1
|
Ren G, Wang Y, Tian H, Zhang K, Zhang H, Liu X, Chen Z. Multiple system atrophy related neurogenic bladder: mechanism and treatment. Neurol Sci 2025; 46:1965-1976. [PMID: 39875674 DOI: 10.1007/s10072-025-08002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Multiple system atrophy (MSA) is a progressive neurodegenerative disease characterized by its aggressive nature. Its main clinical features include autonomic dysfunction, Parkinson's disease, and cerebellar ataxia. METHODS We conducted a comprehensive review of the existing literature, exploring studies and reports related to the mechanisms and treatment of multiple system atrophy related neurogenic bladder. Our aim is to provide a detailed and up-to-date overview of its underlying pathophysiology and current therapeutic strategies. RESULTS AND CONCLUSION Neurogenic bladder, a common manifestation of MSA, often goes untreated or mistreated, significantly affecting patients' quality of life. Early-stage bladder dysfunction is frequent in MSA patients and correlates with disease severity. The mechanisms of MSA related neurogenic bladder are related to the autonomic nervous system, somatic nerves, frontal cortex, brainstem, and sacral medulla center. Currently, treatment for MSA related neurogenic bladder is mainly symptomatic, and specific drugs are lacking. Further in-depth research is needed to develop more effective therapeutic options that improve patients' quality of life and reduce the risk of complications.
Collapse
Affiliation(s)
- Gengqing Ren
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yao Wang
- Tsinghua University, Beijing, 100084, China
| | - Hao Tian
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kaige Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Han Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoxu Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhigang Chen
- Neurology Department One, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6, Fangxingyuan Community, Fangzhuang, Fengtai District, Beijing, 100078, People's Republic of China.
| |
Collapse
|
2
|
Laga A, Bauters F, Hertegonne K, Tomassen P, Santens P, Kastoer C. A strategic approach of the management of sleep-disordered breathing in multiple system atrophy. J Clin Sleep Med 2025; 21:703-711. [PMID: 39539061 PMCID: PMC11965098 DOI: 10.5664/jcsm.11472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
STUDY OBJECTIVES Multiple system atrophy (MSA) is a rare neurodegenerative disorder characterized by autonomic dysfunction associated with a combination of cerebellar, parkinsonian, or pyramidal signs. Sleep-disordered breathing such as stridor, obstructive sleep apnea, and central sleep apnea is common in MSA and can impact survival. Several studies have evaluated treatment modalities. However, the optimal strategy often remains unclear in these patients. This review aims to provide an overview of the current evidence on treatment of sleep-disordered breathing in MSA. METHODS Systematic review of the current literature through combined keyword search in PubMed, Embase, the Cochrane Library, and cited references: "multiple system atrophy," "stridor," "sleep apnea syndrome," "sleep-disordered breathing," "Shy Drager syndrome." RESULTS Twenty-nine papers were included, with a total of 681 patients with MSA and sleep-disordered breathing. Treatment modalities are: continuous positive airway pressure, tracheostomy, tracheostomy-invasive ventilation, noninvasive positive pressure ventilation, adaptive servoventilation, vocal cord surgery, botulinum toxin injections, oral appliance therapy, cervical spinal cord stimulation, selective serotonin reuptake inhibitors. CONCLUSIONS Conflicting results on survival are found for continuous positive airway pressure therapy. Tracheostomy has a proven survival benefit. Most beneficial outcomes are seen with tracheostomy-invasive ventilation. Continuous positive airway pressure, other types of positive airway pressure therapy and tracheostomy can adequately control symptoms of obstructive sleep apnea. However, continuous positive airway pressure may exacerbate central sleep apnea. There was a lack of sufficient data regarding servoventilation or noninvasive positive pressure ventilation. Some patients exhibit a floppy epiglottis and require a different approach. In conclusion, due to the complex characteristics of sleep-disordered breathing in MSA, an individualized and multidisciplinary approach is mandatory. CITATION Laga A, Bauters F, Hertegonne K, Tomassen P, Santens P, Kastoer C. A strategic approach of the management of sleep-disordered breathing in multiple system atrophy. J Clin Sleep Med. 2025;21(4):703-711.
Collapse
Affiliation(s)
| | - Fré Bauters
- Ghent University, Ghent, Belgium
- Department of Pneumology, Ghent University Hospital, Ghent, Belgium
| | - Katrien Hertegonne
- Ghent University, Ghent, Belgium
- Department of Pneumology, Ghent University Hospital, Ghent, Belgium
| | - Peter Tomassen
- Ghent University, Ghent, Belgium
- Department of Otorhinolaryngology, Head and Neck Surgery, Ghent University Hospital, Ghent, Belgium
| | - Patrick Santens
- Ghent University, Ghent, Belgium
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Chloé Kastoer
- Ghent University, Ghent, Belgium
- Department of Otorhinolaryngology, Head and Neck Surgery, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
3
|
Tsuda M, Tsuda K, Asano S, Kato Y, Miyazaki M. Differential diagnosis of multiple system atrophy with predominant parkinsonism and Parkinson's disease using neural networks (part II). J Neurol Sci 2025; 470:123411. [PMID: 39893881 DOI: 10.1016/j.jns.2025.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Neural networks (NNs) possess the capability to learn complex data relationships, recognize inherent patterns by emulating human brain functions, and generate predictions based on novel data. We conducted deep learning utilizing an NN to differentiate between Parkinson's disease (PD) and the parkinsonian variant (MSA-P) of multiple system atrophy (MSA). The distinction between PD and MSA-P in the early stages presents significant challenges. Considering the recently reported heterogeneity and random distribution of lesions in MSA, we performed an analysis employing an NN with voxel-based morphometry data from the entire brain as input variables. The NN's accuracy in distinguishing MSA-P from PD demonstrates sufficient practicality for clinical application.
Collapse
Affiliation(s)
- Mitsunori Tsuda
- Neurology Tsuda Clinic, 3006 Hisaishinmachi, Tsu, Mie 514-1118, Japan.
| | - Kenta Tsuda
- Neurology Tsuda Clinic, 3006 Hisaishinmachi, Tsu, Mie 514-1118, Japan
| | - Shingo Asano
- Neurology Tsuda Clinic, 3006 Hisaishinmachi, Tsu, Mie 514-1118, Japan
| | - Yasushi Kato
- Neurology Kato Clinic, 4-5-36 Ichinoki, Ise, Mie 516-0071, Japan
| | - Masao Miyazaki
- Neurology Kato Clinic, 4-5-36 Ichinoki, Ise, Mie 516-0071, Japan
| |
Collapse
|
4
|
Gao M, Zhang H, Shan A, Yuan Y, Cao X, Wang L, Gan C, Sun H, Ye S, Wan C, Kong Y, Zhang K. Differences Between Patients With Multiple System Atrophy With Predominant Parkinsonism and Parkinson's Disease Based on fNIRS and Gait Analysis. CNS Neurosci Ther 2025; 31:e70342. [PMID: 40135570 PMCID: PMC11937913 DOI: 10.1111/cns.70342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 01/31/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVE To investigate the differences in gait parameters and cortical activity during a single-task walking (STW) and cognitive dual-task walking (DTW) between multiple system atrophy with predominant parkinsonism (MSA-P) and Parkinson's disease (PD). METHODS 24 MSA-P patients, 20 PD patients, and 22 healthy controls (HCs) were enrolled. Gait parameters were collected using a portable inertial measurement unit system, and the relative change of oxyhemoglobin (ΔHbO2) in the bilateral frontal and sensorimotor cortex was obtained by functional near-infrared spectroscopy during walking with and without cognitive tasks. RESULTS MSA-P patients had increased step length variability and higher ΔHbO2 in the right dorsolateral prefrontal cortex (DLPFC), relative to PD patients and HCs during the DTW condition. Meanwhile, MSA-P patients exhibited higher step length variability and ΔHbO2 in the right DLPFC during DTW compared to STW. Furthermore, mild negative correlations were found between the ΔHbO2 in the right DLPFC and step length, while there was a mild positive correlation between ΔHbO2 and step length variability during the DTW condition. Notably, receiver operating characteristic (ROC) curve analysis uncovered that the areas under the curve (AUCs) of the ΔHbO2 of the right DLPFC and step length variability during DTW were 0.798 (95% confidence interval [CI]: 0.651-0.945, sensitivity = 0.650, specificity = 0.958) and 0.721 (95% CI: 0.570-0.871, sensitivity = 0.625, specificity = 0.800), respectively. CONCLUSION MSA-P patients demonstrate more severe gait disturbance and increased DLPFC activity compared with PD patients and HCs. Gait parameters and cortical activity could be a potential features discerning MSA-P patients and PD patients.
Collapse
Affiliation(s)
- Mengxi Gao
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Heng Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Aidi Shan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yongsheng Yuan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xingyue Cao
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lina Wang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Caiting Gan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Huimin Sun
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Shiyi Ye
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chenghui Wan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Youyong Kong
- Jiangsu Provincial Joint International Research Laboratory of Medical Information ProcessingSchool of Computer Science and Engineering, Southeast UniversityNanjingChina
| | - Kezhong Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
5
|
Demiri S, Veltsista D, Siokas V, Spiliopoulos KC, Tsika A, Stamati P, Chroni E, Dardiotis E, Liampas I. Neurofilament Light Chain in Cerebrospinal Fluid and Blood in Multiple System Atrophy: A Systematic Review and Meta-Analysis. Brain Sci 2025; 15:241. [PMID: 40149766 PMCID: PMC11940017 DOI: 10.3390/brainsci15030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Multiple system atrophy (MSA) presents a challenging diagnosis due to its clinical overlap with other neurodegenerative disorders, especially other α-synucleinopathies. The main purpose of this systematic review and meta-analysis was to assess neurofilament light chain (NfL) differences in the CSF and blood of patients with MSA versus the healthy control group (HC), patients with Parkinson's disease (PD) and patients with Lewy body dementia (LBD). Secondarily, the diagnostic metrics of CSF and circulating NfL in MSA versus HC, PD, LBD, progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) were discussed. Methods: MEDLINE and EMBASE were thoroughly searched for relevant case-control studies. Standardized mean differences (SMDs) were calculated separately for CSF and blood NfL per comparison. Statistical heterogeneity was assessed based on the Q and I^2 statistics. Results: Twenty-five relevant studies were retrieved. Quantitative syntheses revealed elevated CSF and circulating NfL levels in individuals with MSA versus HC [SMD = 1.80 (95%CI = 1.66, 1.94) and SMD = 2.00 (95%CI = 1.36, 2.63), respectively] versus PD [SMD = 1.65 (95%CI = 1.26, 2.03) and SMD = 1.63 (95%CI = 0.84, 2.43), respectively] as well as versus LBD [SMD = 1.17, (95%CI = 0.71, 1.63) and SMD = 0.65 (95%CI = 0.30, 1.00), respectively]. Diagnostic accuracy was outstanding for CSF and blood NfL in MSA versus HC and PD, and it was moderate in MSA versus LBD. On the other hand, it was suboptimal in MSA vs. PSP and CBD. Conclusions: Both CSF and circulating NfL levels are elevated in MSA compared to HC, PD and LBD. To achieve optimal diagnostic properties, further work is required in the standardization of processes and the establishment of reference NfL intervals and/or thresholds.
Collapse
Affiliation(s)
- Silvia Demiri
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.D.); (D.V.); (K.C.S.); (E.C.)
| | - Dimitra Veltsista
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.D.); (D.V.); (K.C.S.); (E.C.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (A.T.); (P.S.); (E.D.)
| | - Kanellos C. Spiliopoulos
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.D.); (D.V.); (K.C.S.); (E.C.)
| | - Antonia Tsika
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (A.T.); (P.S.); (E.D.)
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (A.T.); (P.S.); (E.D.)
| | - Elisabeth Chroni
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.D.); (D.V.); (K.C.S.); (E.C.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (A.T.); (P.S.); (E.D.)
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.D.); (D.V.); (K.C.S.); (E.C.)
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (A.T.); (P.S.); (E.D.)
| |
Collapse
|
6
|
George NP, Kwon M, Jang YE, Kim SG, Hwang JS, Lee SS, Lee G. Integrative Analysis of Metabolome and Proteome in the Cerebrospinal Fluid of Patients with Multiple System Atrophy. Cells 2025; 14:265. [PMID: 39996738 PMCID: PMC11853536 DOI: 10.3390/cells14040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative synucleinopathy. Differentiating MSA from other synucleinopathies, especially in the early stages, is challenging because of its overlapping symptoms with other forms of Parkinsonism. Thus, there is a pressing need to clarify the underlying biological mechanisms and identify specific biomarkers for MSA. The metabolic profile of cerebrospinal fluid (CSF) is known to be altered in MSA. To further investigate the biological mechanisms behind the metabolic changes, we created a network of altered CSF metabolites in patients with MSA and analysed these changes using bioinformatic software. Acknowledging the limitations of metabolomics, we incorporated proteomic data to improve the overall comprehensiveness of the study. Our in silico predictions showed elevated ROS, cytoplasmic inclusions, white matter demyelination, ataxia, and neurodegeneration, with ATP concentration, neurotransmitter release, and oligodendrocyte count predicted to be suppressed in MSA CSF samples. Machine learning and dimension reduction are important multi-omics approaches as they handle large amounts of data, identify patterns, and make predictions while reducing variance without information loss and generating easily visualised plots that help identify clusters, patterns, or outliers. Thus, integrated multiomics and machine learning approaches are essential for elucidating neurodegenerative mechanisms and identifying potential diagnostic biomarkers of MSA.
Collapse
Affiliation(s)
- Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Minjun Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Eun Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Seop Lee
- Department of Pharmacology, Inje University College of Medicine, Busan 50834, Republic of Korea;
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
7
|
Sekiya H, Tipton PW, Kawazoe M, Koga S, Murakami A, Maier AR, Uitti RJ, Cheshire WP, Wszolek ZK, Dickson DW. Current Landscape of Clinical Diagnosis in Multiple System Atrophy: A 15-Year Analysis From 2008 to 2022. Neurology 2024; 103:e210021. [PMID: 39531604 DOI: 10.1212/wnl.0000000000210021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Clinical diagnosis of multiple system atrophy (MSA) is challenging. In 2022, new diagnostic criteria for MSA were proposed. We hypothesized that the positive predictive value (PPV) of clinical diagnosis of MSA improved because of advanced diagnostic tools, including brain MRI. This study aimed to understand temporal changes in PPV of MSA. METHODS We conducted a retrospective analysis of patients clinically diagnosed with MSA whose brains were examined in the Mayo Clinic brain bank from 2008 to 2022. PPV was compared between 2 periods (2008-2017 and 2018-2022) and successively with a 4-year moving average. PPV for each clinical subtype (parkinsonism type [MSA-P] and cerebellar type [MSA-C]) was assessed. RESULTS This study included 321 patients (136 women, age at death 68 ± 9 years) with a clinical diagnosis of MSA. Among them, 225 were pathologically confirmed as MSA, resulting in an overall PPV of 70%. The remaining 30% had alternative pathologic diagnoses including Lewy body disease (18%), progressive supranuclear palsy (4%), cerebrovascular disease (1%), corticobasal degeneration (1%), and others (6%). PPV improved from 63% in 2008-2017 to 78% in 2018-2022 (odds ratio [OR] 2.0 [1.2-3.5], p = 0.005). Linear analysis also demonstrated increased PPV over time (r = 0.66 [0.14-0.89], p = 0.02). Brain MRI scans were more frequently performed in 2018-2022 compared with 2008-2017 (91% vs 80%; OR 2.4 [1.2-5.0], p = 0.012). PPV was higher in patients with brain MRI compared with those without (73% vs 52%; OR 2.5 [1.3-4.9], p = 0.0057). PPV for MSA-C was similar in both groups (87% in 2008-2017 and 93% in 2018-2022), while that for MSA-P improved from 59% in 2008-2017 to 72% in 2018-2022 (OR 1.8 [1.0-3.2], p = 0.04). DISCUSSION This study demonstrates an improvement in the PPV of MSA in recent years, potentially attributed to the increased use of brain MRI. Nevertheless, it also highlights that it remains difficult to make a correct diagnosis for some patients based on their clinical presentation. These findings provide a baseline for future clinicopathologic research on MSA.
Collapse
Affiliation(s)
- Hiroaki Sekiya
- From the Department of Neuroscience (H.S., M.K., S.K., A.M., A.R.M., D.W.D.), and Department of Neurology (P.W.T., R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Philip W Tipton
- From the Department of Neuroscience (H.S., M.K., S.K., A.M., A.R.M., D.W.D.), and Department of Neurology (P.W.T., R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Miki Kawazoe
- From the Department of Neuroscience (H.S., M.K., S.K., A.M., A.R.M., D.W.D.), and Department of Neurology (P.W.T., R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Shunsuke Koga
- From the Department of Neuroscience (H.S., M.K., S.K., A.M., A.R.M., D.W.D.), and Department of Neurology (P.W.T., R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Aya Murakami
- From the Department of Neuroscience (H.S., M.K., S.K., A.M., A.R.M., D.W.D.), and Department of Neurology (P.W.T., R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Alexia R Maier
- From the Department of Neuroscience (H.S., M.K., S.K., A.M., A.R.M., D.W.D.), and Department of Neurology (P.W.T., R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Ryan J Uitti
- From the Department of Neuroscience (H.S., M.K., S.K., A.M., A.R.M., D.W.D.), and Department of Neurology (P.W.T., R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - William P Cheshire
- From the Department of Neuroscience (H.S., M.K., S.K., A.M., A.R.M., D.W.D.), and Department of Neurology (P.W.T., R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Zbigniew K Wszolek
- From the Department of Neuroscience (H.S., M.K., S.K., A.M., A.R.M., D.W.D.), and Department of Neurology (P.W.T., R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Department of Neuroscience (H.S., M.K., S.K., A.M., A.R.M., D.W.D.), and Department of Neurology (P.W.T., R.J.U., W.P.C., Z.K.W.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
8
|
Sidow NO, Ibrahim AA, Ibrahim IG, Hassan MS, Mohamed SA. A challenging case presentation of multiple system atrophy cerebellar type: A rare case report from Somalia. Radiol Case Rep 2024; 19:6183-6186. [PMID: 39376957 PMCID: PMC11456811 DOI: 10.1016/j.radcr.2024.08.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Multiple system atrophy is a rare and quickly progressing neurological condition characterized by autonomic failure, parkinsonism, or cerebellar ataxia. It is classified into two subtypes: MSA with predominant parkinsonism (MSA-P) and MSA with predominant cerebellar ataxia (MSA-C). We are presenting here a 54-year-old male with parkinsonism, ataxia, and dysarthria. He was diagnosed with parkinson disease and was given a maximum dose of levodopa but has not responded. After a close neurological evaluation with magnetic resonance imaging of the brain, which shows atrophy of the cerebellum and a brainstem with a hot cross bun sign of the pons, suggestive of multiple system atrophy, he was diagnosed with multiple system atrophy cerebellar type, which is the first time to have this diagnosis in Somalia, which is a low-resource country.
Collapse
Affiliation(s)
- Nor Osman Sidow
- Department of Neurology, Mogadishu-Somalia Turkey Recep Tayyip Erdoğan Training and Research Hospital, Mogadishu, Somalia
- Faculty of Medicine and Surgery, Jazeera Univesity, Mogadishu, Somalia
| | - Abdiwahid Ahmed Ibrahim
- Department of Neurology, Mogadishu-Somalia Turkey Recep Tayyip Erdoğan Training and Research Hospital, Mogadishu, Somalia
| | - Ismail Gedi Ibrahim
- Department of Radiology, Mogadishu-Somalia Turkey Recep Tayyip Erdoğan Training and Research Hospital, Mogadishu, Somalia
| | - Mohamed Sheikh Hassan
- Department of Neurology, Mogadishu-Somalia Turkey Recep Tayyip Erdoğan Training and Research Hospital, Mogadishu, Somalia
| | - Said Abdi Mohamed
- Department of Neurology, Mogadishu-Somalia Turkey Recep Tayyip Erdoğan Training and Research Hospital, Mogadishu, Somalia
| |
Collapse
|
9
|
Srivastava A, Wang Q, Orrù CD, Fernandez M, Compta Y, Ghetti B, Zanusso G, Zou WQ, Caughey B, Beauchemin CAA. Enhanced quantitation of pathological α-synuclein in patient biospecimens by RT-QuIC seed amplification assays. PLoS Pathog 2024; 20:e1012554. [PMID: 39302978 PMCID: PMC11451978 DOI: 10.1371/journal.ppat.1012554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
Disease associated pathological aggregates of alpha-synuclein (αSynD) exhibit prion-like spreading in synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Seed amplification assays (SAAs) such as real-time quaking-induced conversion (RT-QuIC) have shown high diagnostic sensitivity and specificity for detecting proteopathic αSynD seeds in a variety of biospecimens from PD and DLB patients. However, the extent to which relative proteopathic seed concentrations are useful as indices of a patient's disease stage or prognosis remains unresolved. One feature of current SAAs that complicates attempts to correlate SAA results with patients' clinical and other laboratory findings is their quantitative imprecision, which has typically been limited to discriminating large differences (e.g. 5-10 fold) in seed concentration. We used end-point dilution (ED) RT-QuIC assays to determine αSynD seed concentrations in patient biospecimens and tested the influence of various assay variables such as serial dilution factor, replicate number and data processing methods. The use of 2-fold versus 10-fold dilution factors and 12 versus 4 replicate reactions per dilution reduced ED-RT-QuIC assay error by as much as 70%. This enhanced assay format discriminated as little as 2-fold differences in αSynD seed concentration besides detecting ~2-16-fold seed reductions caused by inactivation treatments. In some scenarios, analysis of the data using Poisson and midSIN algorithms provided more consistent and statistically significant discrimination of different seed concentrations. We applied our improved assay strategies to multiple diagnostically relevant PD and DLB antemortem patient biospecimens, including cerebrospinal fluid, skin, and brushings of the olfactory mucosa. Using ED αSyn RT-QuIC as a model SAA, we show how to markedly improve the inter-assay reproducibility and quantitative accuracy. Enhanced quantitative SAA accuracy should facilitate assessments of pathological seeding activities as biomarkers in proteinopathy diagnostics and prognostics, as well as in patient cohort selection and assessments of pharmacodynamics and target engagement in drug trials.
Collapse
Affiliation(s)
- Ankit Srivastava
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Qinlu Wang
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy, and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Christina D. Orrù
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Manel Fernandez
- Parkinson’s Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, Institut Clínic de Neurociències (Maria de Maeztu Excellence Centre), Universitat de Barcelona. Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Parkinson’s Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, Institut Clínic de Neurociències (Maria de Maeztu Excellence Centre), Universitat de Barcelona. Barcelona, Catalonia, Spain
| | - Bernardino Ghetti
- Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Wen-Quan Zou
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Institute of Neurology, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Catherine A. A. Beauchemin
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) at RIKEN, Wako, Japan
| |
Collapse
|
10
|
Zhang Y, Wang Z, Wei H, Chen M. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning. BMC Med Inform Decis Mak 2024; 24:159. [PMID: 38844961 PMCID: PMC11157868 DOI: 10.1186/s12911-024-02564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Compared with the time-consuming and labor-intensive for biological validation in vitro or in vivo, the computational models can provide high-quality and purposeful candidates in an instant. Existing computational models face limitations in effectively utilizing sparse local structural information for accurate predictions in circRNA-disease associations. This study addresses this challenge with a proposed method, CDA-DGRL (Prediction of CircRNA-Disease Association based on Double-line Graph Representation Learning), which employs a deep learning framework leveraging graph networks and a dual-line representation model integrating graph node features. METHOD CDA-DGRL comprises several key steps: initially, the integration of diverse biological information to compute integrated similarities among circRNAs and diseases, leading to the construction of a heterogeneous network specific to circRNA-disease associations. Subsequently, circRNA and disease node features are derived using sparse autoencoders. Thirdly, a graph convolutional neural network is employed to capture the local graph network structure by inputting the circRNA-disease heterogeneous network alongside node features. Fourthly, the utilization of node2vec facilitates depth-first sampling of the circRNA-disease heterogeneous network to grasp the global graph network structure, addressing issues associated with sparse raw data. Finally, the fusion of local and global graph network structures is inputted into an extra trees classifier to identify potential circRNA-disease associations. RESULTS The results, obtained through a rigorous five-fold cross-validation on the circR2Disease dataset, demonstrate the superiority of CDA-DGRL with an AUC value of 0.9866 and an AUPR value of 0.9897 compared to existing state-of-the-art models. Notably, the hyper-random tree classifier employed in this model outperforms other machine learning classifiers. CONCLUSION Thus, CDA-DGRL stands as a promising methodology for reliably identifying circRNA-disease associations, offering potential avenues to alleviate the necessity for extensive traditional biological experiments. The source code and data for this study are available at https://github.com/zywait/CDA-DGRL .
Collapse
Affiliation(s)
- Yi Zhang
- School of Computer Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, 541004, China
| | - ZhenMei Wang
- School of Big Data, Guangxi Vocational and Technical College, Nanning, 530003, China.
| | - Hanyan Wei
- Pharmacy School, Guilin Medical University, Guilin, 541004, China
| | - Min Chen
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421010, China
| |
Collapse
|
11
|
Abdul‐Rahman T, Herrera‐Calderón RE, Ahluwalia A, Wireko AA, Ferreira T, Tan JK, Wolfson M, Ghosh S, Horbas V, Garg V, Perveen A, Papadakis M, Ashraf GM, Alexiou A. The potential of phosphorylated α-synuclein as a biomarker for the diagnosis and monitoring of multiple system atrophy. CNS Neurosci Ther 2024; 30:e14678. [PMID: 38572788 PMCID: PMC10993367 DOI: 10.1111/cns.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disorder characterized by the presence of glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-Syn). Accurate diagnosis and monitoring of MSA present significant challenges, which can lead to potential misdiagnosis and inappropriate treatment. Biomarkers play a crucial role in improving the accuracy of MSA diagnosis, and phosphorylated α-synuclein (p-syn) has emerged as a promising biomarker for aiding in diagnosis and disease monitoring. METHODS A literature search was conducted on PubMed, Scopus, and Google Scholar using specific keywords and MeSH terms without imposing a time limit. Inclusion criteria comprised various study designs including experimental studies, case-control studies, and cohort studies published only in English, while conference abstracts and unpublished sources were excluded. RESULTS Increased levels of p-syn have been observed in various samples from MSA patients, such as red blood cells, cerebrospinal fluid, oral mucosal cells, skin, and colon biopsies, highlighting their diagnostic potential. The α-Syn RT-QuIC assay has shown sensitivity in diagnosing MSA and tracking its progression. Meta-analyses and multicenter investigations have confirmed the diagnostic value of p-syn in cerebrospinal fluid, demonstrating high specificity and sensitivity in distinguishing MSA from other neurodegenerative diseases. Moreover, combining p-syn with other biomarkers has further improved the diagnostic accuracy of MSA. CONCLUSION The p-syn stands out as a promising biomarker for MSA. It is found in oligodendrocytes and shows a correlation with disease severity and progression. However, further research and validation studies are necessary to establish p-syn as a reliable biomarker for MSA. If proven, p-syn could significantly contribute to early diagnosis, disease monitoring, and assessing treatment response.
Collapse
Affiliation(s)
| | | | | | | | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | | | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' AnusandhanBhubaneswarIndia
| | | | - Vandana Garg
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakHaryanaIndia
| | - Asma Perveen
- Glocal School of Life SciencesGlocal UniversitySaharanpurUttar PradeshIndia
- Princess Dr. Najla Bint Saud Al‐Saud Center for Excellence Research in BiotechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Ghulam Md Ashraf
- Department of Medical Laboratory SciencesUniversity of Sharjah, College of Health Sciences, and Research Institute for Medical and Health SciencesSharjahUAE
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationNew South WalesAustralia
| |
Collapse
|
12
|
Niu X, Yin P, Guan C, Shao Q, Cui G, Zan K, Xu C. Corneal confocal microscopy may help to distinguish Multiple System Atrophy from Parkinson's disease. NPJ Parkinsons Dis 2024; 10:63. [PMID: 38493181 PMCID: PMC10944503 DOI: 10.1038/s41531-024-00680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Multiple system atrophy (MSA) and Parkinson's disease (PD) have clinical overlapping symptoms, which makes differential diagnosis difficult. Our research aimed to distinguish MSA from PD using corneal confocal microscopy (CCM), a noninvasive and objective test. The study included 63 PD patients, 30 MSA patients, and 31 healthy controls (HC). When recruiting PD and MSA, questionnaires were conducted on motor and non-motor functions, such as autonomic and cognitive functions. Participants underwent CCM to quantify the corneal nerve fibers. Corneal nerve fiber density (CNFD) and corneal nerve fiber length (CNFL) values in MSA are lower than PD (MSA vs. PD: CNFD, 20.68 ± 6.70 vs. 24.64 ± 6.43 no./mm2, p < 0.05; CNFL, 12.01 ± 3.25 vs. 14.17 ± 3.52 no./mm2, p < 0.05). In MSA + PD (combined), there is a negative correlation between CNFD and the Orthostatic Grading Scale (OGS) (r = -0.284, p = 0.007). Similarly, CNFD in the only MSA group was negatively correlated with the Unified Multiple System Atrophy Rating Scale I and II (r = -0.391, p = 0.044; r = -0.382, p = 0.049). CNFD and CNFL were inversely associated with MSA (CNFD: β = -0.071; OR, 0.932; 95% CI, 0.872 ~ 0.996; p = 0.038; CNFL: β = -0.135; OR, 0.874; 95% CI, 0.768-0.994; p = 0.040). Furthermore, we found the area under the receiver operating characteristic curve (ROC) of CNFL was the largest, 72.01%. The CCM could be an objective and sensitive biomarker to distinguish MSA from PD. It visually reflects a more severe degeneration in MSA compared to PD.
Collapse
Affiliation(s)
- Xuebin Niu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peixiao Yin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenyang Guan
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiuyue Shao
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kun Zan
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
13
|
Yu Y, Wang J, Si L, Sun H, Liu X, Li X, Yan W. Smooth Pursuit and Reflexive Saccade in Discriminating Multiple-System Atrophy With Predominant Parkinsonism From Parkinson's Disease. J Clin Neurol 2024; 20:194-200. [PMID: 38171500 PMCID: PMC10921038 DOI: 10.3988/jcn.2022.0413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/17/2023] [Accepted: 06/23/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Performing the differential diagnosis of Parkinson's disease (PD) and multiple-system atrophy of parkinsonian type (MSA-P) is challenging. The oculomotor performances of patients with PD and MSA-P were investigated to explore their potential role as a biomarker for this differentiation. METHODS Reflexive saccades and smooth pursuit were examined in 56 patients with PD and 34 with MSA-P in the off-medication state. RESULTS Patients with PD and MSA-P had similar oculomotor abnormalities of prolonged and hypometric reflexive saccades. The incidence rates of decreased reflexive saccadic velocity and saccadic smooth pursuit were significantly higher in MSA-P than in PD (p<0.05 for both). Multiple logistic regression analysis indicated that slowed reflexive saccades (odds ratio [OR]=8.14, 95% confidence interval [CI]=1.45-45.5) and saccadic smooth pursuit (OR=5.27, 95% CI=1.24-22.43) were significantly related to MSA-P. CONCLUSIONS The distinctive oculomotor abnormalities of saccadic smooth pursuit and slowed reflexive saccades in MSA-P may serve as useful biomarkers for discriminating MSA-P from PD.
Collapse
Affiliation(s)
- Yaqin Yu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lihong Si
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanxin Sun
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolei Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Weihong Yan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Ying Y, Huang X, Song G, Zhao Y, Zhao X, Shi L, Gao Z, Li A, Gao T, Lu H, Fan G. 3D-CAM: a novel context-aware feature extraction framework for neurological disease classification. Front Neurosci 2024; 18:1364338. [PMID: 38486967 PMCID: PMC10938914 DOI: 10.3389/fnins.2024.1364338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
In clinical practice and research, the classification and diagnosis of neurological diseases such as Parkinson's Disease (PD) and Multiple System Atrophy (MSA) have long posed a significant challenge. Currently, deep learning, as a cutting-edge technology, has demonstrated immense potential in computer-aided diagnosis of PD and MSA. However, existing methods rely heavily on manually selecting key feature slices and segmenting regions of interest. This not only increases subjectivity and complexity in the classification process but also limits the model's comprehensive analysis of global data features. To address this issue, this paper proposes a novel 3D context-aware modeling framework, named 3D-CAM. It considers 3D contextual information based on an attention mechanism. The framework, utilizing a 2D slicing-based strategy, innovatively integrates a Contextual Information Module and a Location Filtering Module. The Contextual Information Module can be applied to feature maps at any layer, effectively combining features from adjacent slices and utilizing an attention mechanism to focus on crucial features. The Location Filtering Module, on the other hand, is employed in the post-processing phase to filter significant slice segments of classification features. By employing this method in the fully automated classification of PD and MSA, an accuracy of 85.71%, a recall rate of 86.36%, and a precision of 90.48% were achieved. These results not only demonstrates potential for clinical applications, but also provides a novel perspective for medical image diagnosis, thereby offering robust support for accurate diagnosis of neurological diseases.
Collapse
Affiliation(s)
- Yuhan Ying
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beiing, China
| | - Xin Huang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Guoli Song
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Yiwen Zhao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - XinGang Zhao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ziqi Gao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beiing, China
| | - Andi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beiing, China
| | - Tian Gao
- Shenyang Ligong University, Shenyang, China
| | - Hua Lu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Mercado G, Kaeufer C, Richter F, Peelaerts W. Infections in the Etiology of Parkinson's Disease and Synucleinopathies: A Renewed Perspective, Mechanistic Insights, and Therapeutic Implications. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1301-1329. [PMID: 39331109 PMCID: PMC11492057 DOI: 10.3233/jpd-240195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Increasing evidence suggests a potential role for infectious pathogens in the etiology of synucleinopathies, a group of age-related neurodegenerative disorders including Parkinson's disease (PD), multiple system atrophy and dementia with Lewy bodies. In this review, we discuss the link between infections and synucleinopathies from a historical perspective, present emerging evidence that supports this link, and address current research challenges with a focus on neuroinflammation. Infectious pathogens can elicit a neuroinflammatory response and modulate genetic risk in PD and related synucleinopathies. The mechanisms of how infections might be linked with synucleinopathies as well as the overlap between the immune cellular pathways affected by virulent pathogens and disease-related genetic risk factors are discussed. Here, an important role for α-synuclein in the immune response against infections is emerging. Critical methodological and knowledge gaps are addressed, and we provide new future perspectives on how to address these gaps. Understanding how infections and neuroinflammation influence synucleinopathies will be essential for the development of early diagnostic tools and novel therapies.
Collapse
Affiliation(s)
- Gabriela Mercado
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Kaeufer
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wouter Peelaerts
- Laboratory for Virology and Gene Therapy, Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Bartošová T, Klempíř J, Hansíková H. Coenzyme Q10: A Biomarker in the Differential Diagnosis of Parkinsonian Syndromes. Antioxidants (Basel) 2023; 12:2104. [PMID: 38136223 PMCID: PMC10740444 DOI: 10.3390/antiox12122104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple system atrophy (MSA) is generally a sporadic neurodegenerative disease which ranks among atypical Parkinson's syndromes. The main clinical manifestation is a combination of autonomic dysfunction and parkinsonism and/or cerebellar disability. The disease may resemble other Parkinsonian syndromes, such as Parkinson's disease (PD) or progressive supranuclear palsy (PSP), from which MSA could be hardly distinguishable during the first years of progression. Due to the lack of a reliable and easily accessible biomarker, the diagnosis is still based primarily on the clinical picture. Recently, reduced levels of coenzyme Q10 (CoQ10) were described in MSA in various tissues, including the central nervous system. The aim of our study was to verify whether the level of CoQ10 in plasma and lymphocytes could serve as an easily available diagnostic biomarker of MSA. The study reported significantly lower levels of CoQ10 in the lymphocytes of patients with MSA compared to patients with PD and controls. The reduction in CoQ10 levels in lymphocytes correlated with the increasing degree of clinical involvement of patients with MSA. CoQ10 levels in lymphocytes seem to be a potential biomarker of disease progression.
Collapse
Affiliation(s)
- Tereza Bartošová
- Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (T.B.); (J.K.)
| | - Jiří Klempíř
- Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (T.B.); (J.K.)
| | - Hana Hansíková
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| |
Collapse
|
17
|
Fernandes Gomes B, Farris CM, Ma Y, Concha-Marambio L, Lebovitz R, Nellgård B, Dalla K, Constantinescu J, Constantinescu R, Gobom J, Andreasson U, Zetterberg H, Blennow K. α-Synuclein seed amplification assay as a diagnostic tool for parkinsonian disorders. Parkinsonism Relat Disord 2023; 117:105807. [PMID: 37591709 DOI: 10.1016/j.parkreldis.2023.105807] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION Synucleinopathies such as Parkinson's disease (PD) and multiple system atrophy (MSA) can be challenging to diagnose due to the symptom overlap with, for example, atypical parkinsonisms like progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Seed amplification assays (SAA), developed for the detection of α-synuclein (αSyn) aggregates in CSF, have been successful when used as a biomarker evaluation for synucleinopathies. In this study, we investigated the potential of this assay to not only detect αSyn seeds in CSF, but also discriminate between movement disorders. METHODS The αSyn-SAA was tested in a Scandinavian cohort composed of 129 CSF samples from patients with PD (n = 55), MSA (n = 27), CBD (n = 7), and PSP (n = 16), as well as healthy controls (HC, n = 24). RESULTS The αSyn seed amplification assay (αSyn-SAA) was able to correctly identify all PD samples as positive (sensitivity of 100%) while also discriminating the PD group from HC (70.8% specificity, p < 0.0001) and tauopathies [CBD (71% specificity) and PSP (75% specificity), p < 0.0001)]. The αSyn-SAA was also able to identify almost all MSA samples as positive for αSyn aggregation (sensitivity of 92.6%). In general, this assay is able to discriminate between the synucleinopathies and tauopathies analyzed herein (p < 0.0001) despite the overlapping symptoms in these diseases. CONCLUSION These findings suggest the αSyn-SAA is a useful diagnostic tool for differentiating between different parkinsonian disorders, although further optimization may be needed.
Collapse
Affiliation(s)
- Bárbara Fernandes Gomes
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | | | - Yihua Ma
- R&D Unit, Amprion Inc., San Diego, CA, 92121, USA
| | | | | | - Bengt Nellgård
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Keti Dalla
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | | | - Radu Constantinescu
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
18
|
Asakawa T, Ogino M, Tominaga N, Ozaki N, Kubo J, Kakuda W. Effects of Rehabilitative Intervention for Augmenting Cough Function in Patients with Multiple System Atrophy. Prog Rehabil Med 2023; 8:20230035. [PMID: 37790746 PMCID: PMC10542584 DOI: 10.2490/prm.20230035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
Objectives One of the causes of death in patients with multiple system atrophy (MSA) is aspiration pneumonia caused by cough dysfunction. This study aimed to identify an effective approach to improve coughing and to explore the establishment of criteria for the use of gastrostomy based on cough and respiratory dysfunctions. Methods Eighteen probable MSA patients participated in the study. They were categorized into air stacking and non-air stacking groups. First, we investigated how the inspiration volume changes by applying maximum insufflation capacity (MIC). Second, peak cough flow (PCF) was measured by different cough augmentation methods: 1) spontaneous coughing (SpC); 2) SpC with MIC (SpC + MIC); 3) SpC with manually assisted cough (MAC) (SpC + MAC); and 4) SpC with MIC and MAC (SpC + MIC + MAC). Among these four conditions, PCF values were compared to determine the most effective approach for cough augmentation. Receiver operating characteristic analysis was performed on percent forced vital capacity (%FVC) to determine an index for discriminating PCF below160 L/min, which indicates a high risk of suffocation, involving SpC and SpC + MIC. Results Inspiration volume increased significantly with MIC in both groups (P < 0.05), and PCF increased significantly with MIC in the air stacking group (P < 0.01). PCF could not be maintained at 160 L/min when %FVC fell below 59%, even when MIC was applied. Conclusions PCF increases with MIC in patients with MSA. It may be meaningful to consider the timing of gastrostomy introduction based on the severity of cough and respiratory dysfunction.
Collapse
Affiliation(s)
- Takashi Asakawa
- Department of Clinical Medical Sciences, Rehabilitation
Medicine, International University of Health and Welfare Graduate School of Medicine,
Narita, Japan
- Department of Rehabilitation Division of Physiotherapy,
International University of Health and Welfare Ichikawa Hospital, Ichikawa, Japan
| | - Mieko Ogino
- Department of Neurology and Intractable Neurological Disease
Center, International University of Health and Welfare Ichikawa Hospital, Ichikawa,
Japan
| | - Naomi Tominaga
- Department of Neurology and Intractable Neurological Disease
Center, International University of Health and Welfare Ichikawa Hospital, Ichikawa,
Japan
| | - Naoto Ozaki
- Department of Rehabilitation Medicine, Jikei University
School of Medicine, Tokyo, Japan
| | - Jin Kubo
- Department of Rehabilitation Medicine, International
University of Health and Welfare School of Medicine, Narita, Japan
| | - Wataru Kakuda
- Department of Rehabilitation Medicine, International
University of Health and Welfare School of Medicine, Narita, Japan
| |
Collapse
|
19
|
Goolla M, Cheshire WP, Ross OA, Kondru N. Diagnosing multiple system atrophy: current clinical guidance and emerging molecular biomarkers. Front Neurol 2023; 14:1210220. [PMID: 37840912 PMCID: PMC10570409 DOI: 10.3389/fneur.2023.1210220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare and progressive neurodegenerative disorder characterized by motor and autonomic dysfunction. Accurate and early diagnosis of MSA is challenging due to its clinical similarity with other neurodegenerative disorders, such as Parkinson's disease and atypical parkinsonian disorders. Currently, MSA diagnosis is based on clinical criteria drawing from the patient's symptoms, lack of response to levodopa therapy, neuroimaging studies, and exclusion of other diseases. However, these methods have limitations in sensitivity and specificity. Recent advances in molecular biomarker research, such as α-synuclein protein amplification assays (RT-QuIC) and other biomarkers in cerebrospinal fluid and blood, have shown promise in improving the diagnosis of MSA. Additionally, these biomarkers could also serve as targets for developing disease-modifying therapies and monitoring treatment response. In this review, we provide an overview of the clinical syndrome of MSA and discuss the current diagnostic criteria, limitations of current diagnostic methods, and emerging molecular biomarkers that offer hope for improving the accuracy and early detection of MSA.
Collapse
Affiliation(s)
- Meghana Goolla
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Department of Surgery, University of Illinois, Chicago, IL, United States
| | | | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
- Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Naveen Kondru
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
20
|
Rostoka E, Shvirksts K, Salna E, Trapina I, Fedulovs A, Grube M, Sokolovska J. Prediction of type 1 diabetes with machine learning algorithms based on FTIR spectral data in peripheral blood mononuclear cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4926-4937. [PMID: 37721124 DOI: 10.1039/d3ay01080e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The incidence of autoimmunity is increasing, to ensure timely and comprehensive treatment, there must be a diagnostic method or markers that would be available to the general public. Fourier-transform infrared spectroscopy (FTIR) is a relatively inexpensive and accurate method for determining metabolic fingerprint. The metabolism, molecular composition and function of blood cells vary according to individual physiological and pathological conditions. Thus, by obtaining autoimmune disease-specific metabolic fingerprint markers in peripheral blood mononuclear cells (PBMC) and subsequently using machine learning algorithms, it might be possible to create a tool that will allow the diagnosis of autoimmune diseases. In this preliminary study, it was found that the peak shift at 1545 cm-1 could be considered specific for autoimmune disease type 1 diabetes (T1D), while the shifts at 1070 and 1417 cm-1 could be more attributed to the autoimmune condition per se. The prediction of T1D, despite the small number of participants in the study, showed an inverse AUC = 0.33 ± 0.096, n = 15, indicating a stable trend in the prediction of T1D based on FTIR metabolic fingerprint data in the PBMC.
Collapse
Affiliation(s)
- Evita Rostoka
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV 1004, Riga, Latvia.
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas iela 1, LV1004, Riga, Latvia
| | - Edgars Salna
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV 1004, Riga, Latvia.
| | - Ilva Trapina
- Institute of Biology, University of Latvia, Jelgavas iela 1, LV1004 Riga, Latvia
| | - Aleksejs Fedulovs
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV 1004, Riga, Latvia.
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas iela 1, LV1004, Riga, Latvia
| | | |
Collapse
|
21
|
Anghel L, Ciubară A, Nechita A, Nechita L, Manole C, Baroiu L, Ciubară AB, Mușat CL. Sleep Disorders Associated with Neurodegenerative Diseases. Diagnostics (Basel) 2023; 13:2898. [PMID: 37761265 PMCID: PMC10527657 DOI: 10.3390/diagnostics13182898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Sleep disturbances are common in various neurological pathologies, including amyotrophic lateral sclerosis (ALS), multiple system atrophy (MSA), hereditary ataxias, Huntington's disease (HD), progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB). This article reviews the prevalence and characteristics of sleep disorders in these conditions, highlighting their impact on patients' quality of life and disease progression. Sleep-related breathing disorders, insomnia, restless legs syndrome (RLS), periodic limb movement syndrome (PLMS), and rapid eye movement sleep behavior disorder (RBD) are among the common sleep disturbances reported. Both pharmacological and non-pharmacological interventions play crucial roles in managing sleep disturbances and enhancing overall patient care.
Collapse
Affiliation(s)
- Lucreția Anghel
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania;
| | - Anamaria Ciubară
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
| | - Aurel Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania
| | - Luiza Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania;
| | - Corina Manole
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania;
| | - Liliana Baroiu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Cuv. Parascheva’ Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| | - Alexandru Bogdan Ciubară
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos’ University, 800008 Galati, Romania;
| | - Carmina Liana Mușat
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania;
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos’ University, 800008 Galati, Romania;
| |
Collapse
|
22
|
Arora A, Hooda N, Channa JS, Negi M. A Rare Case of Cerebellar Ataxia. Neurol India 2023; 71:1031. [PMID: 37929456 DOI: 10.4103/0028-3886.388054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Affiliation(s)
- Aanchal Arora
- Department of Medicine, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Nidhi Hooda
- Department of Medicine, ABVIMS and Dr. RML Hospital, New Delhi, India
| | | | - Motilal Negi
- Department of Medicine, ABVIMS and Dr. RML Hospital, New Delhi, India
| |
Collapse
|
23
|
Moturu A, Welch W. Primary lateral sclerosis plus parkinsonism: a case report. BMC Neurol 2023; 23:312. [PMID: 37644413 PMCID: PMC10463512 DOI: 10.1186/s12883-023-03360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The standard of diagnosing primary lateral sclerosis, the Pringle criteria, requires three years of purely upper motor neuron symptom presentation before confirming diagnosis. This classic standard has been questioned on occasion due to its restrictive range of both time period and symptomatic exhibition. CASE PRESENTATION This case report will review a 57-year-old Caucasian female who presented with pyramidal and extrapyramidal features suggestive of the exceedingly rare disease primary lateral sclerosis plus parkinsonism. We will describe the mixture of upper motor neuron signs and striking parkinsonian symptoms experienced by the patient, as well as the full diagnostic workup leading to her preliminary diagnosis. The details of this case will then be utilized to explore the diagnostic criteria of primary lateral sclerosis, as well as to work through the differential of conditions resembling Parkinson's disease. CONCLUSIONS The current criteria to diagnose primary lateral sclerosis may be excluding patients with the disease and is an ongoing area of investigation. A thorough differential including other neurodegenerative conditions is necessary to consider and requires long-term follow-up.
Collapse
Affiliation(s)
- Abhaya Moturu
- Department of Neurology, University of Kansas St. Francis Health System, Topeka, KS, USA.
- Kansas City University, Kansas City, MO, USA.
| | - Wade Welch
- Department of Neurology, University of Kansas St. Francis Health System, Topeka, KS, USA
| |
Collapse
|
24
|
Wang P, Lan G, Xu B, Yu Z, Tian C, Lei X, Meissner WG, Feng T, Yang Y, Zhang J. α-Synuclein-carrying astrocytic extracellular vesicles in Parkinson pathogenesis and diagnosis. Transl Neurodegener 2023; 12:40. [PMID: 37620916 PMCID: PMC10463943 DOI: 10.1186/s40035-023-00372-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The accumulation of α-synuclein (α-syn), an essential step in PD development and progression, is observed not only in neurons but also in glia, including astrocytes. The mechanisms regulating astrocytic α-syn level and aggregation remain unclear. More recently, it has been demonstrated that a part of α-syn spreading occurs through extracellular vesicles (EVs), although it is unknown whether this process is involved in astrocytes of PD. It is known, however, that EVs derived from the central nervous system exist in the blood and are extensively explored as biomarkers for PD and other neurodegenerative disorders. METHODS Primary astrocytes were transfected with A53T α-syn plasmid or exposed to α-syn aggregates. The level of astrocyte-derived EVs (AEVs) was assessed by nanoparticle tracking analysis and immunofluorescence. The lysosomal function was evaluated by Cathepsin assays, immunofluorescence for levels of Lamp1 and Lamp2, and LysoTracker Red staining. The Apogee assays were optimized to measure the GLT-1+ AEVs in clinical cohorts of 106 PD, 47 multiple system atrophy (MSA), and 103 healthy control (HC) to test the potential of plasma AEVs as a biomarker to differentiate PD from other forms of parkinsonism. RESULTS The number of AEVs significantly increased in primary astrocytes with α-syn deposition. The mechanism of increased AEVs was partially attributed to lysosomal dysfunction. The number of α-syn-carrying AEVs was significantly higher in patients with PD than in HC and MSA. The integrative model combining AEVs with total and aggregated α-syn exhibited efficient diagnostic power in differentiating PD from HC with an AUC of 0.915, and from MSA with an AUC of 0.877. CONCLUSIONS Pathological α-syn deposition could increase the astrocytic secretion of EVs, possibly through α-syn-induced lysosomal dysfunction. The α-syn-containing AEVs in the peripheral blood may be an effective biomarker for clinical diagnosis or differential diagnosis of PD.
Collapse
Affiliation(s)
- Pan Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, 310002, China
| | - Guoyu Lan
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China
| | - Bin Xu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Zhenwei Yu
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Chen Tian
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Xia Lei
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Wassilios G Meissner
- CNRS, IMN, UMR 5293, University of Bordeaux, 33000, Bordeaux, France
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, 33000, Bordeaux, France
- Department of Medicine, New Zealand Brain Research Institute, University of Otago, Christchurch, Christchurch, New Zealand
| | - Tao Feng
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Ying Yang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, 310002, China.
| |
Collapse
|
25
|
Peelaerts W, Mercado G, George S, Villumsen M, Kasen A, Aguileta M, Linstow C, Sutter AB, Kuhn E, Stetzik L, Sheridan R, Bergkvist L, Meyerdirk L, Lindqvist A, Gavis MLE, Van den Haute C, Hultgren SJ, Baekelandt V, Pospisilik JA, Brudek T, Aznar S, Steiner JA, Henderson MX, Brundin L, Ivanova MI, Hannan TJ, Brundin P. Urinary tract infections trigger synucleinopathy via the innate immune response. Acta Neuropathol 2023; 145:541-559. [PMID: 36991261 PMCID: PMC10119259 DOI: 10.1007/s00401-023-02562-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Symptoms in the urogenital organs are common in multiple system atrophy (MSA), also in the years preceding the MSA diagnosis. It is unknown how MSA is triggered and these observations in prodromal MSA led us to hypothesize that synucleinopathy could be triggered by infection of the genitourinary tract causing ɑ-synuclein (ɑSyn) to aggregate in peripheral nerves innervating these organs. As a first proof that peripheral infections could act as a trigger in MSA, this study focused on lower urinary tract infections (UTIs), given the relevance and high frequency of UTIs in prodromal MSA, although other types of infection might also be important triggers of MSA. We performed an epidemiological nested-case control study in the Danish population showing that UTIs are associated with future diagnosis of MSA several years after infection and that it impacts risk in both men and women. Bacterial infection of the urinary bladder triggers synucleinopathy in mice and we propose a novel role of ɑSyn in the innate immune system response to bacteria. Urinary tract infection with uropathogenic E. coli results in the de novo aggregation of ɑSyn during neutrophil infiltration. During the infection, ɑSyn is released extracellularly from neutrophils as part of their extracellular traps. Injection of MSA aggregates into the urinary bladder leads to motor deficits and propagation of ɑSyn pathology to the central nervous system in mice overexpressing oligodendroglial ɑSyn. Repeated UTIs lead to progressive development of synucleinopathy with oligodendroglial involvement in vivo. Our results link bacterial infections with synucleinopathy and show that a host response to environmental triggers can result in ɑSyn pathology that bears semblance to MSA.
Collapse
Affiliation(s)
- Wouter Peelaerts
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Louvain, Belgium
- Laboratory for Virology and Gene Therapy, Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, Louvain, Belgium
| | - Gabriela Mercado
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Sonia George
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Marie Villumsen
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Alysa Kasen
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Miguel Aguileta
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Christian Linstow
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Alexandra B Sutter
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily Kuhn
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Lucas Stetzik
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Rachel Sheridan
- Flow Cytometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Liza Bergkvist
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Lindqvist
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Martha L Escobar Gavis
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Louvain, Belgium
- Leuven Viral Vector Core, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | - Scott J Hultgren
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Louvain, Belgium
- Leuven Viral Vector Core, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | | | - Tomasz Brudek
- Centre for Neuroscience and Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Jennifer A Steiner
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael X Henderson
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Lena Brundin
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA
| | - Magdalena I Ivanova
- Neuroscience Graduate Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, USA
| | - Tom J Hannan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrik Brundin
- Department of Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, MI, USA.
- Pharma Research and Early Development (pRED), F. Hoffmann-La Roche, Basel, Switzerland.
| |
Collapse
|
26
|
Cockx H, Nonnekes J, Bloem B, van Wezel R, Cameron I, Wang Y. Dealing with the heterogeneous presentations of freezing of gait: how reliable are the freezing index and heart rate for freezing detection? J Neuroeng Rehabil 2023; 20:53. [PMID: 37106388 PMCID: PMC10134593 DOI: 10.1186/s12984-023-01175-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Freezing of gait (FOG) is an unpredictable gait arrest that hampers the lives of 40% of people with Parkinson's disease. Because the symptom is heterogeneous in phenotypical presentation (it can present as trembling/shuffling, or akinesia) and manifests during various circumstances (it can be triggered by e.g. turning, passing doors, and dual-tasking), it is particularly difficult to detect with motion sensors. The freezing index (FI) is one of the most frequently used accelerometer-based methods for FOG detection. However, it might not adequately distinguish FOG from voluntary stops, certainly for the akinetic type of FOG. Interestingly, a previous study showed that heart rate signals could distinguish FOG from stopping and turning movements. This study aimed to investigate for which phenotypes and evoking circumstances the FI and heart rate might provide reliable signals for FOG detection. METHODS Sixteen people with Parkinson's disease and daily freezing completed a gait trajectory designed to provoke FOG including turns, narrow passages, starting, and stopping, with and without a cognitive or motor dual-task. We compared the FI and heart rate of 378 FOG events to baseline levels, and to stopping and normal gait events (i.e. turns and narrow passages without FOG) using mixed-effects models. We specifically evaluated the influence of different types of FOG (trembling vs akinesia) and triggering situations (turning vs narrow passages; no dual-task vs cognitive dual-task vs motor dual-task) on both outcome measures. RESULTS The FI increased significantly during trembling and akinetic FOG, but increased similarly during stopping and was therefore not significantly different from FOG. In contrast, heart rate change during FOG was for all types and during all triggering situations statistically different from stopping, but not from normal gait events. CONCLUSION When the power in the locomotion band (0.5-3 Hz) decreases, the FI increases and is unable to specify whether a stop is voluntary or involuntary (i.e. trembling or akinetic FOG). In contrast, the heart rate can reveal whether there is the intention to move, thus distinguishing FOG from stopping. We suggest that the combination of a motion sensor and a heart rate monitor may be promising for future FOG detection.
Collapse
Affiliation(s)
- Helena Cockx
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyendaalseweg 135, P.O. Box 9102, 6525AJ, Nijmegen, The Netherlands.
| | - Jorik Nonnekes
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Bastiaan Bloem
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard van Wezel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyendaalseweg 135, P.O. Box 9102, 6525AJ, Nijmegen, The Netherlands
- Biomedical Signals and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, Enschede, The Netherlands
| | - Ian Cameron
- Biomedical Signals and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, Enschede, The Netherlands
- OnePlanet Research Center, Nijmegen, The Netherlands
| | - Ying Wang
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyendaalseweg 135, P.O. Box 9102, 6525AJ, Nijmegen, The Netherlands
- Biomedical Signals and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, Enschede, The Netherlands
- ZGT Academy, Ziekenhuisgroep Twente, Almelo, The Netherlands
| |
Collapse
|
27
|
Chen B, Cui W, Wang S, Sun A, Yu H, Liu Y, He J, Fan G. Functional connectome automatically differentiates multiple system atrophy (parkinsonian type) from idiopathic Parkinson's disease at early stages. Hum Brain Mapp 2023; 44:2176-2190. [PMID: 36661217 PMCID: PMC10028675 DOI: 10.1002/hbm.26201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Differentiating the parkinsonian variant of multiple system atrophy (MSA-P) from idiopathic Parkinson's disease (IPD) is challenging, especially in the early stages. This study aimed to investigate differences and similarities in the brain functional connectomes of IPD and MSA-P patients and use machine learning methods to explore the diagnostic utility of these features. Resting-state fMRI data were acquired from 88 healthy controls, 76 MSA-P patients, and 53 IPD patients using a 3.0 T scanner. The whole-brain functional connectome was constructed by thresholding the Pearson correlation matrices of 116 regions, and topological properties were evaluated through graph theory approaches. Connectome measurements were used as features in machine learning models (random forest [RF]/logistic regression [LR]/support vector machine) to distinguish IPD and MSA-P patients. Regarding graph metrics, early IPD and MSA-P patients shared network topological properties. Both patient groups showed functional connectivity disruptions within the cerebellum-basal ganglia-cortical network, but these disconnections were mainly in the cortico-thalamo-cerebellar circuits in MSA-P patients and the basal ganglia-thalamo-cortical circuits in IPD patients. Among the connectome parameters, t tests combined with the RF method identified 15 features, from which the LR classifier achieved the best diagnostic performance on the validation set (accuracy = 92.31%, sensitivity = 90.91%, specificity = 93.33%, area under the receiver operating characteristic curve = 0.89). MSA-P and IPD patients show similar whole-brain network topological alterations. MSA-P primarily affects cerebellar nodes, and IPD primarily affects basal ganglia nodes; both conditions disrupt the cerebellum-basal ganglia-cortical network. Moreover, functional connectome parameters showed outstanding value in the differential diagnosis of early MSA-P and IPD.
Collapse
Affiliation(s)
- Boyu Chen
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wenzhuo Cui
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Shanshan Wang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Anlan Sun
- Yizhun Medical AI Co. Ltd, Beijing, People's Republic of China
| | - Hongmei Yu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yu Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jiachuan He
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
28
|
Bougea A, Stefanis L. microRNA and circRNA in Parkinson's Disease and atypical parkinsonian syndromes. Adv Clin Chem 2023; 115:83-133. [PMID: 37673523 DOI: 10.1016/bs.acc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are atypical parkinsonian syndromes (APS) with various clinical phenotypes and considerable clinical overlap with idiopathic Parkinson's disease (iPD). This disease heterogeneity makes ante-mortem diagnosis extremely challenging with up to 24% of patients misdiagnosed. Because diagnosis is predominantly clinical, there is great interest in identifying biomarkers for early diagnosis and differentiation of the different types of parkinsonism. Compared to protein biomarkers, microRNAs (miRNAs) and circularRNAs (circRNAs) are stable tissue-specific molecules that can be accurately measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). This chapter critically reviews miRNAs and circRNAs as diagnostic biomarkers and therapeutics to differentiate atypical parkinsonian disorders and their role in disease pathogenesis.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Leonidas Stefanis
- 1st Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Genetics of Multiple System Atrophy and Progressive Supranuclear Palsy: A Systemized Review of the Literature. Int J Mol Sci 2023; 24:ijms24065281. [PMID: 36982356 PMCID: PMC10048872 DOI: 10.3390/ijms24065281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are uncommon multifactorial atypical Parkinsonian syndromes, expressed by various clinical features. MSA and PSP are commonly considered sporadic neurodegenerative disorders; however, our understanding is improving of their genetic framework. The purpose of this study was to critically review the genetics of MSA and PSP and their involvement in the pathogenesis. A systemized literature search of PubMed and MEDLINE was performed up to 1 January 2023. Narrative synthesis of the results was undertaken. In total, 43 studies were analyzed. Although familial MSA cases have been reported, the hereditary nature could not be demonstrated. COQ2 mutations were involved in familial and sporadic MSA, without being reproduced in various clinical populations. In terms of the genetics of the cohort, synuclein alpha (SNCA) polymorphisms were correlated with an elevated likelihood of manifesting MSA in Caucasians, but a causal effect relationship could not be demonstrated. Fifteen MAPT mutations were linked with PSP. Leucine-rich repeat kinase 2 (LRRK2) is an infrequent monogenic mutation of PSP. Dynactin subunit 1 (DCTN1) mutations may imitate the PSP phenotype. GWAS have noted many risk loci of PSP (STX6 and EIF2AK3), suggesting pathogenetic mechanisms related to PSP. Despite the limited evidence, it seems that genetics influence the susceptibility to MSA and PSP. MAPT mutations result in the MSA and PSP pathologies. Further studies are crucial to elucidate the pathogeneses of MSA and PSP, which will support efforts to develop novel drug options.
Collapse
|
30
|
Hu W, Cheng Y, Pan J, Wang X, Li S, Fan Z, Shao B, Niu X. Value of electrophysiological indicators in differential diagnosis of parkinson's disease and multiple system atrophy. BMC Neurol 2023; 23:94. [PMID: 36864385 PMCID: PMC9979443 DOI: 10.1186/s12883-023-03131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND We evaluated the value of electrophysiological indicators by external anal sphincter electromyography (EAS-EMG), sympathetic skin response (SSR), R-R interval variation (RRIV), and Bulbocavernosus Reflex (BCR) in differential diagnosis of multiple system atrophy (MSA) and Parkinson's disease (PD). METHODS A total of 41 patients with MSA and 32 patients with PD were enrolled. The electrophysiological changes of autonomic dysfunction were assessed with BCR, EAS-EMG, SSR, and RRIV, and the abnormal rate of each indicator was calculated. The diagnostic value of each indicator was analyzed with ROC curve. RESULTS The incidence rate of autonomic dysfunction in MSA group was significantly higher than that in PD group (p < 0.05). The abnormal rates of BCR and EAS-EMG indicators in MSA group were higher than those in PD group (p < 0.05). The abnormal rates of SSR and RRIV indicators in MSA group and PD group were high; however, there was no significant difference between MSA and PD groups (p > 0.05). The sensitivity of BCR combined with EAS-EMG indicators in differential diagnosis of MSA and PD were 92.3% in males and 86.7% in females, respectively, and the specificity was 72.7% in males and 90% in females, respectively. CONCLUSIONS Combined analysis of BCR and EAS-EMG has high sensitivity and specificity for differential diagnosis of MSA and PD.
Collapse
Affiliation(s)
- Wangwang Hu
- Department of Rehabilitation Medicine, Ningbo Medical Center Li Huili Hospital, Zhejiang 315000 Ningbo, China
| | - Yifan Cheng
- grid.417401.70000 0004 1798 6507Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou, 310014 Zhejiang China
| | - Jie Pan
- grid.414906.e0000 0004 1808 0918Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Xun Wang
- grid.414906.e0000 0004 1808 0918Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Shaojing Li
- grid.414906.e0000 0004 1808 0918Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Zijian Fan
- grid.452858.60000 0005 0368 2155Department of Neurology, Taizhou Central Hospital, Taizhou, 317700 Zhejiang China
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Xiaoting Niu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
31
|
Zhang J, Han J, Shi Z, Zhang J, Zhou Z, Liu J, Yang G, Sun Y, Gu P, Zhao P, Ma L, Gong Z, Zhao J, Liu S, Liu C, Zhai X, Shang W, Chen Z, Gan J, Ma L, Hu W, Zhu H, Ji Y. The characteristic of nonmotor symptoms with different phenotypes and onsets in multiple system atrophy patients. J Clin Neurosci 2023; 109:1-5. [PMID: 36634471 DOI: 10.1016/j.jocn.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The characteristic of nonmotor symptoms in patients with multiple system atrophy (MSA) has varied among previous studies. The objective was to investigatethe nonmotor characteristics in MSA patients with different phenotypes, sex and different onset patterns. METHODS We performed a retrospective review of 1492 MSA patients. All cases were evaluatedby neurologists and assessed with motormanifestations, nonmotor symptoms, auxiliary examinationand brain MRI scans. RESULTS Multiple system atrophy-cerebellar ataxia (MSA-C) was the predominant phenotype in 998 patients. Average age of onset (56.8 ± 9.2 years) was earlier, the disease duration (2.4 ± 2.2 year) was shorter and brain MRI abnormalities (49.2 %) were more frequently in MSA-C (P < 0.001). Multiple system atrophy-parkinsonism (MSA-P) patients were more likely to have nonmotor symptoms. After adjusted significant parameters, urinary dysfunction (OR 1.441, 95 %CI = 1.067-1.946, P = 0.017), constipation (OR 1.482, 95 %CI = 1.113-1.973, P = 0.007), cognitive impairment (OR 1.509, 95 %CI = 1.074-2.121, P = 0.018) and drooling (OR 2.095, 95 %CI = 1.248-3.518, P = 0.005) were associated with the MSA-P phenotype. Males were more likely to have orthostatic hypotension, urinary dysfunction, sexual dysfunction, drooling and females in constipation and probable RBD. In different onset patterns, constipation (59.2 %) and probable RBD (28.4 %) were more frequently in autonomiconset pattern. CONCLUSIONS MSA-C is the predominant phenotype in Chinese patients, while many nonmotor symptoms are more common in MSA-P phenotype. Patients with different sex and onset patterns have different nonmotor characteristics. The different clinical features identified could help the physician counseling of MSA patients more easily and more accurately.
Collapse
Affiliation(s)
- Jinhong Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China; Department of Neurology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, China
| | - Jiuyan Han
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhihong Shi
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin 300350, China; Tianjin Dementia Institute, Department of Neurology, Tianjin Huan hu Hospital, Tianjin 300350, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Zhi Zhou
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Junyan Liu
- Department of Neurology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei 050051, China
| | - Gaiqing Yang
- Department of Neurology, Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Ping Gu
- Department of Neurology, Hebei Medical University First Affiliated Hospital, Shijiazhuang, Hebei 050030, China
| | - Ping Zhao
- Department of Neurology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Lili Ma
- Department of Neurology Ward 3, Kaifeng Central Hospital, Kaifeng, Henan 475001, China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300190, China
| | - Jingxia Zhao
- Department of Neurology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, China
| | - Shuai Liu
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin 300350, China; Tianjin Dementia Institute, Department of Neurology, Tianjin Huan hu Hospital, Tianjin 300350, China
| | - Chunyan Liu
- Department of Neurology, Beijing Aerospace General Hospital, Beijing 100012, China
| | - Xiaoyan Zhai
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Wanyu Shang
- Department of Neurology, Second Affiliated Hospital of Hebei, Shi Jiazhuang, Hebei 050000, China
| | - Zhichao Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lingyun Ma
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wenzheng Hu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hongcan Zhu
- Department of Neurology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan 450052, China.
| | - Yong Ji
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huan hu Hospital, Tianjin 300350, China.
| |
Collapse
|
32
|
Topuzova MP, Ternovykh IK, Shustova TA, Mikheeva AY, Chistyakova AO, Pavlova TA, Dudnikova NE, Pospelova ML, Alekseeva TM. [Multiple system atrophy]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:144-150. [PMID: 36843472 DOI: 10.17116/jnevro2023123021144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
The article presents a progressive neurodegenerative disease - multisystem atrophy, characterized by a combination of autonomic failure and various motor disorders, including parkinsonism and/or cerebellar ataxia; etiopathogenetic factors and variants of the clinical picture are described. We describe own clinical observation of a 59-old patient with cerebellar and bulbar syndromes, parkinsonism, pyramidal insufficiency, cognitive deficits, and autonomic dysfunction. The differential diagnosis included a whole range of neurodegenerative and hereditary diseases: Parkinson's disease, vascular parkinsonism, progressive supranuclear palsy, spinocerebellar ataxia, FXTAS, mitochondrial encephalopathies. The moderate severity of parkinsonism and the significant predominance of cerebellar symptoms and autonomic dysfunction make this clinical case difficult to diagnose. However, based on the life and disease history, clinical picture and research methods, a diagnosis of multiple system atrophy, cerebellar type (cerebellar, autonomic, bulbar syndrome, parkinsonism, pyramidal insufficiency and moderate cognitive impairment) was established. Differential search in such patients is a difficult task and includes a whole range of neurodegenerative and hereditary diseases due to the similarity of individual clinical and neuroimaging features and, unfortunately, the limited availability of molecular genetic diagnostic methods. However, earlier diagnosis is necessary to focus in time on the development of a personalized approach to the management of each such patient, taking into account the rate of symptoms development and steady progression, in order to ensure the longest possible survival time with an acceptable level of quality of life.
Collapse
Affiliation(s)
- M P Topuzova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - I K Ternovykh
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - T A Shustova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - A Yu Mikheeva
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - A O Chistyakova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - T A Pavlova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - N E Dudnikova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - M L Pospelova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - T M Alekseeva
- Almazov National Medical Research Centre, St Petersburg, Russia
| |
Collapse
|
33
|
Yang N, Qi X, Hu J, Teng J, Wang Y, Li C. Exploring the mechanism of astragalus membranaceus in the treatment of multiple system atrophy based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e32523. [PMID: 36749251 PMCID: PMC9901982 DOI: 10.1097/md.0000000000032523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/09/2022] [Indexed: 02/08/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disease, it causes functional degradation of multiple organs and systems throughout the body. Astragalus membranaceus (AM), a well-known traditional Chinese medicine, has been used to improve muscle wasting-related disorders for a long history. In this study, we used network pharmacology and molecular docking to predict the mechanism underlying AM for the treatment of MSA. We screened the active compounds of AM and its related targets, as well as the target proteins of MSA. We made a Venn diagram to obtain the intersecting targets and then constructed a protein-protein interaction network to find the core targets and build an active ingredient-target network map. After subjecting the intersecting targets to gene ontology and Kyoto encyclopedia of genes and genomes analysis, the binding ability of core compounds and core target proteins were validated by molecular docking. A total of 20 eligible compounds and 274 intersecting targets were obtained. The core components of treatment are quercetin, kaempferol, and isorhamnetin, and the core targets are TP53, RELA, and TNF. The main biological processes are related to cellular responses and regulation. Molecular functions are mainly associated with apoptosis, inflammation, and tumorigenesis. Molecular docking results show good and standard binding abilities. This study illustrates that AM treats MSA through multiple targets and pathways, and provides a reference for subsequent research.
Collapse
Affiliation(s)
- Ni Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Hu
- Shandong Public Health Clinical Center, Jinan, China
| | - Jing Teng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuangeng Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunlin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
34
|
Torre-Muruzabal T, Van der Perren A, Coens A, Gelders G, Janer AB, Camacho-Garcia S, Klingstedt T, Nilsson P, Stefanova N, Melki R, Baekelandt V, Peelaerts W. Host oligodendrogliopathy and α-synuclein strains dictate disease severity in multiple system atrophy. Brain 2023; 146:237-251. [PMID: 35170728 DOI: 10.1093/brain/awac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
Multiple system atrophy is a progressive neurodegenerative disease with prominent autonomic and motor features. During early stages, different subtypes of the disease are distinguished by their predominant parkinsonian or cerebellar symptoms, reflecting its heterogeneous nature. The pathognomonic feature of multiple system atrophy is the presence of α-synuclein (αSyn) protein deposits in oligodendroglial cells. αSyn can assemble in specific cellular or disease environments and form αSyn strains with unique structural features, but the ability of αSyn strains to propagate in oligodendrocytes remains elusive. Recently, it was shown that αSyn strains with related conformations exist in the brains of patients. Here, we investigated whether different αSyn strains can influence multiple system atrophy progression in a strain-dependent manner. To this aim, we injected two recombinant αSyn strains (fibrils and ribbons) in multiple system atrophy transgenic mice and found that they determined disease severity in multiple system atrophy via host-restricted and cell-specific pathology in vivo. αSyn strains significantly impact disease progression in a strain-dependent way via oligodendroglial, neurotoxic and immune-related mechanisms. Neurodegeneration and brain atrophy were accompanied by unique microglial and astroglial responses and the recruitment of central and peripheral immune cells. The differential activation of microglial cells correlated with the structural features of αSyn strains both in vitro and in vivo. Spectral analysis showed that ribbons propagated oligodendroglial inclusions that were structurally distinct from those of fibrils, with resemblance to oligodendroglial inclusions, in the brains of patients with multiple system atrophy. This study, therefore, shows that the multiple system atrophy phenotype is governed by both the nature of the αSyn strain and the host environment and that by injecting αSyn strains into an animal model of the disease, a more comprehensive phenotype can be established.
Collapse
Affiliation(s)
- Teresa Torre-Muruzabal
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Anke Van der Perren
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Audrey Coens
- Institut François Jacob (MIRCen), CEA, and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Géraldine Gelders
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Anna Barber Janer
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Sara Camacho-Garcia
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Peter Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronald Melki
- Institut François Jacob (MIRCen), CEA, and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Veerle Baekelandt
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Wouter Peelaerts
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| |
Collapse
|
35
|
Frank C, Chiu R, Lee J. Parkinson disease primer, part 1: diagnosis. CANADIAN FAMILY PHYSICIAN MEDECIN DE FAMILLE CANADIEN 2023; 69:20-24. [PMID: 36693741 PMCID: PMC9873290 DOI: 10.46747/cfp.690120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To provide family physicians an updated approach to the diagnosis of Parkinson disease (PD). SOURCES OF INFORMATION Published guidelines on the diagnosis and management of PD were reviewed. Database searches were conducted to retrieve relevant research articles published between 2011 and 2021. Evidence levels ranged from I to III. MAIN MESSAGE Diagnosis of PD is predominantly clinical. Family physicians should evaluate patients for specific features of parkinsonism, then determine whether symptoms are attributable to PD. Levodopa trials can be used to help confirm the diagnosis and alleviate motor symptoms of PD. "Red flag" features and absence of response to levodopa may point to other causes of parkinsonism and prompt more urgent referral. CONCLUSION Access to neurologists and specialized clinics varies, and Canadian family physicians can be important players in facilitating early and accurate diagnosis of PD. Applying an organized approach to diagnosis and considering motor and nonmotor symptoms can greatly benefit patients with PD. Part 2 in this series will review management of PD.
Collapse
Affiliation(s)
- Chris Frank
- Family physician focusing on care of the elderly and palliative care and Professor in the Department of Medicine at Queen's University in Kingston, Ont.
| | - Ruth Chiu
- Family physician specializing in care of the elderly at North York General Hospital in Toronto, Ont, and Adjunct Lecturer in the Department of Family and Community Medicine at the University of Toronto
| | - Joyce Lee
- Clinical Associate Professor in the Department of Family Medicine and Physician Lead of the Geriatric Parkinson's Assessment Program at the Kaye Edmonton Clinic at the University of Alberta in Edmonton
| |
Collapse
|
36
|
Comparison of the second consensus statement with the movement disorder society criteria for multiple system atrophy: A single-center analysis. Parkinsonism Relat Disord 2023; 106:105242. [PMID: 36529110 DOI: 10.1016/j.parkreldis.2022.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION This study aimed at comparing the differences between the second consensus statement and Movement Disorder Society (MDS) criteria for Multiple System Atrophy (MSA) in a single Chinese cohort. METHODS We retrospectively reviewed 73 patients with MSA over the past five years. They were categorized as patients with probable and possible MSA according to the second consensus statement in addition to clinically established and clinically probable MSA according to the MDS criteria. The core clinical, supportive clinical, and imaging features were analyzed and compared between the two MSA subtypes. RESULTS A total of 40 patients with MSA-P and 33 patients with MSA-C were included in this study. Approximately 78.7% of the category of probable patients in the second consensus statement can be categorized as clinically established MSA in the MDS criteria and five patients with non-supporting features in the second consensus statement criteria can be diagnosed as clinically probable MSA in the MDS criteria. "Rapid progression" and "moderate to severe postural instability" within three years of motor onset dominated among the supportive features. Approximately 78.9% of patients possessed at least one imaging marker with predominant signal decrease of putamen on iron-sensitive sequences (38.0% of patients). Twenty-two patients could not be diagnosed as clinically established MSA mainly due to the lack of supportive or imaging features. CONCLUSIONS A high degree of agreement was noticed between the two criteria sets. The supportive and imaging features played important role in the diagnosis of MSA and affected the diagnostic level in the current criteria.
Collapse
|
37
|
Frank C, Chiu R, Lee J. Abécédaire de la maladie de Parkinson, partie 1 : le diagnostic. CANADIAN FAMILY PHYSICIAN MEDECIN DE FAMILLE CANADIEN 2023; 69:e8-e13. [PMID: 36693748 PMCID: PMC9873293 DOI: 10.46747/cfp.6901e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Objectif Présenter aux médecins de famille une approche actualisée du diagnostic de la maladie de Parkinson (MP). Sources de l’information Les lignes directrices sur le diagnostic et la prise en charge de la MP ont été passées en revue. Des recensions dans les bases de données ont été effectuées pour en extraire les articles de recherche publiés entre 2011 et 2021. Le niveau des données probantes varie entre I et III. Message principal Le diagnostic de la MP est principalement d’ordre clinique. Les médecins de famille devraient évaluer les patients en fonction des caractéristiques particulières du parkinsonisme et déterminer ensuite si les symptômes sont attribuables à la MP. Des essais à la lévodopa peuvent servir à confirmer le diagnostic et à atténuer les symptômes moteurs de la MP. Des « signaux d’alerte » et l’absence de réponse à la lévodopa pourraient indiquer d’autres causes du parkinsonisme et inciter à faire une demande de consultation plus urgente. Conclusion L’accès à des neurologues et à des cliniques spécialisées est variable, et les médecins de famille canadiens peuvent être des acteurs importants pour faciliter un diagnostic précoce et exact de la MP. La mise en application d’une approche structurée du diagnostic, et la prise en compte des symptômes moteurs et non moteurs peuvent être grandement bénéfiques pour les patients atteints de la MP. La partie 2 de cette série portera sur la prise en charge de la MP.
Collapse
Affiliation(s)
- Chris Frank
- Médecin de famille; il se concentre sur les soins palliatifs et aux personnes âgées et est professeur au Département de médecine de l'Université Queen's à Kingston (Ontario).
| | - Ruth Chiu
- Médecin de famille spécialisée en soins aux personnes âgées à l'Hôpital North York General à Toronto (Ontario) et chargée de cours adjointe au Département de médecine familiale et communautaire de l'Université de Toronto
| | - Joyce Lee
- Professeure agrégée de clinique au Département de médecine familiale et médecin responsable du programme d'évaluation gériatrique de la maladie de Parkinson à la Kaye Edmonton Clinic de l'Université de l'Alberta à Edmonton
| |
Collapse
|
38
|
Lamotte G, Singer W. Synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:175-202. [PMID: 37620069 DOI: 10.1016/b978-0-323-98817-9.00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The α-synucleinopathies include pure autonomic failure, multiple system atrophy, dementia with Lewy bodies, and Parkinson disease. The past two decades have witnessed significant advances in the diagnostic strategies and symptomatic treatment of motor and nonmotor symptoms of the synucleinopathies. This chapter provides an in-depth review of the pathophysiology, pathology, genetic, epidemiology, and clinical and laboratory autonomic features that distinguish the different synucleinopathies with an emphasis on autonomic failure as a common feature. The treatment of the different synucleinopathies is discussed along with the proposal for multidisciplinary, individualized care models that optimally address the various symptoms. There is an urgent need for clinical scientific studies addressing patients at risk of developing synucleinopathies and the investigation of disease mechanisms, biomarkers, potential disease-modifying therapies, and further advancement of symptomatic treatments for motor and nonmotor symptoms.
Collapse
Affiliation(s)
- Guillaume Lamotte
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Wolfgang Singer
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
39
|
Weston LJ, Bowman AM, Osterberg VR, Meshul CK, Woltjer RL, Unni VK. Aggregated Alpha-Synuclein Inclusions within the Nucleus Predict Impending Neuronal Cell Death in a Mouse Model of Parkinsonism. Int J Mol Sci 2022; 23:ijms232315294. [PMID: 36499619 PMCID: PMC9736441 DOI: 10.3390/ijms232315294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Alpha-synuclein (aSyn) is a 14 kD protein encoded by the SNCA gene that is expressed in vertebrates and normally localizes to presynaptic terminals and the nucleus. aSyn forms pathological intracellular aggregates that typify a group of important neurodegenerative diseases called synucleinopathies. Previous work in human tissue and model systems indicates that some of these aggregates can be intranuclear, but the significance of aSyn aggregation within the nucleus is not clear. We used a mouse model that develops aggregated aSyn nuclear inclusions. Using aSyn preformed fibril injections in GFP-tagged aSyn transgenic mice, we were able to induce the formation of nuclear aSyn inclusions and study their properties in fixed tissue and in vivo using multiphoton microscopy. In addition, we analyzed human synucleinopathy patient tissue to better understand this pathology. Our data demonstrate that nuclear aSyn inclusions may form through the transmission of aSyn between neurons, and these intranuclear aggregates bear the hallmarks of cytoplasmic Lewy pathology. Neuronal nuclear aSyn inclusions can form rod-like structures that do not contain actin, excluding them from being previously described nuclear actin rods. Longitudinal, in vivo multiphoton imaging indicates that certain morphologies of neuronal nuclear aSyn inclusions predict cell death within 14 days. Human multiple system atrophy cases contain neurons and glia with similar nuclear inclusions, but we were unable to detect such inclusions in Lewy body dementia cases. This study suggests that the dysregulation of a nuclear aSyn function associated with nuclear inclusion formation could play a role in the forms of neurodegeneration associated with synucleinopathy.
Collapse
Affiliation(s)
- Leah J. Weston
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anna M. Bowman
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
| | - Valerie R. Osterberg
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles K. Meshul
- Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR 97239, USA
- Departments of Behavioral Neuroscience and Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Randall L. Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Vivek K. Unni
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
- OHSU Parkinson Center, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
40
|
Jia P, Zhang J, Han J, Ji Y. Clinical outcomes and cognitive impairments between progressive supranuclear palsy and multiple system atrophy. Brain Behav 2022; 12:e2827. [PMID: 36409061 PMCID: PMC9759125 DOI: 10.1002/brb3.2827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/14/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Both progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) belong to atypical parkinsonian syndromes. It is important to differentiate these diseases accurately. We compared clinical outcomes and cognitive impairments between PSP and MSA. METHODS Eighty-five MSA parkinsonism type (MSA-P) patients and 76 PSP patients participated in this research. The Montreal Cognitive Assessment (MoCA) and the mini-mental state examination (MMSE) evaluated cognitive function. RESULTS MSA-P patients had a significantly higher incidence of dyskinesia, fall, urinary symptoms, and constipation, whereas patients with PSP had a higher incidence of tremor and salivation. MSA-P patients had higher MMSE and MoCA scores than PSP patients. The MMSE score showed a diagnostic cut-off score of 24.5 in PSP versus MSA-P. The MoCA score showed a diagnostic cut-off score of 20.5 in PSP versus MSA-P. CONCLUSION In conclusion, patients with PSP had differences in the clinical outcomes and cognitive impairments compared with MSA-P patients. PSP patients had more severe cognitive deficits. The score of MMSE and MoCA could be used in distinguishing MSA-P from PSP.
Collapse
Affiliation(s)
- Peifei Jia
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Jinhong Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurology, Cangzhou People's Hospital, Cangzhou, Hebei, China
| | - Jiuyan Han
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Ji
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
41
|
Kinoshita C, Kubota N, Aoyama K. Glutathione Depletion and MicroRNA Dysregulation in Multiple System Atrophy: A Review. Int J Mol Sci 2022; 23:15076. [PMID: 36499400 PMCID: PMC9740333 DOI: 10.3390/ijms232315076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by parkinsonism, cerebellar impairment, and autonomic failure. Although the causes of MSA onset and progression remain uncertain, its pathogenesis may involve oxidative stress via the generation of excess reactive oxygen species and/or destruction of the antioxidant system. One of the most powerful antioxidants is glutathione, which plays essential roles as an antioxidant enzyme cofactor, cysteine-storage molecule, major redox buffer, and neuromodulator, in addition to being a key antioxidant in the central nervous system. Glutathione levels are known to be reduced in neurodegenerative diseases. In addition, genes regulating redox states have been shown to be post-transcriptionally modified by microRNA (miRNA), one of the most important types of non-coding RNA. miRNAs have been reported to be dysregulated in several diseases, including MSA. In this review, we focused on the relation between glutathione deficiency, miRNA dysregulation and oxidative stress and their close relation with MSA pathology.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
42
|
Reddy K, Dieriks BV. Multiple system atrophy: α-Synuclein strains at the neuron-oligodendrocyte crossroad. Mol Neurodegener 2022; 17:77. [DOI: 10.1186/s13024-022-00579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractThe aberrant accumulation of α-Synuclein within oligodendrocytes is an enigmatic, pathological feature specific to Multiple system atrophy (MSA). Since the characterization of the disease in 1969, decades of research have focused on unravelling the pathogenic processes that lead to the formation of oligodendroglial cytoplasmic inclusions. The discovery of aggregated α-Synuclein (α-Syn) being the primary constituent of glial cytoplasmic inclusions has spurred several lines of research investigating the relationship between the pathogenic accumulation of the protein and oligodendrocytes. Recent developments have identified the ability of α-Syn to form conformationally distinct “strains” with varying behavioral characteristics and toxicities. Such “strains” are potentially disease-specific, providing insight into the enigmatic nature of MSA. This review discusses the evidence for MSA-specific α-Syn strains, highlighting the current methods for detecting and characterizing MSA patient-derived α-Syn. Given the differing behaviors of α-Syn strains, we explore the seeding and spreading capabilities of MSA-specific strains, postulating their influence on the aggressive nature of the disease. These ideas culminate into one key question: What causes MSA–specific strain formation? To answer this, we discuss the interplay between oligodendrocytes, neurons and α-Syn, exploring the ability of each cell type to contribute to the aggregate formation while postulating the effect of additional variables such as protein interactions, host characteristics and environmental factors. Thus, we propose the idea that MSA strain formation results from the intricate interrelation between neurons and oligodendrocytes, with deficits in each cell type required to initiate α-Syn aggregation and MSA pathogenesis.
Graphical Abstract
Collapse
|
43
|
Hovaguimian A. Dysautonomia. Neurol Clin 2022; 41:193-213. [DOI: 10.1016/j.ncl.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Claassen DO. Multiple System Atrophy. Continuum (Minneap Minn) 2022; 28:1350-1363. [DOI: 10.1212/con.0000000000001154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Li J, Mei S, Zhang X, Wang Y, Jia X, Liu J, Xu E, Mao W, Zhang Y. Case report: Combined therapy of bilateral subthalamic nucleus deep brain stimulation and spinal cord stimulation significantly improves motor function in a patient with multiple system atrophy with predominant parkinsonism. Front Neurosci 2022; 16:929273. [PMID: 35979336 PMCID: PMC9376352 DOI: 10.3389/fnins.2022.929273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple system atrophy with predominant parkinsonism (MSA-P) is a highly incapacitating disease with a short life expectancy and symptomatic therapy is still limited. In this report, we presented the case of a 65-year-old woman with a 3-year history of severe rigidity, bradykinesia, and gait dysfunction alongside severe freezing of gait diagnosed with MSA-P. She underwent combined therapy of bilateral subthalamic nucleus deep brain stimulation (DBS) and low-thoracic spinal cord stimulation (SCS). The double-blind evaluation of the Movement Disorder Society Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III and 7-m Timed Up and Go at follow-ups showed her cardinal parkinsonian symptoms benefit significantly from DBS stimulation, while the improvement of SCS was mainly embodied in lower-limb symptoms. The combined stimulation achieved a better improvement of motor function than either DBS or SCS stimulation alone. Most notably, the improvement of lower-limb symptoms was significantly enhanced by the combined stimulation.
Collapse
Affiliation(s)
- Jiping Li
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shanshan Mei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunpeng Wang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Jia
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jinlong Liu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Erhe Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuqing Zhang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Yoo J, Cheon M. Differential diagnosis of patients with atypical Parkinsonian syndrome using 18F-FDG and 18F-FP CIT PET: A report of five cases. Radiol Case Rep 2022; 17:2765-2770. [PMID: 35677703 PMCID: PMC9167875 DOI: 10.1016/j.radcr.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 12/04/2022] Open
Abstract
We describe 5 cases of patients who presented atypical parkinsonian syndrome (APS), including gait disturbance, postural instability, decreasing facial expression, dyskinesia, and subjective cognitive impairment. The patients underwent 18F-FP-CIT PET and 18F-FDG PET consecutively for differential diagnosis of APS. Through PET imaging examination, it was possible to offer a suggestive diagnosis and determine individual strategic management for patients with APS.
Collapse
Affiliation(s)
- Jang Yoo
- Department of Nuclear Medicine, VHS Medical Center, Seoul 05368, Korea
| | - Miju Cheon
- Department of Nuclear Medicine, VHS Medical Center, Seoul 05368, Korea
| |
Collapse
|
47
|
Sekiya H, Koga S, Otsuka Y, Chihara N, Ueda T, Sekiguchi K, Yoneda Y, Kageyama Y, Matsumoto R, Dickson DW. Clinical and pathological characteristics of later onset multiple system atrophy. J Neurol 2022; 269:4310-4321. [PMID: 35305144 PMCID: PMC10315173 DOI: 10.1007/s00415-022-11067-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In the current consensus criteria, onset after age 75 is considered as non-supporting for diagnosis of multiples system atrophy (MSA); however, some MSA patients present after age 75. Clinical and pathological characteristics of such later onset MSA (LO-MSA) compared to usual onset MSA (UO-MSA) remain poorly understood. METHODS The clinical cohort included patients from Kobe University Hospital and Amagasaki General Medical Center Hospital, while the autopsy cohort was from the brain bank at Mayo Clinic Florida. We identified 83 patients in the clinical cohort and 193 patients in the autopsy cohort. We divided MSA into two groups according to age at onset: UO-MSA (≤ 75) and LO-MSA (> 75). We compared clinical features and outcomes between the two groups in the clinical cohort and compared the findings to the autopsy cohort. RESULTS LO-MSA accounted for 8% in the clinical cohort and 5% in the autopsy cohort. The median time from onset to death or to life-saving tracheostomy was significantly shorter in LO-MSA than in UO-MSA in both cohorts (4.8 vs 7.9 years in the clinical cohort and 3.9 vs 7.5 years in the autopsy cohort; P = 0.043 and P < 0.0001, respectively). The median time from diagnosis to death was less than 3 years in LO-MSA in the clinical cohort. CONCLUSIONS Some MSA patients have late age of onset and short survival, limiting time for clinical decision making. MSA should be considered in the differential diagnosis of elderly patients with autonomic symptoms and extrapyramidal and/or cerebellar syndromes.
Collapse
Affiliation(s)
- Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Yoshihisa Otsuka
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center Hospital, Amagasaki, Hyogo, Japan
| | - Norio Chihara
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takehiro Ueda
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kenji Sekiguchi
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yukihiro Yoneda
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center Hospital, Amagasaki, Hyogo, Japan
| | - Yasufumi Kageyama
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center Hospital, Amagasaki, Hyogo, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| |
Collapse
|
48
|
Bagchi AD. Multiple System Atrophy. J Nurse Pract 2022. [DOI: 10.1016/j.nurpra.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Caniça V, Bouça‐Machado R, Rosa MM, Ferreira JJ. Adverse Events of Physiotherapy Interventions in Parkinsonian Patients. Mov Disord Clin Pract 2022; 9:744-750. [PMID: 35937480 PMCID: PMC9346232 DOI: 10.1002/mdc3.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Physiotherapists have an ethical, professional, and regulatory responsibility for safety in all aspects of patient care. Notwithstanding, the adverse events issue has been inadequately addressed in the rehabilitation research field. Objectives To determine the frequency and characterize the adverse events that occur during or in between physiotherapy sessions for parkinsonian syndromes. Methods An exploratory clinical study was conducted. Physiotherapists were asked to actively report the adverse events that occurred during or between sessions for parkinsonian syndromes. Results A total of 100 patients were enrolled in the study, which resulted in 1845 sessions. The most common adverse events reported were falls, pain/discomfort, and hypotension, with a total of 128 adverse events reported. Conclusions During the physiotherapy sessions, adverse events do occur. Future research should clarify the relationship between AE occurrence and the type of intervention as well as causality and risk-minimization strategies.
Collapse
Affiliation(s)
| | - Raquel Bouça‐Machado
- CNS–Campus NeurológicoTorres VedrasPortugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina de LisboaUniversidade de LisboaPortugal
| | - Mário Miguel Rosa
- Instituto de Medicina Molecular João Lobo AntunesLisbonPortugal
- Department of Neuroscience and Mental Health, NeurologyHospital de Santa Maria, Centro Hospitalar Universitário Lisboa NorteLisbonPortugal
| | - Joaquim J. Ferreira
- CNS–Campus NeurológicoTorres VedrasPortugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina de LisboaUniversidade de LisboaPortugal
- Instituto de Medicina Molecular João Lobo AntunesLisbonPortugal
| |
Collapse
|
50
|
Just MK, Gram H, Theologidis V, Jensen PH, Nilsson KPR, Lindgren M, Knudsen K, Borghammer P, Van Den Berge N. Alpha-Synuclein Strain Variability in Body-First and Brain-First Synucleinopathies. Front Aging Neurosci 2022; 14:907293. [PMID: 35693346 PMCID: PMC9178288 DOI: 10.3389/fnagi.2022.907293] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Pathogenic alpha-synuclein (asyn) aggregates are a defining feature of neurodegenerative synucleinopathies, which include Parkinson's disease, Lewy body dementia, pure autonomic failure and multiple system atrophy. Early accurate differentiation between these synucleinopathies is challenging due to the highly heterogeneous clinical profile at early prodromal disease stages. Therefore, diagnosis is often made in late disease stages when a patient presents with a broad range of motor and non-motor symptoms easing the differentiation. Increasing data suggest the clinical heterogeneity seen in patients is explained by the presence of distinct asyn strains, which exhibit variable morphologies and pathological functions. Recently, asyn seed amplification assays (PMCA and RT-QuIC) and conformation-specific ligand assays have made promising progress in differentiating between synucleinopathies in prodromal and advanced disease stages. Importantly, the cellular environment is known to impact strain morphology. And, asyn aggregate pathology can propagate trans-synaptically along the brain-body axis, affecting multiple organs and propagating through multiple cell types. Here, we present our hypothesis that the changing cellular environments, an asyn seed may encounter during its brain-to-body or body-to-brain propagation, may influence the structure and thereby the function of the aggregate strains developing within the different cells. Additionally, we aim to review strain characteristics of the different synucleinopathies in clinical and preclinical studies. Future preclinical animal models of synucleinopathies should investigate if asyn strain morphology is altered during brain-to-body and body-to-brain spreading using these seeding amplification and conformation-specific assays. Such findings would greatly deepen our understanding of synucleinopathies and the potential link between strain and phenotypic variability, which may enable specific diagnosis of different synucleinopathies in the prodromal phase, creating a large therapeutic window with potential future applications in clinical trials and personalized therapeutics.
Collapse
Affiliation(s)
- Mie Kristine Just
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Hjalte Gram
- Department of Biomedicine, DANDRITE-Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Vasileios Theologidis
- Department of Biomedicine, DANDRITE-Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Poul Henning Jensen
- Department of Biomedicine, DANDRITE-Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - K. Peter R. Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karoline Knudsen
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Nathalie Van Den Berge
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|