited the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Therefore, lncRNA-UC.360+ shRNA may modulate the NLRP3 inflammasome/inflammatory pathway in the SG, which in turn alleviates diabetic heart sympathetic nerve damage.
Collapse
Affiliation(s)
- Liran Shi
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- The
people’s hospital of Jiawang of Xuzhou, Xuzhou 221011, China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Qixing Hu
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Lin Li
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Runan Yang
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Xiumei Xu
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Junpei Du
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Lifang Zou
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Department
of Haematology, The First Affiliated Hospital
of Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Guilin Li
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Shuangmei Liu
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Guodong Li
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Shangdong Liang
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| |
Collapse
|
6
|
Abstract
Bone cancer pain is characterized by moderate to severe ongoing pain that commonly requires the use of opiates, which could produce tolerance or addiction. Baicalin is a flavonoid compound extracted from Huang Qin, possesses antioxidant properties, and has an analgesic effect on nitroglycerin-induced migraine in rats and neuropathic pain in spinal nerve ligation rats. However, the effect of baicalin on bone cancer pain is still unclear. Therefore, the aim of this study is to examine the analgesic effect of baicalin in a rat model of bone cancer pain. Bone cancer pain animal model was created by tumor cell implantation (TCI). Animal behaviors were measured using a set of mechanical or electronic von Frey apparatus and hot plate. mRNA expression and inflammation cytokine levels were examined by Quantitative polymerase chain reaction (qPCR) and enzyme linked immunosorbent assay (ELISA) methods. Baicalin suppressed the upregulation of transient receptor potential vanilloid 1 (TRPV1), but not transient receptor potential A1 in dorsal root ganglion (DRG) of TCI rats. In addition, the phosphorylation of extracellular regulated protein kinases (ERK) was also suppressed by baicalin injection in DRG of TCI rats. Our results revealed that baicalin might play a promising analgesic role by preventing the upregulation of TRPV1 in DRG of TCI rats. Baicalin administration prevented the progress of bone cancer pain and reduced mechanical allodynia and thermal hyperalgesia. Our study clearly established a novel role of baicalin as an analgesic agent for bone cancer pain. And the analgesic role of baicalin in bone cancer pain might involve a TRPV1.
Collapse
|
7
|
Wang Z, Li L, Yang R, Xu X, Liang S. P2X receptors mediated abnormal interaction between satellite glial cells and neurons in visceral pathological changes. Cell Biol Int 2019; 43:1346-1352. [PMID: 31228306 DOI: 10.1002/cbin.11195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/16/2019] [Indexed: 01/24/2023]
Abstract
The adenosine triphosphate (ATP)-gated P2X receptor cation channel family consists of permeable ligand-gated ion channels that expand on the binding of extracellular adenosine 5'-ATP. ATP-gated P2X receptors are trimer ion channels that assemble homo or isomer from seven cloned subunits. P2X receptors are discovered mostly in mammalian and are being found in an increasing number of non-vertebrates, such as zebrafish, bullfrog, and ameba. P2X receptors are involved in many physiological processes, including regulation of heart rhythm and contractility, and regulation of pain, especially chronic pain and glia integration. This review summarizes the current studies on the regulation of P2X receptors in abnormal neuronal-glial interaction and the pathological changes in viscera, especially in myocardial ischemia.
Collapse
Affiliation(s)
- Zilin Wang
- Undergraduate student of class 156 of Nanchang University Queen Marry University of London Joint programme, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
8
|
Yu H, Chen B, Ren Q. Baicalin relieves hypoxia-aroused H9c2 cell apoptosis by activating Nrf2/HO-1-mediated HIF1α/BNIP3 pathway. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2019; 47:3657-3663. [PMID: 31478766 DOI: 10.1080/21691401.2019.1657879] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/11/2019] [Indexed: 01/30/2023]
Abstract
Background: Myocardial ischemia is the main reason for ischemic heart disease. Baicalin is a plant-derived flavonoid with cardio-protective activity. Herein, we tested the influences of baicalin on cardiomyocytes H9c2 apoptosis aroused by hypoxia stimulation. Methods: Firstly, H9c2 cells were subjected to hypoxia and/or baicalin exposure. Cell viability and apoptosis, along with hypoxia-inducible factor 1α (HIF1α) and Bcl-2/adenovirus E1B 19-KDa interacting protein 3 (BNIP3) expressions were tested respectively. Then, si-HIF1α was transfected into H9c2 cells to probe whether up-regulation of HIF1α attended to the influences of baicalin on hypoxia-stimulated H9c2 cells. Finally, the regulatory effect of nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway on HIF1α expression was analyzed. Results: Hypoxia exposure aroused H9c2 cell viability reduction and apoptosis. Baicalin mitigated H9c2 cell viability reduction and apoptosis aroused by hypoxia. Moreover, HIF1α/BNIP3 pathway was further activated by baicalin in hypoxia-exposed H9c2 cells. Silencing HIF1α lowered the functions of baicalin on hypoxia-exposed H9c2 cells. Besides, baicalin enhanced hypoxia-caused activation of Nrf2/HO-1 pathway. Activation of Nrf2/HO-1 pathway was associated with the up-regulation of HIF1α and protective functions of baicalin on hypoxia-exposed H9c2 cells. Conclusion: Baicalin relieved cardiomyocytes H9c2 apoptosis aroused by hypoxia might be achieved through activating Nrf2/HO-1-mediated HIF1α/BNIP3 pathway. Highlights Baicalin mitigates H9c2 cell viability loss and apoptosis aroused by hypoxia; Baicalin activates HIF1a/BNIP3 pathway in hypoxia-exposed H9c2 cells; Silencing HIF1α weakens the influences of baicalin on hypoxia-exposed H9c2 cells; Baicalin promotes Nrf2/HO-1 pathway in hypoxia-exposed H9c2 cells; Promotion of Nrf2/HO-1 pathway is related to the up-regulation of HIF1α.
Collapse
Affiliation(s)
- Hailiang Yu
- Department of Cardiology, Linyi Central Hospital , Linyi , China
| | - Bin Chen
- Department of Cardiology, Linyi Central Hospital , Linyi , China
| | - Qi Ren
- Department of Cardiology, Jining No.1 People's Hospital , Jining , China
| |
Collapse
|
9
|
Gong Y, Zhou Y, Yang J, Li S, Wang Z, Rao J, Li L, Yuan H, Shi L, Yang R, Xu X, Liu S, Liang S, Zou L. Abnormal sympathetic activity after myocardial ischemia involving P2X4 in dorsal root ganglia. Brain Res Bull 2019; 149:216-221. [PMID: 31051227 DOI: 10.1016/j.brainresbull.2019.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022]
Abstract
The satellite glial cells (SGCs) of the dorsal root ganglia (DRG) expressed P2X4 receptor. In this study, we investigated the abnormal sympathetic activity after myocardial ischemia (MI) involving P2X4 receptor in the cervical DRG SGC. The results showed that MI injury upregulated the P2X4 receptor mRNA and protein in DRG, and the upregulated P2X4 receptor was co-localized with glial fibrillary acidic protein (GFAP) in DRG SGCs. P2X4 short hairpin RNA (shRNA) treatment decreased the expression of P2X4 receptor, counteracted the upregulation of GFAP and IL-1β and inhibited P38MAPK phosphorylation in DRG of MI rats. These results indicate that application of P2X4 shRNA may reduce P2X4-mediated nociceptive signal via inhibiting DRG afferents to alleviate the abnormal sympathetic activity induced by MI.
Collapse
Affiliation(s)
- Yingxin Gong
- Undergraduate student of Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yanhong Zhou
- Undergraduate student of Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jingjian Yang
- Undergraduate student of Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shunhua Li
- Undergraduate student of Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zilin Wang
- Undergraduate student of Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jingan Rao
- Undergraduate student of Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Huilong Yuan
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Liran Shi
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuangmei Liu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| | - Lifang Zou
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
10
|
Zou L, Han X, Liu S, Gong Y, Wu B, Yi Z, Liu H, Zhao S, Jia T, Li L, Yuan H, Shi L, Zhang C, Gao Y, Li G, Xu H, Liang S. Baicalin Depresses the Sympathoexcitatory Reflex Induced by Myocardial Ischemia via the Dorsal Root Ganglia. Front Physiol 2018; 9:928. [PMID: 30065662 PMCID: PMC6056627 DOI: 10.3389/fphys.2018.00928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischemia (MI) is one of the major causes of death in cardiac diseases. Purinergic signaling is involved in bidirectional neuronal-glial communication in the primary sensory ganglia. The sensory neuritis of cardiac afferent neurons in cervical dorsal root ganglion (cDRG) interacts with cardiac sympathetic efferent postganglionic neurons, forming feedback loops. The P2Y12 receptor is expressed in satellite glial cells (SGCs) of DRG. Baicalin is a major active ingredient extracted from natural herbal medicines, which has anti-inflammatory and strong anti-oxidation properties. In this study we investigated the effect of baicalin on P2Y12 receptor in the cervical DRG SGC-mediated sympathoexcitatory reflex, which is increased during MI. The results showed that the expression of P2Y12 receptor mRNA and protein in DRG, and the co-localization values of P2Y12 receptor and glial fibrillary acidic protein (GFAP) in cDRG SGCs were increased after MI. The activated SGCs increased IL-1β protein expression and elevated Akt phosphorylation in cDRG. Baicalin treatment inhibited the upregulation of the P2Y12 receptor, GFAP protein and Akt phosphorylation in cDRG neurons/SGCs. The stellate ganglia (SG) affect cardiac sympathetic activity. Baicalin treatment also decreased the upregulation of the P2Y12 receptor, GFAP protein in the SG. The P2Y12 agonist, 2Me-SADP, increased [Ca2+]i in HEK293 cells transfected with the P2Y12 receptor plasmid and SGCs in cDRG. These results indicate that application of baicalin alleviates pathologic sympathetic activity induced by MI via inhibition of afferents in the cDRG.
Collapse
Affiliation(s)
- Lifang Zou
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Xinyao Han
- First Clinical Department, Medical School of Nanchang University, Nanchang, China
| | - Shuangmei Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Yingxin Gong
- First Clinical Department, Medical School of Nanchang University, Nanchang, China
| | - Bing Wu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Zhihua Yi
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hui Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shanhong Zhao
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Tianyu Jia
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Lin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Huilong Yuan
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Liran Shi
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China.,Department of Cell Biology, Medical School of Nanchang University, Nanchang, China
| | - Yun Gao
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hong Xu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| |
Collapse
|
11
|
Chen Z, He L, Li L, Chen L. The P2X7 purinergic receptor: An emerging therapeutic target in cardiovascular diseases. Clin Chim Acta 2018; 479:196-207. [PMID: 29366837 DOI: 10.1016/j.cca.2018.01.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 10/24/2022]
Abstract
The P2X7 purinergic receptor, a calcium permeable cationic channel, is activated by extracellular ATP. Most studies show that P2X7 receptor plays an important role in the nervous system diseases, immune response, osteoporosis and cancer. Mounting evidence indicates that P2X7 receptor is also associated with cardiovascular disease. For example, the P2X7 receptor activated by ATP can attenuate myocardial ischemia-reperfusion injury. By contrast, inhibition of P2X7 receptor decreases arrhythmia after myocardial infarction, prolongs cardiac survival after a long term heart transplant, alleviates the dilated cardiomyopathy and the autoimmune myocarditis process. The P2X7 receptor also mitigates vascular diseases including atherosclerosis, hypertension, thrombosis and diabetic retinopathy. This review focuses on the latest research on the role and therapeutic potential of P2X7 receptor in cardiovascular diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
12
|
Zou L, Gong Y, Zhao S, Yi Z, Han X, Wu B, Jia T, Li L, Yuan H, Shi L, Zhang C, Gao Y, Li G, Xu H, Liu H, Liang S, Liu S. Downregulation of P2Y12in the superior cervical ganglia alleviates abnormal sympathetic activity after myocardial ischemia. J Cell Physiol 2017; 233:3375-3383. [DOI: 10.1002/jcp.26184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Lifang Zou
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Yingxin Gong
- First Clinical Department; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
| | - Shanhong Zhao
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Zhihua Yi
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
- Nursing College; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
| | - Xinyao Han
- First Clinical Department; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
| | - Bing Wu
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Tianyu Jia
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Lin Li
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Huilong Yuan
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Liran Shi
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
- Department of Cell Biology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
| | - Yun Gao
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Guilin Li
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Hong Xu
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Hui Liu
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Shangdong Liang
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Shuangmei Liu
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| |
Collapse
|
13
|
Qiu L, Chen J, Lin J, Wo D, Chu J, Peng J. Baicalin alleviates H2O2-induced injury of H9c2 cardiomyocytes through suppression of the Wnt/β-catenin signaling pathway. Mol Med Rep 2017; 16:9251-9255. [DOI: 10.3892/mmr.2017.7748] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/06/2017] [Indexed: 11/06/2022] Open
|
14
|
Cheng LJ, Li GP, Li J, Chen Y, Wang XH. Effects of Fluvastatin on Characteristics of Stellate Ganglion Neurons in a Rabbit Model of Myocardial Ischemia. Chin Med J (Engl) 2017; 129:549-56. [PMID: 26904989 PMCID: PMC4804436 DOI: 10.4103/0366-6999.176991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Stellate ganglion (SG) plays an important role in cardiovascular diseases. The electrical activity of SG neurons is involved in the regulation of the autonomic nervous system. The aim of this research was to evaluate the effects of fluvastatin on the electrophysiological characteristics of SG neurons in a rabbit model of myocardial ischemia (MI). METHODS The MI model was induced by abdominal subcutaneous injections of isoproterenol in rabbits. Using whole-cell patch clamp technique, we studied the characteristic changes of ion channels and action potentials (APs) in isolated SG neurons in control group (n = 20), MI group (n = 20) and fluvastatin pretreated group (fluvastatin group, n = 20), respectively. The protein expression of sodium channel in SG was determined by immunohistochemical analysis. RESULTS MI and the intervention of fluvastatin did not have significantly influence on the characteristics of delayed rectifier potassium channel currents. The maximal peak current density of sodium channel currents in SG neurons along with the characteristics of activation curves, inactivation curves, and recovery curves after inactivation were changed in the MI group. The peak current densities of control group, MI group, and fluvastatin group (n = 10 in each group) were -71.77 ± 23.22 pA/pF, -126.75 ± 18.90 pA/pF, and -86.42 ± 28.30 pA/pF, respectively (F = 4.862, P = 0.008). Fluvastatin can decrease the current amplitude which has been increased by MI. Moreover, fluvastatin induced the inactivation curves and post-inactive recovery curves moving to the position of the control group. But the expression of sodium channel-associated protein (Nav1.7) had no significantly statistical difference among the three groups. The percentages of Nav1.7 protein in control group, MI group, and fluvastatin group (n = 5 in each group) were 21.49 ± 7.33%, 28.53 ± 8.26%, and 21.64 ± 2.78%, respectively (F = 1.495, P = 0.275). Moreover, MI reduced the electrical activity of AP and increased amplitude of AP, fluvastatin pretreatment could recover amplitude and electrical activity of AP. The probability of neurons induced continuous APs were 44.44%, 14.29%, and 28.57% in control group, MI group, and fluvastatin group, respectively. CONCLUSIONS Fluvastatin pretreatment can recover electrophysiology characteristics of ion channel and AP in SG neurons in a rabbit model of MI. It could be considered as potential method for treating coronary heart diseases.
Collapse
Affiliation(s)
| | - Guang-Ping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | | | | | | |
Collapse
|
15
|
Tu G, Zou L, Liu S, Wu B, Lv Q, Wang S, Xue Y, Zhang C, Yi Z, Zhang X, Li G, Liang S. Long noncoding NONRATT021972 siRNA normalized abnormal sympathetic activity mediated by the upregulation of P2X7 receptor in superior cervical ganglia after myocardial ischemia. Purinergic Signal 2016; 12:521-35. [PMID: 27215605 DOI: 10.1007/s11302-016-9518-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/11/2016] [Indexed: 11/26/2022] Open
Abstract
Previous studies showed that the upregulation of the P2X7 receptor in cervical sympathetic ganglia was involved in myocardial ischemic (MI) injury. The dysregulated expression of long noncoding RNAs (lncRNAs) participates in the onset and progression of many pathological conditions. The aim of this study was to investigate the effects of a small interfering RNA (siRNA) against the NONRATT021972 lncRNA on the abnormal changes of cardiac function mediated by the up-regulation of the P2X7 receptor in the superior cervical ganglia (SCG) after myocardial ischemia. When the MI rats were treated with NONRATT021972 siRNA, their increased systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), low-frequency (LF) power, and LF/HF ratio were reduced to normal levels. However, the decreased high-frequency (HF) power was increased. GAP43 and tyrosine hydroxylase (TH) are markers of nerve sprouting and sympathetic nerve fibers, respectively. We found that the TH/GAP43 value was significantly increased in the MI group. However, it was reduced after the MI rats were treated with NONRATT021972 siRNA. The serum norepinephrine (NE) and epinephrine (EPI) concentrations were decreased in the MI rats that were treated with NONRATT021972 siRNA. Meanwhile, the increased P2X7 mRNA and protein levels and the increased p-ERK1/2 expression in the SCG were also reduced. NONRATT021972 siRNA treatment inhibited the P2X7 agonist BzATP-activated currents in HEK293 cells transfected with pEGFP-P2X7. Our findings suggest that NONRATT021972 siRNA could decrease the upregulation of the P2X7 receptor and improve the abnormal changes in cardiac function after myocardial ischemia.
Collapse
Affiliation(s)
- Guihua Tu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Lifang Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qiulan Lv
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shouyu Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yun Xue
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Chunping Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Zhihua Yi
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xi Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
- Institute of Life Science of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
16
|
Zou L, Tu G, Xie W, Wen S, Xie Q, Liu S, Li G, Gao Y, Xu H, Wang S, Xue Y, Wu B, Lv Q, Ying M, Zhang X, Liang S. LncRNA NONRATT021972 involved the pathophysiologic processes mediated by P2X7 receptors in stellate ganglia after myocardial ischemic injury. Purinergic Signal 2015; 12:127-37. [PMID: 26630943 DOI: 10.1007/s11302-015-9486-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/24/2015] [Indexed: 12/20/2022] Open
Abstract
Adenosine triphosphate (ATP) acts on P2X receptors to initiate signal transmission. P2X7 receptors play a role in the pathophysiological process of myocardial ischemic injury. Long noncoding RNAs (lncRNAs) participate in numerous biological functions independent of protein translation. LncRNAs are implicated in nervous system diseases. This study investigated the effects of NONRATT021972 small interference RNA (siRNA) on the pathophysiologic processes mediated by P2X7 receptors in stellate ganglia (SG) after myocardial ischemic injury. Our results demonstrated that the expression of NONRATT021972 in SG was significantly higher in the myocardial ischemic (MI) group than in the control group. Treatment of MI rats with NONRATT021972 siRNA, the P2X7 antagonist brilliant blue G (BBG), or P2X7 siRNA improved the histology of injured ischemic cardiac tissues and decreased the elevated concentrations of serum myocardial enzymes, creatine kinase (CK), CK isoform MB (CK-MB), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) compared to the MI rats. NONRATT021972 siRNA, BBG, or P2X7 siRNA treatment in MI rats decreased the expression levels of P2X7 immunoreactivity, P2X7 messenger RNA (mRNA), and P2X7 protein, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and phosphorylated p38 mitogen-activated protein kinase (p38 MAPK) in the SG compared to MI rats. NONRATT021972 siRNA treatment prevented the pathophysiologic processes mediated by P2X7 receptors in the SG after myocardial ischemic injury.
Collapse
Affiliation(s)
- Lifang Zou
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guihua Tu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Wei Xie
- Undergraduate student of grade 2012, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shiyao Wen
- Undergraduate student of grade 2012, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qiuyu Xie
- Undergraduate student of grade 2012, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yun Gao
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hong Xu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shouyu Wang
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yun Xue
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qiulan Lv
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Mofeng Ying
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xi Zhang
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|