1
|
Estrada JA, Hori A, Fukazawa A, Ishizawa R, Hotta N, Kim HK, Smith SA, Mizuno M. Abnormal cardiovascular control during exercise: Role of insulin resistance in the brain. Auton Neurosci 2025; 258:103239. [PMID: 39874739 DOI: 10.1016/j.autneu.2025.103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
During exercise circulatory adjustments to meet oxygen demands are mediated by multiple autonomic mechanisms, the skeletal muscle exercise pressor reflex (EPR), the baroreflex (BR), and by feedforward signals from central command neurons in higher brain centers. Insulin resistance in peripheral tissues includes sensitization of skeletal muscle afferents by hyperinsulinemia which is in part responsible for the abnormally heightened EPR function observed in diabetic animal models and patients. However, the role of insulin signaling within the central nervous system (CNS) is receiving increased attention as a potential therapeutic intervention in diseases with underlying insulin resistance. This review will highlight recent advances in our understanding of how insulin resistance induces changes in central signaling. The alterations in central insulin signaling produce aberrant cardiovascular responses to exercise. In particular, we will discuss the role of insulin signaling within the medullary cardiovascular control nuclei. The nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM) are key nuclei where insulin has been demonstrated to modulate cardiovascular reflexes. The first locus of integration for the EPR, BR and central command is the NTS which is high in neurons expressing insulin receptors (IRs). The IRs on these neurons are well positioned to modulate cardiovascular responses to exercise. Additionally, the differences in IR density and presence of receptor isoforms enable specificity and diversity of insulin actions within the CNS. Therefore, non-invasive delivery of insulin into the CNS may be an effective means of normalizing cardiovascular responses to exercise in patients with insulin resistance.
Collapse
Affiliation(s)
- Juan A Estrada
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amane Hori
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan; College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Ayumi Fukazawa
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Rie Ishizawa
- Faculty of Sports and Life Science, National Institute of Fitness and Sports in KANOYA, Kagoshima 891-2393, Japan
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Han-Kyul Kim
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott A Smith
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masaki Mizuno
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Weggen JB, Darling AM, Autler AS, Hogwood AC, Decker KP, Richardson J, Tuzzolo G, Garten RS. Lower vascular conductance responses to handgrip exercise are improved following acute antioxidant supplementation in young individuals with post-traumatic stress disorder. Exp Physiol 2024; 109:992-1003. [PMID: 38711207 PMCID: PMC11140166 DOI: 10.1113/ep091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Young individuals with post-traumatic stress disorder (PTSD) display peripheral vascular and autonomic nervous system dysfunction, two factors potentially stemming from a redox imbalance. It is currently unclear if these aforementioned factors, observed at rest, alter peripheral haemodynamic responses to exercise in this population. This study examined haemodynamic responses to handgrip exercise in young individuals with PTSD following acute antioxidant (AO) supplementation. Thirteen young individuals with PTSD (age 23 ± 3 years), and 13 age- and sex-matched controls (CTRL) participated in the study. Exercise-induced changes to arm blood flow (BF), mean arterial pressure (MAP) and vascular conductance (VC) were evaluated across two workloads of rhythmic handgrip exercise (3 and 6 kg). The PTSD group participated in two visits, consuming either a placebo (PL) or AO prior to their visits. The PTSD group demonstrated significantly lower VC (P = 0.04) across all exercise workloads (vs. CTRL), which was significantly improved following AO supplementation. In the PTSD group, AO supplementation improved VC in participants possessing the lowest VC responses to handgrip exercise, with AO supplementation significantly improving VC responses (3 and 6 kg: P < 0.01) by blunting elevated exercise-induced MAP responses (3 kg: P = 0.01; 6 kg: P < 0.01). Lower VC responses during handgrip exercise were improved following AO supplementation in young individuals with PTSD. AO supplementation was associated with a blunting of exercise-induced MAP responses in individuals with PTSD displaying elevated MAP responses. This study revealed that young individuals with PTSD exhibit abnormal, peripherally mediated exercise responses that may be linked to a redox imbalance.
Collapse
Affiliation(s)
- Jennifer B. Weggen
- Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Ashley M. Darling
- Department of KinesiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Aaron S. Autler
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Austin C. Hogwood
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Kevin P. Decker
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Jacob Richardson
- Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Gina Tuzzolo
- Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Ryan S. Garten
- Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
3
|
Zhang H, Guo Y, Hua G, Guo C, Gong S, Li M, Yang Y. Exercise training modalities in prediabetes: a systematic review and network meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1308959. [PMID: 38440785 PMCID: PMC10911289 DOI: 10.3389/fendo.2024.1308959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024] Open
Abstract
Background Lifestyle modification based on exercise intervention is still the primary way to delay or reverse the development of diabetes in patients with prediabetes. However, there are still challenges in setting up a detailed exercise prescription for people with prediabetes. This study mainly ranks exercise prescriptions by comparing the improvement of glucose and lipid metabolism and the level of weight loss in patients. Method All studies on exercise intervention in prediabetes were identified by searching five electronic databases. Risk assessment and meta-analysis were performed on eligible studies. Results Twenty-four studies involving 1946 patients with prediabetes and seven exercise intervention models were included in the final analysis. The meta-analysis showed that exercise of any type was more effective for glycemic control in prediabetes than no exercise. However, the changes in blood glucose were moderate. In prediabetes, combining moderate-intensity aerobic exercise with low-to moderate-load resistance training showed the most significant improvements in glycosylated hemoglobin (HbA1c), body mass index (BMI), body weight (BW), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL) (P-score=0.82; 0.70; 0.87; 1; 0.99), low-to moderate-load resistance training showed the most significant improvements in fasting blood glucose (FBG) (P-score=0.98), the vigorous-intensity aerobic exercise showed the most significant improvements in 2-hour post-meal blood glucose (2hPG) and systolic blood pressure (SBP) (P-score=0.79; 0.78), and moderate-intensity aerobic exercise showed the most significant improvements in diastolic blood pressure (DBP) (P-score=0.78). Conclusion In summary, moderate-intensity aerobic exercise, low-to moderate-load resistance training and the combination of both have beneficial effects on glycemic control, weight loss, and cardiovascular health in patients with prediabetes. These findings provide valuable guidance for rehabilitation clinicians and patients alike to follow. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD 42021284922.
Collapse
Affiliation(s)
- Hang Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Guo
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangshun Hua
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chenyang Guo
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simiao Gong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Min Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Yang
- Medical Department of The Third Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Hori A, Fukazawa A, Katanosaka K, Mizuno M, Hotta N. Mechanosensitive channels in the mechanical component of the exercise pressor reflex. Auton Neurosci 2023; 250:103128. [PMID: 37925831 DOI: 10.1016/j.autneu.2023.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The cardiovascular response is appropriately regulated during exercise to meet the metabolic demands of the active muscles. The exercise pressor reflex is a neural feedback mechanism through thin-fiber muscle afferents activated by mechanical and metabolic stimuli in the active skeletal muscles. The mechanical component of this reflex is referred to as skeletal muscle mechanoreflex. Its initial step requires mechanotransduction mediated by mechanosensors, which convert mechanical stimuli into biological signals. Recently, various mechanosensors have been identified, and their contributions to muscle mechanoreflex have been actively investigated. Nevertheless, the mechanosensitive channels responsible for this muscular reflex remain largely unknown. This review discusses progress in our understanding of muscle mechanoreflex under healthy conditions, focusing on mechanosensitive channels.
Collapse
Affiliation(s)
- Amane Hori
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-8472, Japan; Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Ayumi Fukazawa
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-8472, Japan; Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Kimiaki Katanosaka
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Masaki Mizuno
- Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
5
|
Bunsawat K, Skow RJ, Kaur J, Wray DW. Neural control of the circulation during exercise in heart failure with reduced and preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H998-H1011. [PMID: 37682236 PMCID: PMC10907034 DOI: 10.1152/ajpheart.00214.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Patients with heart failure with reduced (HFrEF) and preserved ejection fraction (HFpEF) exhibit severe exercise intolerance that may be due, in part, to inappropriate cardiovascular and hemodynamic adjustments to exercise. Several neural mechanisms and locally released vasoactive substances work in concert through complex interactions to ensure proper adjustments to meet the metabolic demands of the contracting skeletal muscle. Specifically, accumulating evidence suggests that disease-related alterations in neural mechanisms (e.g., central command, exercise pressor reflex, arterial baroreflex, and cardiopulmonary baroreflex) contribute to heightened sympathetic activation and impaired ability to attenuate sympathetic vasoconstrictor responsiveness that may contribute to reduced skeletal muscle blood flow and severe exercise intolerance in patients with HFrEF. In contrast, little is known regarding these important aspects of physiology in patients with HFpEF, though emerging data reveal heightened sympathetic activation and attenuated skeletal muscle blood flow during exercise in this patient population that may be attributable to dysregulated neural control of the circulation. The overall goal of this review is to provide a brief overview of the current understanding of disease-related alterations in the integrative neural cardiovascular responses to exercise in both HFrEF and HFpEF phenotypes, with a focus on sympathetic nervous system regulation during exercise.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
6
|
Mannozzi J, Al-Hassan MH, Kaur J, Lessanework B, Alvarez A, Massoud L, Aoun K, Spranger M, O'Leary DS. Blood flow restriction training activates the muscle metaboreflex during low-intensity sustained exercise. J Appl Physiol (1985) 2023; 135:260-270. [PMID: 37348015 PMCID: PMC10393340 DOI: 10.1152/japplphysiol.00274.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Blood flow restriction training (BFRT) employs partial vascular occlusion of exercising muscle and has been shown to increase muscle performance while using reduced workload and training time. Numerous studies have demonstrated that BFRT increases muscle hypertrophy, mitochondrial function, and beneficial vascular adaptations. However, changes in cardiovascular hemodynamics during the exercise protocol remain unknown, as most studies measured blood pressure before the onset and after the cessation of exercise. With reduced perfusion to the exercising muscle during BFRT, the resultant accumulation of metabolites within the ischemic muscle could potentially trigger a large reflex increase in blood pressure, termed the muscle metaboreflex. At low workloads, this pressor response occurs primarily via increases in cardiac output. However, when increases in cardiac output are limited (e.g., heart failure or during severe exercise), the reflex shifts to peripheral vasoconstriction as the primary mechanism to increase blood pressure, potentially increasing the risk of a cardiovascular event. Using our chronically instrumented conscious canine model, we utilized a 60% reduction in femoral blood pressure applied to the hindlimbs during steady-state treadmill exercise (3.2 km/h) to reproduce the ischemic environment observed during BFRT. We observed significant increases in heart rate (+19 ± 3 beats/min), stroke volume (+2.52 ± 1.2 mL), cardiac output (+1.21 ± 0.2 L/min), mean arterial pressure (+18.2 ± 2.4 mmHg), stroke work (+1.93 ± 0.2 L/mmHg), and nonischemic vascular conductance (+3.62 ± 1.7 mL/mmHg), indicating activation of the muscle metaboreflex.NEW & NOTEWORTHY Blood flow restriction training (BFRT) increases muscle mass, strength, and endurance. There has been minimal consideration of the reflex cardiovascular responses that could be elicited during BFRT sessions. We showed that during low-intensity exercise BFRT may trigger large reflex increases in blood pressure and sympathetic activity due to muscle metaboreflex activation. Thus, we urge caution when employing BFRT, especially in patients in whom exaggerated cardiovascular responses may occur that could cause sudden, adverse cardiovascular events.
Collapse
Affiliation(s)
- Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Mohamed-Hussein Al-Hassan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States
| | - Beruk Lessanework
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Alberto Alvarez
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Louis Massoud
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kamel Aoun
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Marty Spranger
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
7
|
Aranda LC, Ribeiro IC, Freitas TO, Degani-Costa LH, Dias DS, DE Angelis K, Paixão AO, Brum PC, Oliveira ASB, Vianna LC, Nery LE, Silva BM. Enhanced Respiratory Frequency Response to Lower Limb Mechanoreceptors Activation in Patients with Chronic Obstructive Pulmonary Disease. Med Sci Sports Exerc 2023; 55:418-429. [PMID: 36730960 DOI: 10.1249/mss.0000000000003065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE To investigate the mechanoreflex control of respiration and circulation in patients with chronic obstructive pulmonary disease (COPD). METHODS Twenty-eight patients with moderate-to-severe COPD (mean ± SD: 67.0 ± 7.9 yr, 10 women) and 14 age- and sex-matched controls (67.9 ± 2.6 yr, 7 women) participated in the study. Their dominant knee was passively moved to stimulate mechanoreceptors, whereas vastus lateralis surface electrical activity checked active contractions. A differential pressure flowmeter, an electrocardiogram, and a servo-controlled finger photoplethysmograph acquired cardiorespiratory data. To gain insight into the mechanoreflex arc, we further analyzed reduced/oxidized glutathione ratio and mechanoreceptor-related gene expression in a vastus lateralis biopsy of additional nine patients (63.9 ± 8.1 yr, 33% women) and eight controls (62.9 ± 9.1 yr, 38% women). RESULTS Patients with COPD had a greater peak respiratory frequency response (COPD: Δ = 3.2 ± 2.3 vs Controls: 1.8 ± 1.2 cycles per minute, P = 0.036) and a smaller peak tidal volume response to passive knee movement than controls. Ventilation, heart rate, stroke volume, and cardiac output peak responses, and total peripheral resistance nadir response, were unaltered by COPD. In addition, patients had a diminished glutathione ratio (COPD: 13.3 ± 3.8 vs controls: 20.0 ± 5.5 a.u., P = 0.015) and an augmented brain-derived neurotrophic factor expression (COPD: 2.0 ± 0.7 vs controls: 1.1 ± 0.4 a.u., P = 0.002) than controls. Prostaglandin E receptor 4, cyclooxygenase 2, and Piezo1 expression were similar between groups. CONCLUSIONS Respiratory frequency response to mechanoreceptors activation is increased in patients with COPD. This abnormality is possibly linked to glutathione redox imbalance and augmented brain-derived neurotrophic factor expression within locomotor muscles, which could increase mechanically sensitive afferents' stimulation and sensitivity.
Collapse
Affiliation(s)
| | | | | | - Luiza H Degani-Costa
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Respiratory Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, BRAZIL
| | | | | | - Ailma O Paixão
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, BRAZIL
| | - Patricia C Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, BRAZIL
| | - Acary S B Oliveira
- Department of Neurology and Neurosurgery, UNIFESP, São Paulo, SP, BRAZIL
| | - Lauro C Vianna
- NeuroV̇ASQ˙-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasilia, Brasilia, Federal District, BRAZIL
| | - Luiz E Nery
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Respiratory Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, BRAZIL
| | | |
Collapse
|
8
|
Bock JM, Hanson BE, Miller KA, Seaberg NT, Ueda K, Feider AJ, Hanada S, Lira VA, Casey DP. Eight weeks of inorganic nitrate/nitrite supplementation improves aerobic exercise capacity and the gas exchange threshold in patients with type 2 diabetes. J Appl Physiol (1985) 2022; 133:1407-1414. [PMID: 36326473 PMCID: PMC9762960 DOI: 10.1152/japplphysiol.00478.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have reduced exercise capacity, indexed by lower maximal oxygen consumption (V̇o2max) and achievement of the gas exchange threshold (GET) at a lower % V̇o2max. The ubiquitous signaling molecule nitric oxide (NO) plays a multifaceted role during exercise and, as patients with T2DM have poor endogenous NO production, we investigated if inorganic nitrate/nitrite supplementation (an exogenous source of NO) improves exercise capacity in patients with T2DM. Thirty-six patients with T2DM (10F, 59 ± 9 yr, 32.0 ± 5.1 kg/m2, HbA1c = 7.4 ± 1.4%) consumed beetroot juice containing either inorganic nitrate/nitrite (4.03 mmol/0.29 mmol) or a placebo (0.8 mmol/0.00 mmol) for 8 wk. A maximal exercise test was completed before and after both interventions. V̇o2max was determined by averaging 15-s data, whereas the GET was identified using the V-slope method and breath-by-breath data. Inorganic nitrate/nitrite increased both absolute (1.96 ± 0.67 to 2.07 ± 0.75 L/min) and relative (20.7 ± 7.0 to 21.9 ± 7.4 mL/kg/min, P < 0.05 for both) V̇o2max, whereas no changes were observed following placebo (1.94 ± 0.40 to 1.90 ± 0.39 L/min, P = 0.33; 20.0 ± 4.2 to 19.7 ± 4.6 mL/kg/min, P = 0.39). Maximal workload was also increased following inorganic nitrate/nitrite supplementation (134 ± 47 to 140 ± 51 W, P < 0.05) but not placebo (138 ± 32 to 138 ± 32 W, P = 0.98). V̇o2 at the GET (1.11 ± 0.27 to 1.27 ± 0.38L/min) and the %V̇o2max in which GET occurred (56 ± 8 to 61 ± 7%, P < 0.05 for both) increased following inorganic nitrate/nitrite supplementation but not placebo (1.10 ± 0.23 to 1.08 ± 0.21 L/min, P = 0.60; 57 ± 9 to 57 ± 8%, P = 0.90) although the workload at GET did not achieve statistical significance (group-by-time P = 0.06). Combined inorganic nitrate/nitrite consumption improves exercise capacity, maximal workload, and promotes a rightward shift in the GET in patients with T2DM. This manuscript reports data from a registered Clinical Trial at ClinicalTrials.gov ID: NCT02804932.NEW & NOTEWORTHY We report that increasing nitric oxide bioavailability via 8 wk of inorganic nitrate/nitrite supplementation improves maximal aerobic exercise capacity in patients with type 2 diabetes mellitus. Similarly, we observed a rightward shift in the gas exchange threshold. Taken together, these data indicate inorganic nitrate/nitrite may serve as a means to improve fitness in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Brady E Hanson
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Kayla A Miller
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Nathanael T Seaberg
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Andrew J Feider
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Vitor A Lira
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
9
|
The serum irisin response to prolonged physical activity in temperate and hot environments in older men with hypertension or type 2 diabetes. J Therm Biol 2022; 110:103344. [PMID: 36462879 DOI: 10.1016/j.jtherbio.2022.103344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
Current labor demographics are changing, with the number of older adults increasingly engaged in physically demanding occupations expected to continually rise, which are often performed in the heat. Given an age-related decline in whole-body heat loss, older adults are at an elevated risk of developing heat injuries that may be exacerbated by hypertension (HTN) and type 2 diabetes (T2D). Elevated irisin production may play a role in mitigating the excess oxidative stress and acute inflammation associated with physically demanding work in the heat. However, the effects of HTN and T2D on this response remain unclear. Therefore, we evaluated serum irisin before and after 3-h of moderate intensity exercise (metabolic rate: 200 W/m2) and at the end of 60-min of post-exercise recovery in a temperate (wet-bulb globe temperature (WBGT) 16 °C) and high-heat stress (WBGT 32 °C) environment in 12 healthy older men (mean ± SD; 59 ± 4 years), 10 men with HTN (60 ± 4 years), and 9 men with T2D (60 ± 5 years). Core temperature (Tco) was measured continuously. In the heat, total exercise duration was significantly lower in older men with HTN and T2D (both, p ≤ 0.049). Despite Tco not being different between groups, Tco was higher in the hot compared to the temperate condition for all groups (p < 0.001). Similarly, serum irisin concentrations did not differ between groups under either condition but were elevated relative to the temperate condition during post-exercise and end-recovery in the heat (+93.9 pg/mL SEM 26 and + 70.5 pg/mL SEM 38 respectively; both p ≤ 0.014). Thus, our findings indicate similar irisin responses in HTN and T2D compared to healthy, age-matched controls, despite reduced exercise tolerance during prolonged exercise in the heat. Therefore, older workers with HTN and T2D may exhibit greater cellular stress during prolonged exercise in the heat, underlying greater vulnerability to heat-induced cellular injury.
Collapse
|
10
|
The association of elevated blood pressure during ischaemic exercise with sport performance in Master athletes with and without morbidity. Eur J Appl Physiol 2021; 122:211-221. [PMID: 34652528 PMCID: PMC8748359 DOI: 10.1007/s00421-021-04828-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/29/2021] [Indexed: 11/04/2022]
Abstract
Background An exaggerated exercise blood pressure (BP) is associated with a reduced exercise capacity. However, its connection to physical performance during competition is unknown. Aim To examine BP responses to ischaemic handgrip exercise in Master athletes (MA) with and without underlying morbidities and to assess their association with athletic performance during the World Master Track Cycling Championships 2019. Methods Forty-eight Master cyclists [age 59 ± 13yrs; weekly training volume 10.4 ± 4.1 h/week; handgrip maximum voluntary contraction (MVC) 46.3 ± 11.5 kg] divided into 2 matched groups (24 healthy MA and 24 MA with morbidity) and 10 healthy middle-aged non-athlete controls (age 48.3 ± 8.3 years; MVC 40.4 ± 14.8 kg) performed 5 min of forearm occlusion including 1 min handgrip isometric contraction (40%MVC) followed by 5 min recovery. Continuous beat-by-beat BP was recorded using finger plethysmography. Age-graded performance (AGP) was calculated to compare race performances among MA. Healthy Master cyclists were further grouped into middle-age (age 46.2 ± 6.4 years; N:12) and old-age (age 65.0 ± 7.7 years; N:12) for comparison with middle-aged non-athlete controls. Results Healthy and morbidity MA groups showed similar BP responses during forearm occlusion and AGP (90.1 ± 4.3% and 91.0 ± 5.3%, p > 0.05, respectively). Healthy and morbidity MA showed modest correlation between the BP rising slope for 40%MVC ischaemic exercise and AGP (r = 0.5, p < 0.05). MA showed accelerated SBP recovery after cessation of ischaemic handgrip exercise compared to healthy non-athlete controls. Conclusion Our findings associate long-term athletic training with improved BP recovery following ischaemic exercise regardless of age or reported morbidity. Exaggerated BP in Master cyclists during ischaemic exercise was associated with lower AGP during the World Master Cycling Championships. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04828-9.
Collapse
|
11
|
Rolnick N, Kimbrell K, Cerqueira MS, Weatherford B, Brandner C. Perceived Barriers to Blood Flow Restriction Training. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:697082. [PMID: 36188864 PMCID: PMC9397924 DOI: 10.3389/fresc.2021.697082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Blood flow restriction (BFR) training is increasing in popularity in the fitness and rehabilitation settings due to its role in optimizing muscle mass and strength as well as cardiovascular capacity, function, and a host of other benefits. However, despite the interest in this area of research, there are likely some perceived barriers that practitioners must overcome to effectively implement this modality into practice. These barriers include determining BFR training pressures, access to appropriate BFR training technologies for relevant demographics based on the current evidence, a comprehensive and systematic approach to medical screening for safe practice and strategies to mitigate excessive perceptual demands of BFR training to foster long-term compliance. This manuscript attempts to discuss each of these barriers and provides evidence-based strategies and direction to guide clinical practice and future research.
Collapse
Affiliation(s)
- Nicholas Rolnick
- The Human Performance Mechanic, Lehman College, New York, NY, United States
- *Correspondence: Nicholas Rolnick
| | - Kyle Kimbrell
- Owens Recovery Science, San Antonio, TX, United States
| | - Mikhail Santos Cerqueira
- Neuromuscular Performance Analysis Laboratory, Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | |
Collapse
|
12
|
Li Q, Qin L, Li J. Effects of bradykinin on voltage-gated K V 4 channels in muscle dorsal root ganglion neurons of rats with experimental peripheral artery disease. J Physiol 2021; 599:3567-3580. [PMID: 34036586 PMCID: PMC8284427 DOI: 10.1113/jp281704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS During exercise, bradykinin (BK), a muscle metabolite in ischaemic muscles, exaggerates autonomic responses to activation of muscle afferent nerves in peripheral artery disease (PAD). We examined whether BK inhibits activity of KV 4 channels in muscle afferent neurons of PAD rats induced by femoral artery occlusion. We demonstrated that: 1) femoral occlusion attenuates KV 4 currents in dorsal root ganglion (DRG) neurons innervating the hindlimb muscles and decreases the threshold of action potential firing; 2) BK has a greater inhibitory effect on KV 4 currents in muscle DRG neurons of PAD rats; and 3) expression of KV 4.3 is downregulated in DRGs of PAD rats and inhibition of KV 4.3 significantly decreases activity of KV 4 currents in muscle DRG neurons. Femoral artery occlusion-induced limb ischaemia and/or ischaemia-induced metabolites (i.e. BK) inhibit activity of KV 4 channels in muscle afferent neurons and this is likely involved in the exaggerated exercise pressor reflex in PAD. ABSTRACT Muscle afferent nerve-activated reflex sympathetic nervous and blood pressure responses are exaggerated during exercise in patients with peripheral artery diseases (PAD) and in PAD rats induced by femoral artery occlusion. However, the precise signalling pathways and molecular mediators responsible for these abnormal autonomic responses in PAD are poorly understood. A-type voltage-gated K+ (KV ) channels are quintessential regulators of cellular excitability in the various tissues. Among KV channels, KV 4 (i.e. KV 4.1 and KV 4.3) in primary sensory neurons mainly participate in physiological functions in regulation of mechanical and chemical sensation. However, little is known about the role of KV 4 in regulating neuronal activity in muscle afferent neurons of PAD. In addition, bradykinin (BK) is considered as a muscle metabolite contributing to the exaggerated exercise pressor reflex in PAD rats with femoral artery occlusion. Our data demonstrated that: 1) KV 4 currents are attenuated in dorsal root ganglion (DRG) neurons innervating the hindlimb muscles of PAD rats, along with a decreasing threshold of action potential firing; 2) KV 4 currents are inhibited by application of BK onto muscle DRG neurons of PAD rats to a greater degree; and 3) expression of KV 4.3 is downregulated in the DRGs of PAD rats and KV 4.3 channel is a major contributor to the activity of KV 4 currents in muscle DRG neurons. In conclusion, data suggest that femoral artery occlusion-induced limb ischaemia and/or ischaemia-induced metabolites (i.e. BK) inhibit the activity of KV 4 channels in muscle afferent neurons likely leading to the exaggerated exercise pressor reflex observed in PAD.
Collapse
Affiliation(s)
- Qin Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Lu Qin
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jianhua Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
13
|
Grotle AK, Kaur J, Stone AJ, Fadel PJ. Neurovascular Dysregulation During Exercise in Type 2 Diabetes. Front Physiol 2021; 12:628840. [PMID: 33927637 PMCID: PMC8076798 DOI: 10.3389/fphys.2021.628840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that type 2 diabetes (T2D) may impair the ability to properly adjust the circulation during exercise with augmented blood pressure (BP) and an attenuated contracting skeletal muscle blood flow (BF) response being reported. This review provides a brief overview of the current understanding of these altered exercise responses in T2D and the potential underlying mechanisms, with an emphasis on the sympathetic nervous system and its regulation during exercise. The research presented support augmented sympathetic activation, heightened BP, reduced skeletal muscle BF, and impairment in the ability to attenuate sympathetically mediated vasoconstriction (i.e., functional sympatholysis) as potential drivers of neurovascular dysregulation during exercise in T2D. Furthermore, emerging evidence supporting a contribution of the exercise pressor reflex and central command is discussed along with proposed future directions for studies in this important area of research.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Paul J. Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
14
|
Huo Y, Grotle AK, Ybarbo KM, Lee J, Harrison ML, Stone AJ. Effects of acute hyperglycemia on the exercise pressor reflex in healthy rats. Auton Neurosci 2020; 229:102739. [PMID: 33190039 DOI: 10.1016/j.autneu.2020.102739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/02/2023]
Abstract
The exercise pressor reflex is exaggerated in type 2 diabetes mellitus (T2DM). Hyperglycemia, a main characteristic of T2DM, likely contributes to this exaggerated response. However, the isolated effect of acute hyperglycemia, independent of T2DM, on the exercise pressor reflex is not known. Therefore, the purpose of this study was to determine the effect of acute, local exposure to hyperglycemia on the exercise pressor reflex and its two components, namely the mechanoreflex and the metaboreflex, in healthy rats. To accomplish this, we determined the effect of an acute locol intra-arterial glucose infusion (0.25 g/mL) on cardiovascular responses to static contraction (i.e., exercise pressor reflex) and tendon stretch (i.e., mechanoreflex) for 30 s, as well as hindlimb intra-arterial lactic acid (24 mM) injection (i.e., metaboreflex) in fasted unanesthetized, decerebrated Sprague-Dawley rats. We measured and compared changes in mean arterial pressure (MAP) and heart rate (HR) before and after glucose infusion. We found that acute glucose infusion did not affect the pressor response to static contraction (ΔMAP: before: 15 ± 2 mmHg, after: 12 ± 2 mmHg; n = 8, p > 0.05), tendon stretch (ΔMAP: before: 12 ± 1 mmHg, after: 12 ± 3 mmHg; n = 8, p > 0.05), or lactic acid injection (ΔMAP: before: 13 ± 2 mmHg, after: 17 ± 3 mmHg; n = 9, p > 0.05). Likewise, cardioaccelerator responses were unaffected by glucose infusion, p > 0.05 for all. In conclusion, these findings suggest that acute, local exposure to hyperglycemia does not affect the exercise pressor reflex or either of its components.
Collapse
Affiliation(s)
- Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Kai M Ybarbo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Junghoon Lee
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Michelle L Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
15
|
Grotle AK, Macefield VG, Farquhar WB, O'Leary DS, Stone AJ. Recent advances in exercise pressor reflex function in health and disease. Auton Neurosci 2020; 228:102698. [PMID: 32861944 DOI: 10.1016/j.autneu.2020.102698] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023]
Abstract
Autonomic alterations at the onset of exercise are critical to redistribute cardiac output towards the contracting muscles while preventing a fall in arterial pressure due to excessive vasodilation within the contracting muscles. Neural mechanisms responsible for these adjustments include central command, the exercise pressor reflex, and arterial and cardiopulmonary baroreflexes. The exercise pressor reflex evokes reflex increases in sympathetic activity to the heart and systemic vessels and decreases in parasympathetic activity to the heart, which increases blood pressure (BP), heart rate, and total peripheral resistance through vasoconstriction of systemic vessels. In this review, we discuss recent advancements in our understanding of exercise pressor reflex function in health and disease. Specifically, we discuss emerging evidence suggesting that sympathetic vasoconstrictor drive to the contracting and non-contracting skeletal muscle is differentially controlled by central command and the metaboreflex in healthy conditions. Further, we discuss evidence from animal and human studies showing that cardiovascular diseases, including hypertension, diabetes, and heart failure, lead to an altered exercise pressor reflex function. We also provide an update on the mechanisms thought to underlie this altered exercise pressor reflex function in each of these diseases. Although these mechanisms are complex, multifactorial, and dependent on the etiology of the disease, there is a clear consensus that several mechanisms are involved. Ultimately, approaches targeting these mechanisms are clinically significant as they provide alternative therapeutic strategies to prevent adverse cardiovascular events while also reducing symptoms of exercise intolerance.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America
| | | | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America.
| |
Collapse
|
16
|
Hotta N, Hori A, Okamura Y, Baba R, Watanabe H, Sugawara J, Vongpatanasin W, Wang J, Kim HK, Ishizawa R, Iwamoto GA, Mitchell JH, Smith SA, Mizuno M. Insulin resistance is associated with an exaggerated blood pressure response to ischemic rhythmic handgrip exercise in nondiabetic older adults. J Appl Physiol (1985) 2020; 129:144-151. [PMID: 32584663 DOI: 10.1152/japplphysiol.00247.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Patients with type 2 diabetes display an exaggerated pressor response to exercise. However, evidence supporting the association between the magnitude of the pressor response to exercise and insulin resistance-related factors including hemoglobin A1c (HbA1c) or homeostatic model assessment of insulin resistance (HOMA-IR) in nondiabetic subjects has remained sparse and inconclusive. Thus we investigated the relationship between cardiovascular responses to exercise and insulin resistance-related factors in nondiabetic healthy men (n = 23) and women (n = 22) above 60 yr old. We measured heart rate (HR) and blood pressure (BP) responses during: isometric handgrip (IHG) exercise of 30% maximal voluntary contraction, a period of skeletal muscle ischemia (SMI) induced by tourniqueting the arm after IHG, and rhythmic dynamic handgrip (DHG) exercise during SMI. Greater diastolic BP (DBP) responses to DHG with SMI was associated with male sex (r = 0.44, P = 0.02) and higher HbA1c (r = 0.33, P = 0.03), heart-ankle pulse wave velocity (haPWV) (r = 0.45, P < 0.01), and resting systolic BP (SBP) (r = 0.36, P = 0.02). HbA1c persisted as a significant determinant explaining the variance in the DBP response to DHG with SMI in multivariate models despite adjustment for sex, haPWV, and resting SBP. It was also determined that the DBP response to DHG with SMI in a group in which HOMA-IR was abnormal (Δ33 ± 3 mmHg) was significantly higher than that of groups in which HOMA-IR was at intermediate (Δ20 ± 4 mmHg) and normal (Δ23 ± 2 mmHg) levels. These data suggest that even in nondiabetic older adults, insulin resistance is related to an exaggerated pressor response to exercise especially when performed under ischemic conditions.NEW & NOTEWORTHY The diastolic blood pressure response to rhythmic dynamic handgrip exercise under ischemic conditions was demonstrated to be correlated with insulin resistance-related factors in nondiabetic older adults. This finding provides important insight to the prescription of exercise in this particular patient population as the blood pressure response to exercise, especially under ischemic conditions, could be exaggerated to nonsafe levels.
Collapse
Affiliation(s)
- Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Amane Hori
- Graduate School of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Yukiko Okamura
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Reizo Baba
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Hidehiro Watanabe
- Department of Rehabilitation, Tokai Memorial Hospital, Kasugai, Japan
| | - Jun Sugawara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jijia Wang
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Han-Kyul Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gary A Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jere H Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott A Smith
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Masaki Mizuno
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|